JPS6225273A - Magnetic field stabilizing device - Google Patents

Magnetic field stabilizing device

Info

Publication number
JPS6225273A
JPS6225273A JP16485185A JP16485185A JPS6225273A JP S6225273 A JPS6225273 A JP S6225273A JP 16485185 A JP16485185 A JP 16485185A JP 16485185 A JP16485185 A JP 16485185A JP S6225273 A JPS6225273 A JP S6225273A
Authority
JP
Japan
Prior art keywords
magnetic field
sensor
magnetic
coil assembly
reference coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16485185A
Other languages
Japanese (ja)
Other versions
JPH0355844B2 (en
Inventor
Mitsuru Kato
満 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP16485185A priority Critical patent/JPS6225273A/en
Publication of JPS6225273A publication Critical patent/JPS6225273A/en
Publication of JPH0355844B2 publication Critical patent/JPH0355844B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To eliminate the need for a high-precision sensor by arranging a magnetic sensor and a reference coil nearby the center of a working space, generating a magnetic field that the working space requires by the reference coil, and placing the magnetic sensor nearly in a zero-magnetic-field state. CONSTITUTION:When a reference current Is is flowed to a reference coil assembly 20, a magnetic field Hi which is the sum of the magnetic field Hs produced by the reference coil assembly 20 and a magnetic field Hs' in the working space is established at the magnetic sensor 30. The magnetic sensor 30 generates an output signal epsilon corresponding to the magnetic field Hi and an electric circuit 40 supplies a current iF for producing such a magnetic field the magnetic field Hi is canceled to a field coil assembly 10. Therefore, the magnetic field Hs' in the working space WA at proper distance from the reference coil assembly 20 becomes nearly equal to the magnetic field Hs produced by the reference coil 20 and has almost no relation to an external magnetic field Hx, and the input to the magnetic sensor 30 is nearly zero, so that the magnetic sensor 30 may have a narrow dynamic range.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁界安定装置、特にフラックスバルブ(地磁気
検出器)等の被試験物の調整、試験等の作業に必要な所
定の空間、即ち作業空間の磁界を、上記作業時間中、所
定値に保持するに使用して好適な磁界安定装置に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic field stabilizing device, particularly a predetermined space necessary for adjusting and testing a test object such as a flux valve (geomagnetic detector), that is, a magnetic field stabilizing device. The present invention relates to a magnetic field stabilizing device suitable for use in maintaining a spatial magnetic field at a predetermined value during the working time.

〔従来の技術〕[Conventional technology]

従来のこの種磁界安定装置の一例を第4及び第5図を参
照して説明する。
An example of a conventional magnetic field stabilizing device of this type will be described with reference to FIGS. 4 and 5.

第4図に於て、0ωはフィールドコイル組立体を示す。In FIG. 4, 0ω indicates the field coil assembly.

このフィールドコイル組立体αωは、所望の作業空間(
WA)に応じた同−寸法且つ間隔(D)を以って、互い
に対向する磁界(Hf)を発生ずる1対のフィールドコ
イル(11) 、  (12)及び両フィールドコイル
(11) 、  (12)を接続するリード線(13)
より成る。この例では、両フィールドコイル(11) 
、  (12)は略々、同一の正方形状であるので、作
業空間(WA)は直方体形状となっている。
This field coil assembly αω is arranged in a desired working space (
A pair of field coils (11), (12) and both field coils (11), (12) generating mutually opposing magnetic fields (Hf) with the same dimensions and spacing (D) according to WA). ) Connecting lead wire (13)
Consists of. In this example, both field coils (11)
, (12) have substantially the same square shape, so the work space (WA) has a rectangular parallelepiped shape.

この従来例で、1対のフィールドコイル(If) 。In this conventional example, a pair of field coils (If).

(12)により劃成される作業空間(WA)内の、磁界
(Hs’)を一定の値に保持するため、磁界センサ(3
0)を、その入力軸が両フィールドコイル(11) 、
  (12)の共通の中心軸(X−X’)と略々平行と
なる如く、両フィールドコイル(11) 。
(12) In order to maintain the magnetic field (Hs') in the work space (WA) at a constant value, the magnetic field sensor (3
0), whose input shafts are both field coils (11),
Both field coils (11) so as to be substantially parallel to the common central axis (X-X') of (12).

