JPS62252073A - Separating plate for fuel cell and its manufacture - Google Patents

Separating plate for fuel cell and its manufacture

Info

Publication number
JPS62252073A
JPS62252073A JP61095085A JP9508586A JPS62252073A JP S62252073 A JPS62252073 A JP S62252073A JP 61095085 A JP61095085 A JP 61095085A JP 9508586 A JP9508586 A JP 9508586A JP S62252073 A JPS62252073 A JP S62252073A
Authority
JP
Japan
Prior art keywords
fluororubber
fuel cell
conductive filler
separate plate
separating plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61095085A
Other languages
Japanese (ja)
Inventor
Yusuke Ito
裕介 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP61095085A priority Critical patent/JPS62252073A/en
Publication of JPS62252073A publication Critical patent/JPS62252073A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0213Gas-impermeable carbon-containing materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To remarkably decrease contact resistance between unit cells to decrease the internal resistance of a fuel cell by forming a fuel cell by using a separating plate comprising a mixture of fluororubber and conductive filler and containing 20-26wt% fluororubber. CONSTITUTION:A separating plate for fuel cell for separating stacked unit cells comprising a pair of electrodes, fuel gas supply passage, and oxidizing agent gas supply passage is formed with a mixture of fluororubber and conductive filler, and containing 20-26wt% fluororubber. The content of fluororubber is optimized from the standpoint of softness, specific resistance, gas permeability, and scattering of properties of the separating plate. For forming the separating plate, 30-60wt% fluororubber is dispersed in water to prepare fluororubber paint, and conductive filler is mixed to the paint and they are kneaded to obtain paste, then the paste is rolled, dried, and hot-pressed to disperse the conductive filler into the fluororubber.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

この発明はリン酸型燃料電池の水素極と空気極の隔壁板
として使用されるセパレート板およびその製造方法に関
する。
The present invention relates to a separate plate used as a partition plate between a hydrogen electrode and an air electrode in a phosphoric acid fuel cell, and a method for manufacturing the same.

【従来技術とその問題点】[Prior art and its problems]

