JPS6224911B2 - - Google Patents

Info

Publication number
JPS6224911B2
JPS6224911B2 JP54125601A JP12560179A JPS6224911B2 JP S6224911 B2 JPS6224911 B2 JP S6224911B2 JP 54125601 A JP54125601 A JP 54125601A JP 12560179 A JP12560179 A JP 12560179A JP S6224911 B2 JPS6224911 B2 JP S6224911B2
Authority
JP
Japan
Prior art keywords
lead
antimony
weight
alloy
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54125601A
Other languages
Japanese (ja)
Other versions
JPS5650070A (en
Inventor
Mitsuru Koseki
Akio Komaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP12560179A priority Critical patent/JPS5650070A/en
Publication of JPS5650070A publication Critical patent/JPS5650070A/en
Publication of JPS6224911B2 publication Critical patent/JPS6224911B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • H01M4/685Lead alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は鉛蓄電池の製造法の改良に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method for manufacturing lead-acid batteries.

従来の鉛蓄電池は過充電による電解液の減少に
より寿命に達するまでの間に数回以上の補水が必
要であり、特に寿命末期においては補水頻度が著
しく高くなる欠点があつた。
Conventional lead-acid batteries require water replenishment several times or more until the end of their lifespan due to a decrease in electrolyte due to overcharging, and they have had the disadvantage that the frequency of water replenishment becomes extremely high, especially at the end of their lifespan.

その液減りの原因となるのは主に陰極での水素
過電圧によるもので、水素過電圧が低いほど液減
りが多くなるとされている。すなわちその液減り
は格子合金に添加されている4〜5重量%のアン
チモンによつて陰極の水素過電圧が低下するため
と陽極格子からアンチモンが電解液中に溶出し陰
極に折出して水素過電圧を更に低下させるためで
あるとされている。
The main cause of liquid loss is hydrogen overvoltage at the cathode, and it is said that the lower the hydrogen overvoltage, the greater the liquid loss. In other words, the decrease in liquid is due to the fact that the hydrogen overvoltage at the cathode is reduced by 4 to 5% by weight of antimony added to the lattice alloy, and also because antimony is eluted from the anode lattice into the electrolyte and precipitated to the cathode, increasing the hydrogen overvoltage. It is said that this is to further reduce the

そこで鉛蓄電池への補水頻度を低減するため格
子合金に全くアンチモンを含まない鉛−カルシウ
ム合金あるいは鉛−カルシウム−錫合金や、鉛−
アンチモン−砒素−錫合金においてアンチモン含
有量を3.0重量%以下に抑えた通称低アンチモン
合金を格子材料として使用することが提案されて
いる。
Therefore, in order to reduce the frequency of water replenishment for lead-acid batteries, we use lead-calcium alloys or lead-calcium-tin alloys that do not contain any antimony in the lattice alloy, or lead-calcium-tin alloys that do not contain any antimony.
It has been proposed to use a so-called low antimony alloy, which is an antimony-arsenic-tin alloy with an antimony content of 3.0% by weight or less, as the lattice material.

ところで、廃鉛製品から回収再生した通称故
鉛、該故鉛はアンチモン、砒素、錫以外の金属と
して約0.05重量%の銀、約0.05重量%のビスマ
ス、約0.05重量%の銅が含有されているものをさ
すが、これを格子合金の基本材料として使用する
ことは工業的に非常に好ましいことである。なぜ
ならば鉛資源の有効利用が計られるし、安価なた
めである。
By the way, this waste lead, commonly known as waste lead recovered and recycled from waste lead products, contains about 0.05% by weight of silver, about 0.05% by weight of bismuth, and about 0.05% by weight of copper as metals other than antimony, arsenic, and tin. It is industrially very desirable to use this as a basic material for lattice alloys. This is because lead resources can be used effectively and it is inexpensive.

しかし、該故鉛は上記鉛−カルシウム合金ある
いは鉛−カルシウム−錫合金格子の基本材料とし
て使用されていない。なぜならば、該故鉛中の上
記金属成分の完全除去が困難で、残存する微量の
アンチモンによつて鋳造性が損われるためであ
る。したがつて、コストの高い精製鉛(新鉛)を
格子合金の基本材料として使用することが余儀な
くされている。
However, the waste lead is not used as the basic material for the lead-calcium alloy or lead-calcium-tin alloy lattice. This is because it is difficult to completely remove the metal components in the lead, and the trace amount of antimony that remains impairs castability. Therefore, it is necessary to use expensive refined lead (new lead) as the basic material of the lattice alloy.