(12)間、叩ち作業空間(WA)内の略々中心に配置
し、作業空間(WA)内の磁界(Hs’)に対応する磁
界センサ(30)の出力信号(Ex)と、必要とする作
業空間(WA)内の磁界(Hs’)に対応する規準信号
(Es)との差信号又は偏差信号(e)を、アンプの如
き適当な電子回路(40)に加え、その出力信号を、上
記偏差信号(e)が減少するような極性で、フィールド
コイル、この例ではフィールドコイル組立体00)にフ
ィールバックすることにより、作業空間(WA)内の磁
界(Hs’)を外乱磁界(Hd)に関係なく所望の値に
保持する磁界安定装置を構成している。
(12) The output signal (Ex) of the magnetic field sensor (30), which is arranged approximately at the center of the beating work space (WA) and corresponds to the magnetic field (Hs') within the work space (WA), and the necessary The difference signal or deviation signal (e) between the reference signal (Es) corresponding to the magnetic field (Hs') in the workspace (WA) is applied to a suitable electronic circuit (40) such as an amplifier, and the output signal is is fed back to the field coil (field coil assembly 00 in this example) with a polarity such that the deviation signal (e) decreases, thereby changing the magnetic field (Hs') in the work space (WA) into a disturbance magnetic field. This constitutes a magnetic field stabilizing device that maintains a desired value regardless of (Hd).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の磁界安定装置は、磁界センサ(30)ノ
出力信号(Ex )と規準信号(Es )とを比較し、
その偏差信号(e)を略々零になすようにし動作してい
るため、磁界センサ(30)の出力は、一般に零になら
ない。従って、この磁界安定装置に用いる磁界センサ(
30)は、分解能が高く、零点変動が小さいこと以外に
、ダイナミックレンジが広(、スケールファクターの変
動が小さく、直線性が良い等の多くの要求を同時に満足
させる必要がある。か\る多くの要求を同時に満たすこ
とは極めて困難であった。
The conventional magnetic field stabilizer described above compares the output signal (Ex) of the magnetic field sensor (30) with a reference signal (Es),
Since the magnetic field sensor (30) operates so as to make the deviation signal (e) substantially zero, the output of the magnetic field sensor (30) generally does not become zero. Therefore, the magnetic field sensor (
30) must satisfy many requirements at the same time, such as high resolution and small zero point fluctuations, wide dynamic range (small scale factor fluctuations, and good linearity). It was extremely difficult to meet these demands at the same time.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題点を解決する磁界安定装置を提供する
もので、これは、作業空間を劃成するフィールドコイル
の中心付近にその中心軸にその入力軸が略々平行になる
如く配された磁気センサと、該磁気センサの出力を電子
回路を介して上記フィールドコイルにフィードバックす
るようになした磁界安定装置に於て、上記磁気センサの
近傍に規準コイルを、該規準コイルに上記作業空間が必
要とする磁界の強さに対応する規準電流を供給した時に
、該規準コイルが上記磁気センサに対し略々平等な磁界
を発生する如く設けたものである。
The present invention provides a magnetic field stabilizing device that solves the above problems, and is provided with a magnetic field stabilizer that is arranged near the center of a field coil that defines a working space so that its input axis is approximately parallel to the central axis of the field coil. A magnetic field stabilizing device including a magnetic sensor and a magnetic field stabilizing device that feeds back the output of the magnetic sensor to the field coil via an electronic circuit includes a reference coil near the magnetic sensor, and a work space in the reference coil. The reference coil is arranged so that when a reference current corresponding to the required magnetic field strength is supplied, the reference coil generates a substantially equal magnetic field to the magnetic sensor.