リン酸型燃料電池は第3図に示すように、溝13および
リブ16のついた多孔質のカーボン板17があり、その
表面に水素極11が設けられている。水素極11は細孔
を無敗にもったカーボンベーパでその表面にカーボン粒
子に担持された白金触媒が塗布されている。同様にして
溝14およびリブ15のついた多孔質のカーボン[17
には空気極12が設けられている。水素極11と空気極
12の中間にはマトリックス (図示せず)が設けられ
、これにリン酸よりなる電解質が保持される。リン酸型
燃料電池は、このような構成の単位セルがセパレート板
18を介して多数積層される。セパレート機18は電気
的には導電性であるが、ガスに対しては不透過性のもの
である。カーボン板1丁の溝13には燃料ガスである水
素が供給され$14には酸化剤ガスである空気が供給さ
れる。 水素極11では水素がリン酸と反応してH* = 21
1 ”+2eの反応がおこり、空気極12では酸素がリ
ン酸と反応して28’  +2e+VR□、→11.0
(全体でHx+’AOs−)1.0)の反応がおこり、
電荷は水素極11から外部負荷を遣って空気F@12に
流れ水素イオン(Ill は水素極11から空気極12
へ移動する。そして全体として電流は積層電極間を直列
に流れ出力として外部にとり出される。リン酸型燃料電
池は温度約200℃で運転される。 以上のようなリン酸型燃料電池の構成および動作から、
これに使用されるセパレート機は単位セル間の導通の必
要性からセパレート仮自体の比抵抗が5X10−”Ω1
以下であること、加圧積層時の接触抵抗が小さいことが
まず必要であり次に多孔質カーボン板17の溝13を流
れる燃料ガスと導14を流れる酸化剤ガスとが混合する
ことを防止するためにガス不透過性であることが要求さ
れる。その他リン酸型燃料電池は100%濃度のリン酸
が約200℃で運転されることから耐熱性、耐リン酸性
なども必要となる。 従来このようなセパレート板として多用されているもの
は、樹脂を含浸した焼結カーボン仮やグラシイカーボン
板などである。しかしながらこれらのセパレート板には
次のような問題点があった。 すなわち材料が硬いため多孔質カーボンW、17との馴
染みが悪く接触抵抗が高くなること、含浸樹脂の劣化に
よるガス透過性の発生、また耐熱性あるいは耐リン酸性
が劣ること、さらにコストが高いなどの諸点である。ま
た低コスト用として、例えばグラファイトとフェノール
樹脂などの熱硬化性樹脂を混合したのち加圧成型して得
られるセパレート板もあるが、この場合も前述のように
硬いという欠点があった。また高い導電性を付与するた
めにグラファイトの添加量を増すと、得られるセパレー
ト板は反りなどの変形1寸法精度の低下。 またはit性や機械的強度の不均一性など種々の欠点を
生じた。
As shown in FIG. 3, the phosphoric acid fuel cell has a porous carbon plate 17 with grooves 13 and ribs 16, and a hydrogen electrode 11 is provided on the surface of the porous carbon plate 17. The hydrogen electrode 11 is made of carbon vapor with undefeated pores, and a platinum catalyst supported on carbon particles is coated on its surface. Similarly, porous carbon with grooves 14 and ribs 15 [17
An air electrode 12 is provided. A matrix (not shown) is provided between the hydrogen electrode 11 and the air electrode 12, and an electrolyte made of phosphoric acid is held in this matrix. In the phosphoric acid fuel cell, a large number of unit cells having such a configuration are stacked with separate plates 18 interposed therebetween. Separator 18 is electrically conductive but gas impermeable. Hydrogen, which is a fuel gas, is supplied to the groove 13 of one carbon plate, and air, which is an oxidizing gas, is supplied to $14. At the hydrogen electrode 11, hydrogen reacts with phosphoric acid and H* = 21
A reaction of 1"+2e occurs, and oxygen reacts with phosphoric acid at the air electrode 12, resulting in 28' +2e+VR□, → 11.0
(Total Hx+'AOs-)1.0) reaction occurs,
Charge flows from the hydrogen electrode 11 to the air F@12 using an external load, and hydrogen ions (Ill are charged from the hydrogen electrode 11 to the air electrode 12).
Move to. As a whole, the current flows in series between the laminated electrodes and is taken out as an output. Phosphoric acid fuel cells operate at a temperature of about 200°C. From the configuration and operation of the phosphoric acid fuel cell as described above,
The separate machine used for this has a specific resistance of 5X10-"Ω1 due to the need for continuity between unit cells.
First, it is necessary that the contact resistance at the time of pressurized lamination is as follows, and that the fuel gas flowing in the grooves 13 of the porous carbon plate 17 and the oxidizing gas flowing in the conductor 14 are prevented from mixing. Therefore, it is required to be gas impermeable. In addition, since phosphoric acid fuel cells are operated with 100% phosphoric acid at about 200° C., heat resistance and phosphoric acid resistance are also required. Conventionally, materials that have been frequently used as such separate plates include resin-impregnated sintered carbon temporary and glassy carbon plates. However, these separate plates had the following problems. In other words, since the material is hard, it has poor compatibility with porous carbon W, 17, resulting in high contact resistance, gas permeability occurs due to deterioration of the impregnated resin, heat resistance or phosphoric acid resistance is poor, and cost is high. These are the various points. In addition, as a low-cost product, there is also a separate plate obtained by mixing graphite and a thermosetting resin such as a phenol resin and then press-molding the mixture, but this also has the disadvantage of being hard as described above. In addition, if the amount of graphite added is increased in order to impart high conductivity, the resulting separate plate will undergo warping and other deformation, as well as a decrease in dimensional accuracy. Also, various drawbacks such as non-uniformity in toughness and mechanical strength occurred.