また、特開昭50−25427号公報には故鉛を低ア
ンチモン合金格子の基本材料として用いる提案が
なされている。該公報の実施例によればアンチモ
ン2.6重量%、砒素0.3重量%、錫0.04重量%、銅
0.02重量%、セレン0.09重量%、残部鉛の組成を
有する合金を陽極及び陰極格子に用いた電池は、
アンチモン5.8〜6.4重量%、砒素0.15〜0.20重量
%、銅0.01〜0.04重量%、錫0.01〜0.05重量%残
部鉛の組成範囲を有する合金を陽、陰極格子に用
いた電池よりも過充電時の1000時間累積水損失が
アンチモン含有量の低下にもかゝわらず、セレン
の添加により、むしろ増加しており、効果的に液
減りを抑制するまでには至つていない(上記公報
第6頁、左欄上部の第7表)。なおこゝで提案さ
れている故鉛にはセレンは実質的に含有されてい
ない。これはセレンが低沸点金属であるため、再
生される段階で飛散するからである。したがつ
て、セレンは後から故鉛に添加されている(上記
公報第2頁、左欄下部の第6行目〜右欄下部の第
18行目)。
Further, Japanese Patent Application Laid-Open No. 50-25427 proposes using dead lead as a basic material for a low-antimony alloy lattice. According to the examples in the publication, antimony 2.6% by weight, arsenic 0.3% by weight, tin 0.04% by weight, copper
A battery using an alloy having a composition of 0.02% by weight selenium, 0.09% by weight selenium, and the balance lead for the anode and cathode grids is
When overcharged, the alloy has a composition range of 5.8 to 6.4% by weight of antimony, 0.15 to 0.20% by weight of arsenic, 0.01 to 0.04% of copper, and 0.01 to 0.05% of tin with the balance being lead. Despite the decrease in antimony content, the cumulative water loss over 1000 hours actually increases due to the addition of selenium, and the water loss has not been effectively suppressed (see page 6 of the above publication). , Table 7 at the top of the left column). Incidentally, the waste lead proposed here does not substantially contain selenium. This is because selenium is a low boiling point metal and is scattered during the regeneration stage. Therefore, selenium was added to the waste lead later (page 2 of the above publication, line 6 at the bottom of the left column to line 6 at the bottom of the right column).
line 18).

さらに本発明者等の検討でも、アンチモン含有
量のみを3.0重量%以下にした前記アンチモン、
砒素、錫、銀、ビスマス、銅を含有する故鉛から
作つた格子を使用した電池でも液減りを効果的に
減少できないことが判つた。したがつて先に提案
されている鉛蓄電池への補水頻度を低減するため
の通称低アンチモン合金を使つた格子において
も、格子合金の基本材料として新鉛を用い、これ
にアンチモン、砒素、錫を添加調製したものを用
いることが余儀なくされている。
Furthermore, the present inventors have also investigated the above-mentioned antimony in which only the antimony content is 3.0% by weight or less,
It has been found that batteries using grids made from dead lead containing arsenic, tin, silver, bismuth, and copper cannot effectively reduce fluid loss. Therefore, even in the previously proposed grid using a so-called low antimony alloy to reduce the frequency of water replenishment for lead-acid batteries, new lead is used as the basic material of the grid alloy, and antimony, arsenic, and tin are added to it. It is necessary to use additive-prepared products.

本発明の目的は低アンチモン合金格子を用いた
鉛蓄電池において、格子合金の基本材料に故鉛を
用い、これに含有される金属成分のうち、水素過
電圧低下に関与する金属の含有量を、陽極格子合
金と陰極格子合金において別個に規定するという
故鉛の有効利用を計ることによつて、安価で且つ
寿命末期まで安定な液減り抑制効果を有する鉛蓄
電池の製造法を提供するものである。
The object of the present invention is to provide a lead-acid battery using a low antimony alloy lattice, in which waste lead is used as the basic material of the lattice alloy, and among the metal components contained therein, the content of metals that are involved in hydrogen overvoltage drop is reduced at the anode. By effectively utilizing waste lead, which is defined separately in the lattice alloy and the cathode lattice alloy, the present invention provides a method for producing a lead-acid battery that is inexpensive and has a stable liquid loss suppressing effect until the end of its life.

鉛蓄電池における液減りは前記のごとく陰極で
の水素過電圧に左右されるが、故鉛中の各含有金
属そのものについて水素過電圧の低下度を文献に
基き調査した結果、アンチモンと銅が最も大であ
つたので、実際に鉛合金板を使つてアンチモンと
銅について鉛合金中の含有量と40℃1モル硫酸中
で充電々流0.3A/cm2時の純鉛の水素過電圧から
の低下量の関係を検討し第1図に示した。Aは鉛
−銅合金の場合、Bは鉛−アンチモン合金の場
合、Cは2.5重量%のアンチモン含有の鉛−銅合
金の場合である。
As mentioned above, the loss of liquid in a lead-acid battery is affected by the hydrogen overvoltage at the cathode, but as a result of researching the degree of hydrogen overvoltage reduction for each metal contained in waste lead based on literature, it was found that antimony and copper had the greatest reduction. Therefore, we actually used a lead alloy plate to investigate the relationship between the content of antimony and copper in the lead alloy and the amount of drop from the hydrogen overvoltage of pure lead at a charging current of 0.3 A/cm 2 in 1 molar sulfuric acid at 40°C. The results are shown in Figure 1. A is for a lead-copper alloy, B is for a lead-antimony alloy, and C is for a lead-copper alloy containing 2.5% by weight of antimony.