〔作用〕[Effect]

本発明に依る磁界安定装置は、その自動制御系ループゲ
インを充分大に選択すれば、磁界センサの出力信号が略
々零になるため、磁界センサのダイナミックレンジは狭
いものであっても良く、ゲイン変動も、作業空間の時間
にほとんど影響がない他、磁界センサの直線性の上記作
業空間に於ける磁界に対する影響も極めて小で、規準コ
イルの規準信号と作業空間の磁界の強さは概略直線関係
と成ることができ、作業空間の磁界を外乱磁界に関係な
く所望の値に保持し得る。
In the magnetic field stabilizing device according to the present invention, if the automatic control system loop gain is selected to be large enough, the output signal of the magnetic field sensor becomes almost zero, so the dynamic range of the magnetic field sensor may be narrow. Gain fluctuation has almost no effect on the time in the work space, and the linearity of the magnetic field sensor has an extremely small effect on the magnetic field in the work space, and the reference signal of the reference coil and the strength of the magnetic field in the work space are approximately the same. A linear relationship can be established, and the magnetic field in the workspace can be maintained at a desired value regardless of disturbance fields.

〔実施例〕〔Example〕

以下、本発明の一実施例を、第1及び第2図を参照して
説明する。尚、同図に於て、第4及び第5図と同一符号
は、互いに同一素子を示すものとして、それ等の詳細説
明は、これを省略する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 1 and 2. In this figure, the same reference numerals as those in FIGS. 4 and 5 indicate the same elements, and a detailed explanation thereof will be omitted.

本発明の第1及び第2図に示す例に於ては磁界安定装置
の一部として、規準コイル組立体(20)を設ける。即
ち、この規準コイル組立体(20)を、フィールドコイ
ル(11)、 、  (12)に比して小さい形状寸法
の相等して規準コイル(21)及び(22)より構成す
る。この場合、両者をその共通軸線上に対向配置し、図
示せずもコイル(21) 、  (22)を同極性に接
続する。これ等コイル(21) 、  (22)に供給
する規準電流(Is )に依って、規準コイル組立体(
20)の発生する磁界(Hs )が、上記磁界センサ(
30)全体に対し概略平等に成る如く、コイル(21)
 、  (22)の寸法及び形状を選択する。
In the embodiment of the invention shown in FIGS. 1 and 2, a reference coil assembly (20) is provided as part of the magnetic field stabilizer. That is, the reference coil assembly (20) is composed of identical reference coils (21) and (22) having smaller geometries than the field coils (11), (12). In this case, both are arranged facing each other on their common axis, and the coils (21) and (22) are connected to have the same polarity (not shown). Depending on the reference current (Is) supplied to these coils (21) and (22), the reference coil assembly (
20) The magnetic field (Hs) generated by the magnetic field sensor (
30) Coil (21) so that it is approximately equal to the whole
, select the dimensions and shape of (22).

更に、規準コイル組立体(20)の中心軸線は、上記磁
界センサ(30)の入力軸が平行となり且つ該規準コイ
ル組立体(20)の発生する磁界(H3)が、磁界セン
サ(30)全体に対し概略平等に成るように、規準コイ
ル組立体(20)を磁界センサ(30)に対して配置す
る。そして、磁界センサ(30)の入力磁界(Hi)に
対応する出力信号(ε)が電子回路(40)に加えられ
、これに対応するその出力電流(If)は、フィールド
コイル組立体00)に供給され、この出力電流に依って
フィールドコイル組立体QO)の発生する磁界(Hf)
が磁界センサ(30)の入力軸方向の磁界、即ち磁界セ
ンサ(30)の入力磁界(Hi)を零に近づけるように
働く接続となっている。
Further, the central axis of the reference coil assembly (20) is parallel to the input axis of the magnetic field sensor (30), and the magnetic field (H3) generated by the reference coil assembly (20) is parallel to the entire magnetic field sensor (30). The reference coil assembly (20) is positioned relative to the magnetic field sensor (30) so as to be approximately equal to the magnetic field sensor (30). Then, an output signal (ε) corresponding to the input magnetic field (Hi) of the magnetic field sensor (30) is applied to the electronic circuit (40), and its corresponding output current (If) is applied to the field coil assembly 00). The magnetic field (Hf) generated by the field coil assembly QO is supplied with this output current.
is a connection that works to bring the magnetic field in the direction of the input axis of the magnetic field sensor (30), that is, the input magnetic field (Hi) of the magnetic field sensor (30), close to zero.