【発明の目的] この発明は上述の点に鑑みてなされたものであり、その
目的とするところは比抵抗が5X1G−”Ω・G以下で
ガス透過性がないうえに柔軟性に富んで接触抵抗が小さ
くかつ変形やバラツキが少ない燃料電池のセパレート機
およびその製造方法を提供することにある。 【発明の要点】 この発明は電解賞を含む一対の電極と該電極にそれぞれ
設けられた燃料ガス供給流路および酸化剤ガス供給流路
とからなる単位セルを隔離して積層するための燃料電池
用セパレート板をフッ素ゴムと導電性充填材との混合物
でかつフッ素ゴムを20重量%ないし26重量%の範囲
で含むもので形成して、その混合体のIll!的性質が
フッ素ゴムの柔軟な弾力性に起因して柔軟性に冨むよう
にし、比抵抗、ガス透過性1およびバラツキの点からフ
ッ素ゴム組成を最適化し、さらにこのセパレート板の形
成をフッ素ゴムを30重量%乃至60311%の範囲で
水に分散したフッ素ゴム塗料を調製し、これに導電性充
填材を添加混練してペースト状にし、これをロール成型
(ロールによるシート成型)、乾燥、ホントブレスする
という工程で行なうようにして、フッ素ゴムと導電性充
填材とが相互に良く分散混合するようにしたものである
[Object of the invention] This invention was made in view of the above points, and its purpose is to provide a contact with a resistivity of 5X1G-"Ω・G or less, no gas permeability, and a highly flexible contact. It is an object of the present invention to provide a fuel cell separating machine with low resistance and less deformation and variation, and a method for manufacturing the same. A fuel cell separate plate for isolating and stacking a unit cell consisting of a supply channel and an oxidizing gas supply channel is made of a mixture of fluororubber and a conductive filler, and contains 20% to 26% by weight of fluororubber. %, so that the properties of the mixture are rich in flexibility due to the flexible elasticity of fluororubber, and in terms of specific resistance, gas permeability 1 and variation. The composition of the fluororubber was optimized and the separate plates were formed by preparing a fluororubber paint in which fluororubber was dispersed in water in a range of 30% by weight to 60311%, and then adding a conductive filler and kneading it into a paste. The fluororubber and the conductive filler are mixed and dispersed well through the steps of roll forming (sheet forming using rolls), drying, and real-pressing.

【発明の実施例】[Embodiments of the invention]