即ち、銅がアンチモンと同様に水素過電圧低下
の大きな要因となつており、2.5重量%のアンチ
モンと銅が共存する場合には、水素過電圧低下に
加成性が認められる。さらに実験により銅は陽極
格子から電解液中に溶出し、陰極に析出すること
によつて水素過電圧を低下させることもわかつ
た。
That is, like antimony, copper is a major factor in the reduction in hydrogen overvoltage, and when 2.5% by weight of antimony and copper coexist, additivity is observed in the reduction in hydrogen overvoltage. Additionally, experiments have shown that copper elutes from the anode grid into the electrolyte and is deposited on the cathode, thereby lowering the hydrogen overvoltage.

以上のことにより、故鉛を格子合金の基本材料
として用いた鉛蓄電池の液減りを減少させるため
には、陰、陽両極での格子合金中のアンチモンと
銅の含有量を考慮すればよいことがわかつた。
Based on the above, in order to reduce the loss of liquid in lead-acid batteries that use waste lead as the basic material for the lattice alloy, it is necessary to consider the contents of antimony and copper in the lattice alloy at both the negative and anode electrodes. I understood.

そこで、単電池によりその効果を検討した。ア
ンチモンの効果をみるため、砒素0.3重量%、錫
0.03重量%、残部鉛の組成を有する合金を基本材
料にして、アンチモン含有量が10重量%以下の組
成範囲になるように調製した鉛合金を用いた。ア
ンチモン含有量の調製はアンチモンを含まない上
記基本材料を基材合金として該合金と所定量の金
属アンチモンを鋼製の容器に入れ約400℃に加熱
溶解することによつて行なつた。例えばアンチモ
ン含有量2.5重量%の組成のものは、上記基材合
金1Kgに対して金属アンチモン25.6gを加えて上
記方法により加熱溶解することによつて得られ
る。また銅の効果をみるため、アンチモン4.0重
量%、砒素0.3重量%、錫0.03重量%、銅0.05重量
%、銀0.05重量%、ビスマス0.05重量%、残部鉛
の組成を有する代表的な故鉛を基本材料にして、
アンチモン含有量が2.0〜3.0重量%、代表的には
2.5重量%、銅含有量が0.1重量%以下の組成範囲
になるように調製した鉛合金を用いた、アンチモ
ンと銅の含有量の調製は、上記故鉛と必要に応じ
て所定量の純鉛、金属アンチモン、あらかじめ作
つておいた鉛−銅(1:1重量%)合金を鋼製の
容器に入れ約400℃に加熱溶解することによつて
行なつた。
Therefore, we investigated the effect using single cells. To see the effect of antimony, 0.3% by weight of arsenic and tin
A lead alloy prepared using an alloy having a composition of 0.03% by weight and the balance of lead as a basic material so as to have an antimony content of 10% by weight or less was used. The antimony content was prepared by using the above basic material not containing antimony as a base alloy, and placing the alloy and a predetermined amount of metal antimony in a steel container and heating and melting them at about 400°C. For example, a composition having an antimony content of 2.5% by weight can be obtained by adding 25.6 g of antimony metal to 1 kg of the base alloy and heating and melting the mixture by the above method. In addition, in order to examine the effect of copper, we used a typical waste lead having a composition of 4.0% by weight of antimony, 0.3% by weight of arsenic, 0.03% by weight of tin, 0.05% by weight of copper, 0.05% by weight of silver, 0.05% by weight of bismuth, and the balance lead. As a basic material,
Antimony content 2.0-3.0% by weight, typically
The content of antimony and copper can be adjusted by using a lead alloy prepared to have a composition range of 2.5% by weight and a copper content of 0.1% by weight or less. This was carried out by heating and melting antimony metal, lead-copper (1:1% by weight) alloy prepared in advance in a steel container at about 400°C.