次に、第1図に示す本発明の例の動作原理を第2図の機
能ブロック図を参照して説明する。先ず、規準コイル組
立体(20)に規準電流(Is )を流すと、規準コイ
ル組立体(20)の中心部に在る磁界センサ(30)の
処は、上記規準電流(Is )に依って規準コイル組立
体(20)の発生する磁界(Hs)と、該規準コイル組
立体(20)から適当な距離に於ける作業空間(WA)
内の磁界(Hs’)との和(ベクトル和)の磁界(Hi
)ができる。
Next, the operating principle of the example of the present invention shown in FIG. 1 will be explained with reference to the functional block diagram of FIG. 2. First, when a reference current (Is) is applied to the reference coil assembly (20), the magnetic field sensor (30) located at the center of the reference coil assembly (20) will be affected by the reference current (Is). The magnetic field (Hs) generated by the reference coil assembly (20) and the working space (WA) at an appropriate distance from the reference coil assembly (20).
The magnetic field (Hi
) can be done.

磁界センサ(30)は、磁界(Hi)に相当する出力信
号(ε)を電子回路(40)に与える。電子回路(40
)は、その出力電流(If)をフィールドコイル組立体
Qのへ供給する。電流(If)に依ってフィールドコイ
ル組立体C11の発生する磁界(Hf)は、前述の如く
、磁界センサ(30)の入力磁界センサ(30)がある
ので、自動制御系のループゲイン(A)を充分大に選択
すれば、磁界センサ(30)の入力磁界(Hi)は、は
とんど零に成る。
The magnetic field sensor (30) provides an output signal (ε) corresponding to the magnetic field (Hi) to the electronic circuit (40). Electronic circuit (40
) supplies its output current (If) to field coil assembly Q. As described above, the magnetic field (Hf) generated by the field coil assembly C11 due to the current (If) is the loop gain (A) of the automatic control system because there is an input magnetic field sensor (30) of the magnetic field sensor (30). If is selected to be sufficiently large, the input magnetic field (Hi) of the magnetic field sensor (30) becomes almost zero.

従って、フィールドコイル組立体α値の中央付近に於て
、規準コイル組立体(20)より適当な距離にある作業
空間(WA)内の磁界(Hs’)は、上記規準電流(I
s)に依って規準コイル組立体(20)が作る磁界(H
s)と常にほとんど等しく、外部磁界(Hx)とはほと
んど関係なく、一定に保持され得る。但し、各磁界(H
x ) 、  (Hs’) 。
Therefore, near the center of the α value of the field coil assembly, the magnetic field (Hs') in the work space (WA) located at an appropriate distance from the reference coil assembly (20) is
s) produced by the reference coil assembly (20).
s) and can be held constant almost independently of the external magnetic field (Hx). However, each magnetic field (H
x), (Hs').

(Hs)、  (Hi)、(Hf)はいずれも磁界の、
磁界センサ(30)の入力軸方向成分である。
(Hs), (Hi), and (Hf) are all of the magnetic field,
This is the input axial direction component of the magnetic field sensor (30).

上述の如く本発明に依る磁界安定装置に於ては、磁界セ
ンサ(30)への入力は、はとんど零に近いため、磁界
センサ(30)のダイナミックレンジは狭いものであっ
ても良く、ゲインの変動も作業空間(WA)の磁界(H
s’)にほとんど影響を与えない。この他、磁界センサ
(30)の直線性は、規準電流(Is)と磁界(Hs’
)の間の直線性に関係しない。即ち、磁界センサ(30
)の直線性は重要ではな(なる等の大きな利点がある。
As described above, in the magnetic field stabilizing device according to the present invention, the input to the magnetic field sensor (30) is almost always close to zero, so the dynamic range of the magnetic field sensor (30) may be narrow. , gain fluctuations are also affected by the magnetic field (H
s') has almost no effect. In addition, the linearity of the magnetic field sensor (30) is determined by the standard current (Is) and the magnetic field (Hs'
) is not related to the linearity between That is, the magnetic field sensor (30
The linearity of ) is not important, but it has major advantages.

次に本発明に依る磁界安定装置の他の実施例を、その斜
視図である第3図を参照して説明する。
Next, another embodiment of the magnetic field stabilizing device according to the present invention will be described with reference to FIG. 3, which is a perspective view thereof.