以下この発明の第一の実施例につき図面を参照して説明
する。 フッ素ゴム水性塗料として例えばダイキン工業社製のG
 L −152の型名のものを使用する。フッ素ゴムは
フン化ビニリデン・6弗化プロピレン共重合体であり、
これを水を分散媒として50重量%の濃度で分散したも
のである。これに水を添加し、あるいは温度100℃に
加熱濃縮してフッ素ゴム濃度20.30.50.60ま
たは70の各重量%の5種類フッ素ゴム水性塗料を調製
する。導電性充填材として例えば揖斐用電工製のアセチ
レンブラックを用いる。 各フッ素ゴム濃度の水性塗料に、所定量のアセチレンブ
ラックを加えこれをニーダを用いて30分間混練しペー
スト状体にした0、!のとき加えるアセチレンブランク
の量はセパレートキ反中のフッ素ゴムとアセチレンブラ
ックの組成が重量%で28対72)26対74.20対
80または18対72になるように調整してペースト状
体にする0次にこのペースト状体t−ロール成型(ロー
ルを通してシート成型)し、温度100℃で1時間加熱
して乾燥したあと圧縮成型機の熱盤の間にはさみ温度1
80℃、圧力150KG/−9硬化時間30分という条
件で厚さ1箇1幅500n、長さ5005mの正方形の
セパレート板を作製する1以上の実験を全部で20通り
の組合わせにおいて実施した。得られたセパレート板に
ついてその比抵抗およびガス透過量を測定した。結果を
第1図および第2図に整理して示している。第1図は水
性塗料中のフッ素ゴム濃度とセパレート板の比抵抗の関
係を示し、曲線lはセパレート仮中のフッ素ゴムとアセ
チレンブラックの組成が28対72の場合1曲&II2
は26対74の場合9曲&I3は20対80の場合9曲
線4は18対82の場合を示している。第2図は水性塗
料中のフッ素ゴム濃度とセパレート仮のガス透過量との
関係を示し、曲+41A5はセパレート仮中のフッ素ゴ
ムとアセチレンブラックの組成が28対72の場合9曲
&I6は26対74の場合1曲線7は20対80の場合
1曲線8は18対82の場合を示している。第2図でガ
ス透過量がゼロを示すのは、水性塗料中のフッ素ゴム濃
度が30重置%乃至60重量%の範囲でありかつ組成が
28対72.26対74.または20対80の場合であ
る。このうち比抵抗が5X10−”Ω・1以下になるの
は、第1図より組成が26対74と20対80の場合に
限られる。従って比抵抗が5×10−1Ω・備でかつガ
ス透過量がゼロになる条件として、水性塗料中のフッ素
ゴム濃度が30重量%乃至60重量%の範囲であること
、およびセパレート仮中のフッ素ゴム組成が2011量
%乃至26重量%の範囲であることの二つの条件が必要
となる。さらにこの二つの条件を満足するセパレート仮
においては反りなどの変形1寸法精度不良がないうえに
導電性や機械的強度のバラツキもなくなる。これはニー
ダによる混練およびロール成型の2段の分散手段により
、フッ素ゴムとアセチレンブラックがよく分散混合した
ことによる。この際、単位セルを積層してam電池のス
タックを組み立てたとののセパレートIと多孔質カーボ
ン仮7との接触抵抗は従来の115程度に減少する。 第1図および第2図において、水性塗料中のフッ素ゴム
濃度を30重量%より低(する場合においては、バイン
ダであるフッ素ゴム濃度が低いためにニーダで混練する
際アセチレンブランクの分散が不充分であり、かつロー
ル工程でシート成型する際フッ素ゴム水性塗料の水分が
多いためにフッ素ゴムとアセチレンブランクとが分離す
る傾向を有し、その結果セパレート板の比抵抗の増加、
ガスリークの発生を招く、また水性塗料中のフッ素ゴム
濃度が60111%を越える場合は水性塗料中の水分量
が少ないために、ニーダで混練する隙にアセチレンブラ
ンクの分散が不充分になるために比抵抗の増大、ガスリ
ークの発生を招く、さらにフッ素ゴムIaIll:が3
0重1%から60重1%の範囲にあっても、フッ素ゴム
の組成が28重量%以上の場合にあっては、反り、また
は寸法精度および比抵抗。 または機械的強度のバラツキ並びにガス透過性について
は問題はなく、さらに接触抵抗についても従来法の11
5程度になるが、比抵抗が高くなる欠点がある。これは
アセチレンブラックの組成比が相対的に小さいためであ
る。さらにまた、フッ素ゴム濃度が30重置%から60
重量%の範囲にあってかつフッ素ゴム組成が18重置%
以下の場合にあっては、比抵抗は低く接触抵抗も従来法
の175で問題はないが、反りの発生3寸法精度の低下
がおこるうえ導電性181械的強度のバラツキやガスリ
ークも発生してくる。 接触抵抗については、水性塗料中のフッ素ゴム濃度が3
0重量%乃至60IIt量%の範囲内で従来法の115
であり、30重量%より低い場合、60重量%より高い
場合に従来法の174であるから、フッ素ゴムとアセチ
レンブラックの混合体でセパレート仮を形成するときは
、その機械的柔軟性に起因して接触抵抗はフッ素ゴム濃
度にはあまり影響されることがなくなり、かつ従来法に
比してもその値を小さくすることができる。 次にこの発明の第二実施例につき表を参照して説明する
。 フッ素ゴム水性塗料はダイキン工業社製GL−152を
使用する。導電性充填材としてグラファイト (日本カ
ーボン製GA−4>を用いる。セパレート板の製造方法
は第一実施例と同様である。得られたセパレート板の比
抵抗およびガス透過量をこれは第1図の水性塗料中のフ
ッ素ゴム1度50重量%の場合と同様な結果となってい
る。従って導電性充填材としてはアセチレンブランクの
他グラフ1イトを用いることができるが、さらにその他
の導電性カーボン材を用いても同樟の結果を1)ること
ができる。
A first embodiment of the present invention will be described below with reference to the drawings. As a fluororubber water-based paint, for example, G manufactured by Daikin Industries, Ltd.
Use model number L-152. Fluororubber is a vinylidene fluoride/propylene hexafluoride copolymer,
This was dispersed at a concentration of 50% by weight using water as a dispersion medium. Water is added to this or heated and concentrated at a temperature of 100° C. to prepare five types of fluororubber water-based paints each having a fluororubber concentration of 20, 30, 50, 60, or 70% by weight. For example, acetylene black manufactured by Ibiyo Electric Works is used as the conductive filler. A predetermined amount of acetylene black was added to the water-based paint of each fluororubber concentration and kneaded for 30 minutes using a kneader to form a paste. The amount of acetylene blank to be added is adjusted so that the composition of fluororubber and acetylene black in the separate mixture is 28:72) (26:74), 20:80 (20:80) or 18:72 (wt%) to form a paste. Next, this paste-like material is formed into T-rolls (formed into sheets through rolls), heated at a temperature of 100°C for 1 hour to dry, and then placed between the heating plates of a compression molding machine at a temperature of 1.
One or more experiments were carried out in a total of 20 combinations to produce square separate plates each having a thickness of 500 nm and a length of 5005 m under the conditions of 80° C. and 150 KG/-9 curing time of 30 minutes. The specific resistance and gas permeation amount of the obtained separate plate were measured. The results are summarized and shown in FIGS. 1 and 2. Figure 1 shows the relationship between the fluororubber concentration in the water-based paint and the specific resistance of the separate plate.Curve 1 is 1 & II 2 when the composition of fluororubber and acetylene black in the separate medium is 28:72.