第3図に示す本発明の例では、第1図に示す本発明の磁
界安定装置及びフィールドコイル組立体を3 &]i、
図示の如く各々の磁界安定装置の入力軸(該磁界安定装
置の磁界センサの入力軸)を、直交3軸(X−X’)、
(Y−Y’)、(Z−Z’)に夫軸系のフィールドコイ
ル組立体、規準コイル組立体、磁界センサ、電子回路、
規準電流を、(100)。
In the example of the invention shown in FIG. 3, the magnetic field stabilizer and field coil assembly of the invention shown in FIG.
As shown in the figure, the input shaft of each magnetic field stabilizing device (the input shaft of the magnetic field sensor of the magnetic field stabilizing device) is connected to three orthogonal axes (X-X'),
(Y-Y'), (Z-Z') are the field coil assembly of the husband axis system, the reference coil assembly, the magnetic field sensor, the electronic circuit,
The reference current is (100).

(200) 、  (300) 、  (400) 、
  (Isloo)は、(Y−Y’)軸系に於けるフィ
ールドコイル組立体、規準コイル組立体、磁界センサ、
電子回路、規準電流を・又(1000) 、  (20
00) 、  (3000) 、  (4000) 。
(200), (300), (400),
(Isloo) is a field coil assembly, a reference coil assembly, a magnetic field sensor in the (Y-Y') axis system,
Electronic circuit, reference current (1000), (20
00), (3000), (4000).

(Is+ooo)は(Z−Z’)軸系に於けるフィール
ドコイル組立体、規準コイル組立体、磁界センサ、電子
回路、規準電流を夫に示す。又、符号(4)は作業空間
(WA)内の被試験体を示す。
(Is+ooo) indicates the field coil assembly, reference coil assembly, magnetic field sensor, electronic circuit, and reference current in the (Z-Z') axis system. Further, reference numeral (4) indicates a test object in the work space (WA).

この様な構成に於ては、各基の規準電流(Is so 
) 。
In such a configuration, the reference current (Is so
).

(Iszoo) 、  (Islooo)を適当な値に
選定することにより、作業空間内の磁界を、任意の方向
及び強さを一定に保つことが可能である。
By selecting appropriate values for (Iszoo) and (Islooo), it is possible to keep the magnetic field in the work space constant in any direction and strength.

上述は、1軸制御及び3軸制御の磁界安定装置を説明し
たが、本発明はこの例に限らず、2軸の場合に通用でき
ることは勿論、被制御軸の内の1つの軸の磁界を零にす
る場合は、その軸の規準コイル組立体を省略することも
可能であり、更に、フィールドコイル組立体、及び規準
コイル組立体は、夫々2個のコイルに限る必要はない。
Although the magnetic field stabilizer for one-axis control and three-axis control has been described above, the present invention is not limited to this example, and can of course be applied to a two-axis case. If the number is zero, it is possible to omit the reference coil assembly for that axis, and furthermore, the field coil assembly and the reference coil assembly do not need to be limited to two coils each.

例えば、フィールドコイル及び規準コイルは、1個の場
合、数個の場合等でもよ(、更に、このコイルが1 (
1Nの場合、その中心軸方向に長大なソレノイド型コイ
ルでもよい。又、磁界センサも、2軸入力又は3軸入力
等の構造のものを用いても良い。
For example, the number of field coils and reference coils may be one or several.
In the case of 1N, a solenoid type coil which is long in the direction of its central axis may be used. Further, the magnetic field sensor may also have a structure such as two-axis input or three-axis input.

又、本発明が通用される作業空間(WA)を劃成するフ
ィールドコイルの形状等は、方形に限定される必要はな
く、円形等の所望の形状等でもよい。
Further, the shape of the field coil forming the work space (WA) to which the present invention is applicable does not need to be limited to a rectangle, and may be any desired shape such as a circle.

その他、本発明の要旨を逸脱せずに多くの変化変更がな
し得ることは当該業者に明らかであろう。
It will be apparent to those skilled in the art that many other changes can be made without departing from the spirit of the invention.

〔発明の効果〕〔Effect of the invention〕

上述の如く本発明に依る磁界安定装置に於ては、磁界セ
ンサ(30)への入力は、はとんど零に近いため、磁界
センサ(30)のグイナミソクレンジは狭いものであっ
ても良く、ゲインの変動も作業空間(WA)の磁界(H
s’)にほとんど影習を与えない。この他、磁界センサ
(30)の直線性は、規準電流(Is )と磁界(Hs
’)の間の直線性に関係しない、即ち、磁界センサ(3
0)の直線性は重要ではなくなる等の大きな利点がある
As mentioned above, in the magnetic field stabilizing device according to the present invention, the input to the magnetic field sensor (30) is almost always close to zero, so the range of the magnetic field sensor (30) is narrow. The gain fluctuations also depend on the magnetic field (H) of the work space (WA).
s') has almost no influence on it. In addition, the linearity of the magnetic field sensor (30) is determined by the standard current (Is) and the magnetic field (Hs
), i.e., the magnetic field sensor (3
There are significant advantages such as the linearity of 0) is no longer important.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一例の斜視図、第2図はその回路図、
第3図は本発明の他の例の斜視図、第4図は従来例の斜
視図、第5図はその回路図である。 図に於て、0ω、  (100) 、  (1000)
はフィールトイコル組立体、(20) 、  (200
) 、  (2000)は規準コイル組立体、(30)
 、  (300) 、  (3000)は磁気センサ
、(40) 、  (400) 、  (4000)は
電子回路を夫々示す。 石j凶 手続よii正書 昭和60年 9月 120 昭和60年 特 許 願 第164851号3、補正を
する者 事件との関係   特許出願人 住 所 東京都大田区南蒲田2丁目16番46号名 称
(338)株式会社 東 京 計 器代表取締役 廣 
野 信 衛 4代理人 6、補正により増加する発明の数 +11  特許請求の範囲を別紙の如く補正する。 (2)明細書中、第3頁8行「フィールバッコとあるを
「フィードバフ」と訂正する。 (3)同、第4頁8. 9. 11.14行及び第11
頁18行「磁気」とあるを「磁界」と夫々訂正する。 (4)同、第5頁3行「時間」とあるを「磁界」と訂正
する。 以上 特許請求の範囲 作業空間を劃成するフィールドコイルの中心付近にその
中心軸にその入力軸が略々平行になる如く配された磁界
センサと、該磁界センサの出力を電子回路を介して上記
フィールドコイルにフィードバンクするようになした磁
界安定装置に於て、上記磁界センサの近傍に規準コイル
を、該規準コイルに上記作業空間が必要とする磁界の強
さに対応する規準電流を供給した時に、該規準コイルが
上記磁界センサに対し略々平等な磁界を発生する如く設
けたことを特徴とする磁界安定装置。
FIG. 1 is a perspective view of an example of the present invention, FIG. 2 is a circuit diagram thereof,
FIG. 3 is a perspective view of another example of the present invention, FIG. 4 is a perspective view of a conventional example, and FIG. 5 is a circuit diagram thereof. In the figure, 0ω, (100), (1000)
is the field equal assembly, (20), (200
), (2000) is the standard coil assembly, (30)
, (300) and (3000) are magnetic sensors, and (40), (400) and (4000) are electronic circuits, respectively. 1985 Patent Application No. 164851 3, Relationship with the case of the person making the amendment Patent Applicant Address 2-16-46 Minami Kamata, Ota-ku, Tokyo Name (338) Hiroshi, Representative Director of Tokyo Keiki Co., Ltd.
Nobue No 4 Agent 6, the number of inventions will increase due to the amendment + 11 The scope of claims will be amended as shown in the attached sheet. (2) In the specification, page 3, line 8, "Feelbacco" is corrected to "Feedbuff." (3) Same, p. 4, 8. 9. 11. Line 14 and 11th
Page 18, ``Magnetism'' is corrected to ``Magnetic field.'' (4) Same, page 5, line 3, ``time'' is corrected to ``magnetic field.'' What is claimed above is a magnetic field sensor arranged near the center of a field coil forming a working space so that its input axis is approximately parallel to the central axis thereof, and the output of the magnetic field sensor is transmitted through an electronic circuit to the above-mentioned field coil. In a magnetic field stabilizer configured to feed bank to a field coil, a reference coil is provided near the magnetic field sensor, and a reference current corresponding to the strength of the magnetic field required by the work space is supplied to the reference coil. A magnetic field stabilizing device, wherein the reference coil is arranged to generate a substantially equal magnetic field to the magnetic field sensor.