shows the case of 26 to 74, 9 songs & I3 shows the case of 20 to 80, 9 curve 4 shows the case of 18 to 82. Figure 2 shows the relationship between the fluororubber concentration in the water-based paint and the amount of gas permeation in the temporary separate. Song +41A5 is 9 songs when the composition of fluororubber and acetylene black in the temporary separate is 28:72 & I6 is 26 pairs. In the case of 74, curve 7 shows the case of 20:80, and curve 8 shows the case of 18:82. In FIG. 2, the gas permeation amount is zero when the fluororubber concentration in the water-based paint is in the range of 30% by weight to 60% by weight and the composition is 28:72.26:74. Or a case of 20:80. Of these, the specific resistance becomes 5 x 10-'' Ω・1 or less only when the composition is 26:74 and 20:80, as shown in Figure 1. The conditions for the permeation amount to be zero are that the fluororubber concentration in the water-based paint is in the range of 30% to 60% by weight, and that the fluororubber composition in the separate temporary medium is in the range of 2011% to 26% by weight. These two conditions are necessary.Furthermore, if the separate material satisfies these two conditions, there will be no deformation such as warpage, no dimensional accuracy defects, and no variation in conductivity or mechanical strength.This is achieved by kneading with a kneader. This is because fluororubber and acetylene black were well dispersed and mixed by the two-stage dispersion method of roll molding.At this time, Separate I and porous carbon temporary 7 The contact resistance with the fluorine rubber is reduced to about 115 compared to the conventional one. When kneading in a kneader, the acetylene blank is not sufficiently dispersed, and when forming a sheet in the roll process, the fluororubber and acetylene blank tend to separate due to the high water content of the fluororubber water-based paint. Increase in resistivity of separate plates,
Gas leakage may occur, and if the fluororubber concentration in the water-based paint exceeds 60111%, the amount of water in the water-based paint will be small, and the acetylene blank will not be sufficiently dispersed in the kneading gap in the kneader. In addition, the fluororubber IaIll: is 3, which causes an increase in resistance and the occurrence of gas leaks.
Even if it is in the range of 0% by weight to 60% by weight, if the composition of fluororubber is 28% by weight or more, warping, dimensional accuracy, and specific resistance may occur. There were no problems with variations in mechanical strength or gas permeability, and the contact resistance was also lower than that of the conventional method.
5, but it has the disadvantage of high specific resistance. This is because the composition ratio of acetylene black is relatively small. Furthermore, the fluororubber concentration ranges from 30% to 60%.
% by weight and the fluororubber composition is 18% by weight.
In the following cases, the resistivity is low and the contact resistance is not a problem with the conventional method 175, but warping occurs and dimensional accuracy decreases, and variations in conductivity 181 mechanical strength and gas leaks also occur. come. Regarding contact resistance, the fluororubber concentration in the water-based paint is 3
115 of the conventional method within the range of 0% by weight to 60% by weight
, and when it is lower than 30% by weight, and when it is higher than 60% by weight, it is 174 in the conventional method. Therefore, when forming a temporary separate with a mixture of fluororubber and acetylene black, it is due to its mechanical flexibility. Therefore, the contact resistance is not so affected by the fluororubber concentration, and its value can be reduced compared to the conventional method. Next, a second embodiment of the present invention will be described with reference to the table. As the fluororubber water-based paint, GL-152 manufactured by Daikin Industries, Ltd. is used. Graphite (GA-4 manufactured by Nippon Carbon Co., Ltd.) is used as the conductive filler. The manufacturing method of the separate plate is the same as in the first example. The specific resistance and gas permeation amount of the obtained separate plate are shown in Figure 1. The results are similar to those obtained when 50 wt. The same results obtained with camphor can also be obtained by using wood.