Claims (1)

【特許請求の範囲】[Claims] 作業空間を劃成するフィールドコイルの中心付近にその
中心軸にその入力軸が略々平行になる如く配された磁気
センサと、該磁気センサの出力を電子回路を介して上記
フィールドコイルのフィールドバックするようになした
磁界安定装置に於て、上記磁気センサの近傍に規準コイ
ルを、該規準コイルに上記作業空間が必要とする磁界の
強さに対応する規準電流を供給した時に、該規準コイル
が上記磁界センサに対し略々平等な磁界を発生する如く
設けたことを特徴とする磁界安定装置。
A magnetic sensor is arranged near the center of a field coil forming a work space so that its input axis is approximately parallel to the center axis, and the output of the magnetic sensor is fed back to the field coil via an electronic circuit. In the magnetic field stabilizing device, a reference coil is provided near the magnetic sensor, and when a reference current corresponding to the strength of the magnetic field required by the work space is supplied to the reference coil, the reference coil is A magnetic field stabilizing device characterized in that the magnetic field sensor is provided so as to generate a substantially equal magnetic field to the magnetic field sensor.
JP16485185A 1985-07-25 1985-07-25 Magnetic field stabilizing device Granted JPS6225273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16485185A JPS6225273A (en) 1985-07-25 1985-07-25 Magnetic field stabilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16485185A JPS6225273A (en) 1985-07-25 1985-07-25 Magnetic field stabilizing device

Publications (2)

Publication Number Publication Date
JPS6225273A true JPS6225273A (en) 1987-02-03
JPH0355844B2 JPH0355844B2 (en) 1991-08-26

Family

ID=15801124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16485185A Granted JPS6225273A (en) 1985-07-25 1985-07-25 Magnetic field stabilizing device

Country Status (1)

Country Link
JP (1) JPS6225273A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181547A (en) * 2000-12-13 2002-06-26 Reideikku:Kk Azimuth measuring system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181547A (en) * 2000-12-13 2002-06-26 Reideikku:Kk Azimuth measuring system
JP4527273B2 (en) * 2000-12-13 2010-08-18 株式会社レイディック Orientation measurement method

Also Published As

Publication number Publication date
JPH0355844B2 (en) 1991-08-26

Similar Documents

Publication Publication Date Title
US5565722A (en) Magnetic bearing control system
US4816962A (en) Uniform magnetic field coil
US4414848A (en) Three-axis accelerometer
US3080507A (en) Apparatus for stabilizing magnetic fields
JPH08224219A (en) Electromagnet for magnetic resonance picture diagnostic device
US4372520A (en) Suspension for three-axis accelerometer
US3370205A (en) Magnetic suspension system
US4372162A (en) Three-axis accelerometer having dynamic bias compensation
JPS6225273A (en) Magnetic field stabilizing device
EP0675339B1 (en) Geomagnetic direction sensor
GB2219407A (en) Magnetic shim for magnetic field correction
JPS63313810A (en) Lateral magnetic field gradient coil and method of forming the same
US4398418A (en) Three-axis accelerometer having improved magnet configuration
US5237275A (en) Magnetic field correction device
JPS62224005A (en) Magnet for nuclear spin resonance device
JPH05329128A (en) Magnetic field corrector
US5038129A (en) Electromagnetic having magnetic shield
US4902940A (en) Current control circuit
Jenkins et al. Electromagnetic support arrangement with three‐dimensional control. I. theoretical
US4090077A (en) Particle beam device with a deflection system and a stigmator
JPS5953658B2 (en) electronic lens
US3105176A (en) Device for the generation of a static and homogeneous magnetic field
US5677660A (en) Electromagnetic device
JPS61108981A (en) Uniaxial differential type magnetism measuring instrument
SU1311740A1 (en) Apparatus for magnetotherapy