【発明の効果】【Effect of the invention】

この発明では、フッ素ゴムと導電性充填材との混合体で
かつフッ素ゴムを20111%乃至26重量%の範囲に
含むセパレート板を用いて、燃料電池を構成したので、
フッ素ゴムが有する柔軟な弾力性に起因してセパレート
板は機械的に柔軟であり、このセパレート板を介して単
位セルを積層し燃料電池を構成するときは、単位セル間
の接触抵抗を大幅に減少させ燃料電池の内部抵抗を下げ
ることができる。またフッ素ゴムを水に分散したフッ素
ゴム水性塗料をu4製し、これに導電性充填材を添加混
練してペースト状体にし、これをロール成型。 乾燥、ホットプレスすることによりセパレート板を製造
したので、フッ素ゴムと導電性充填材とは、混練とロー
ル成型の2段の分散作用を受けることとなって相互に分
散混合しやすくなり、しかもセパレート板中のフッ素ゴ
ム組成が20重量%乃至26重量%の範囲にあるので、
セパレート板の比抵抗が減少し、ガス透過性がなくなり
、さらに反りの発生、および寸法Illの低下並びに導
電性または機械的強度のバラツキ等がな(なって燃料電
池の性能向上1信鯨性向上がもたらされる。また以上の
am方法によるときは、比較的大きな面積でかつ厚さの
うすいセパレート板を量産でき、燃料電池の置屋性が向
上する。
In this invention, a fuel cell is constructed using a separate plate that is a mixture of fluororubber and a conductive filler and contains fluororubber in a range of 20111% to 26% by weight.
Due to the flexible elasticity of fluororubber, the separate plates are mechanically flexible, and when unit cells are stacked through these separate plates to form a fuel cell, the contact resistance between the unit cells can be significantly reduced. This can lower the internal resistance of the fuel cell. In addition, U4 is made from a fluororubber water-based paint in which fluororubber is dispersed in water, and a conductive filler is added and kneaded to form a paste, which is then roll-molded. Since the separate plates were manufactured by drying and hot pressing, the fluororubber and the conductive filler were subjected to the two-stage dispersion action of kneading and roll molding, making it easier to disperse and mix with each other. Since the fluororubber composition in the plate is in the range of 20% to 26% by weight,
The specific resistance of the separate plate decreases, gas permeability disappears, and there is no warpage, no reduction in dimension Ill, and no variation in conductivity or mechanical strength (thus improving the performance of the fuel cell. Furthermore, when using the above AM method, it is possible to mass-produce separate plates having a relatively large area and a thin thickness, thereby improving the ease of housing the fuel cell.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第一実施例のセパレート板の比抵抗
を示すグラフ、第2図はこの発明の第−実施例のセパレ
ート板のガス透過量を示すグラフ、第3図はリン酸型t
s料電池の積層状態を示す斜視図である。 一一一★水4値塗料中のツー、奉コ゛ム濃/[!!1杯
)第1図
Fig. 1 is a graph showing the specific resistance of the separate plate of the first embodiment of this invention, Fig. 2 is a graph showing the gas permeation amount of the separate plate of the first embodiment of this invention, and Fig. 3 is a graph showing the phosphoric acid type. t
FIG. 3 is a perspective view showing a stacked state of S-type batteries. 111★Two in water four-value paint, Hokomu thick/[! ! 1 cup) Figure 1

Claims (1)

【特許請求の範囲】 1)電解質を含む一対の電極と、該電極にそれぞれ設け
られた燃料ガス供給流路および酸化剤ガス供給流路とか
らなる単位セルを隔離して積層するためのガス不透過性
でかつ導電性を有する燃料電池用セパレート板において
、前記セパレート板をフッ素ゴムと導電性充填材との混
合体でかつフッ素ゴムを20重量%乃至26重量%の範
囲に含むものにより形成することを特徴とする燃料電池
用セパレート板。 2)特許請求の範囲第1項記載のセパレート板において
、導電性充填材としてアセチレンブラック、グラファイ
ト等の導電性カーボン材を用いることを特徴とする燃料
電池用セパレート板。 3)フッ素ゴムを30重量%乃至60重量%の範囲で水
に分散したフッ素ゴム水性塗料を調製し、これに導電性
充填材を添加混練してペースト状体にし、これをロール
成型、乾燥、ホットプレスしてセパレート板を形成する
ことを特徴とする燃料電池用セパレート板の製造方法。
[Scope of Claims] 1) A gas insulator for separating and stacking a unit cell consisting of a pair of electrodes containing an electrolyte, and a fuel gas supply channel and an oxidizing gas supply channel respectively provided in the electrodes. In a separate plate for a fuel cell that is transparent and conductive, the separate plate is formed of a mixture of fluororubber and a conductive filler and contains fluororubber in a range of 20% to 26% by weight. A separate plate for fuel cells characterized by the following. 2) A separate plate for a fuel cell according to claim 1, characterized in that a conductive carbon material such as acetylene black or graphite is used as the conductive filler. 3) Prepare a fluororubber water-based paint in which fluororubber is dispersed in water in a range of 30% to 60% by weight, add a conductive filler to this and knead it to form a paste, which is roll-formed, dried, A method of manufacturing a separate plate for a fuel cell, comprising forming the separate plate by hot pressing.
JP61095085A 1986-04-24 1986-04-24 Separating plate for fuel cell and its manufacture Pending JPS62252073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61095085A JPS62252073A (en) 1986-04-24 1986-04-24 Separating plate for fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61095085A JPS62252073A (en) 1986-04-24 1986-04-24 Separating plate for fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPS62252073A true JPS62252073A (en) 1987-11-02

Family

ID=14128099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61095085A Pending JPS62252073A (en) 1986-04-24 1986-04-24 Separating plate for fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPS62252073A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005737A1 (en) * 1997-07-28 1999-02-04 Nisshinbo Industries, Inc. Separator for fuel cells
WO2003044888A1 (en) * 2001-11-21 2003-05-30 Hitachi Powdered Metals Co.,Ltd. Coating material for fuel cell separator
JP5924444B1 (en) * 2015-10-29 2016-05-25 富士電機株式会社 Phosphoric acid fuel cell and manufacturing method of phosphoric acid fuel cell

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999005737A1 (en) * 1997-07-28 1999-02-04 Nisshinbo Industries, Inc. Separator for fuel cells
US6436567B1 (en) 1997-07-28 2002-08-20 Nisshinbo Industries, Inc. Separator for fuel cells
WO2003044888A1 (en) * 2001-11-21 2003-05-30 Hitachi Powdered Metals Co.,Ltd. Coating material for fuel cell separator
JP5924444B1 (en) * 2015-10-29 2016-05-25 富士電機株式会社 Phosphoric acid fuel cell and manufacturing method of phosphoric acid fuel cell

Similar Documents

Publication Publication Date Title
EP1701399A1 (en) Fuel cell humidity adjusting film
EP1357617A1 (en) Gas diffusion electrode and fuel cell using this
US20020004156A1 (en) Separator for fuel cell and manufacturing method for the same
US10707494B2 (en) Gas diffusion layer for fuel cell, method for manufacturing said layer, membrane-electrode assembly, and fuel cell
CN100509956C (en) Fuel cell electrolyte, membrane electrode assembly, fuel cell stack, fuel cell system and manufacturing method of fuel cell electrolyte
GB2126775A (en) Ribbed substrate for fuel cell electrode
JP2001057218A (en) Solid polymer type fuel cell and manufacture thereof
US7727422B2 (en) Electrically-conductive resin composition for porous fuel cell bipolar plate and method for the production thereof
JP3824795B2 (en) Method for producing separator member for polymer electrolyte fuel cell
JPS62252073A (en) Separating plate for fuel cell and its manufacture
JP3562809B2 (en) Gas diffusion layer for polymer electrolyte fuel cell, electrolyte membrane-electrode assembly using the same, and polymer electrolyte fuel cell
JP6785405B2 (en) Electrolyte membrane and fuel cell
JP2003163015A (en) Polymer electrolyte fuel cell and conductive separator plate therefor
JPS59181466A (en) Manufacture of electrolyte matrix
US20180198146A1 (en) Multi-layer fuel cell electrodes with different loadings on the supported catalysts
CN103311557A (en) Fuel cell durability by orthogonally oriented anisotropic external reinforce layers
JPH01154467A (en) Liquid fuel cell
JPH0778617A (en) Gas diffusion electrode and manufacture thereof
TW202000440A (en) Method of manufacturing slurry used in making micro-porous layer and gas diffusion layer comprising micro-porous layer manufactured thereby
JPH0131445B2 (en)
JP3229025B2 (en) Gas diffusion electrode manufacturing method
JPS6065405A (en) Sheetlike elastic conductive plate
JP2001185462A (en) Manufacturing method of solid activated carbon electrode
JP2753046B2 (en) Fuel cell
JP4725872B2 (en) Separator for polymer electrolyte fuel cell