なお、鉛−銅(1:1重量%)合金は純鉛と金
属銅を炭素ルツボに入れ、アルゴン雰囲気下、約
1100℃に加熱、溶解することによつて得た。例え
ばアンチモン2.5重量%、銅0.06重量%の組成の
ものは、上記故鉛1Kgに対して純鉛599.08gと上
記鉛−銅合金を0.92g加えて、加熱、溶解するこ
とによつて得られる。
For lead-copper (1:1% by weight) alloy, pure lead and metallic copper are placed in a carbon crucible and heated under an argon atmosphere.
Obtained by heating and dissolving at 1100°C. For example, one having a composition of 2.5% by weight of antimony and 0.06% by weight of copper can be obtained by adding 599.08g of pure lead and 0.92g of the above lead-copper alloy to 1 kg of the above-mentioned dead lead, and heating and melting the mixture.

更にアンチモン2.5重量%、銅0.03重量%の組
成のものは、上記故鉛1Kgに対して純鉛665.00g
と金属アンチモン1.67gを加えて、加熱、溶解す
ることによつて得られる。なお金属アンチモンの
代りに高濃度のアンチモンを含有した鉛−アンチ
モン合金をあらかじめ作つておき、これを使用し
てもよい。
Furthermore, for those with a composition of 2.5% by weight of antimony and 0.03% by weight of copper, 665.00g of pure lead per 1kg of dead lead mentioned above.
It is obtained by adding 1.67 g of antimony metal and heating and melting the mixture. Note that a lead-antimony alloy containing a high concentration of antimony may be prepared in advance and used instead of metallic antimony.

このようにして調製した種々の鉛合金を用い
て、常法に従い格子を鋳造した。なお相手極用に
純鉛を用いた格子も常法に従い鋳造により作つ
た。陽極における格子合金の効果を識別する場合
は、陽極格子に上記により調製した鉛合金から作
つたものを用い、陰極格子には純鉛より作つたも
のを用いた。陰極における効果を識別する場合は
上記とは逆の構成のものを用いた。
Using the various lead alloys thus prepared, grids were cast according to conventional methods. A grid made of pure lead for the mating electrode was also made by casting according to the conventional method. When identifying the effect of the lattice alloy on the anode, the anode lattice was made from the lead alloy prepared above, and the cathode lattice was made from pure lead. When identifying the effect at the cathode, a configuration opposite to the above was used.

試験電池は活物質量、電解液量、電解液濃度
(20℃における比重1.260)を同一にして組立てら
れた2V、60Ah(20HR)のものである。種々の
鉛合金から作つた格子を有するこの試験電池を用
いて初期の充電電流0.3A/cm2時の水素過電圧低
下量aと50℃、2.47V定電圧700時間連続過充電
後に充電電流0.3A/cm2時の水素過電圧低下量b
と700時間後の液減り量cについて調査した。陰
極および陽極の格子合金による効果を識別するた
めに、第2図には陽極格子に純鉛を用いて陰極格
子合金による効果を示し、第3図には陰極格子に
純鉛を用いて陽極格子合金による効果を示してい
る。
The test batteries were 2V, 60Ah (20HR) assembled with the same amount of active material, amount of electrolyte, and concentration of electrolyte (specific gravity 1.260 at 20°C). Using this test battery with grids made from various lead alloys, we measured the amount of hydrogen overvoltage drop a at an initial charging current of 0.3 A/cm 2 and the charging current of 0.3 A after 700 hours of continuous overcharging at a constant voltage of 2.47 V at 50°C. Hydrogen overvoltage drop amount b at / cm2
The amount of liquid loss c after 700 hours was investigated. In order to distinguish the effects of the cathode and anode lattice alloys, Figure 2 shows the effect of the cathode lattice alloy using pure lead for the anode lattice, and Figure 3 shows the effect of the cathode lattice alloy using pure lead for the cathode lattice. This shows the effect of the alloy.

即ち、第2図に示すように、陰極の鉛−アンチ
モン合金格子中のアンチモン含有量が3.0重量%
までは除々に水素過電圧が低下し、3.0重量%以
上ではほとんど変わらない。実際にはアンチモン
含有量が2.0重量%以下になると著しく鋳造性が
損われる。一方、2.5重量%のアンチモン含有の
鉛−銅合金格子中の銅含有量が0.06重量%までは
除々に水素過電圧が低下するが、0.06重量%以上
ではほとんど変わらない。また初期aと700時間
後bの水素過電圧の低下量は、鉛−アンチモン合
金格子におけるアンチモン含有量が3.0重量%以
下の場合と2.5重量%のアンチモン含有の鉛−銅
合金格子における銅含有量が0.06重量%以下の場
合は共に初期aと700時間後bの間にほとんど差
がなく安定しており、少ない液減り量cにも表わ
れている。
That is, as shown in Figure 2, the antimony content in the lead-antimony alloy lattice of the cathode is 3.0% by weight.
Up to 3.0% by weight, the hydrogen overvoltage gradually decreases, and remains almost unchanged above 3.0% by weight. In fact, when the antimony content is less than 2.0% by weight, castability is significantly impaired. On the other hand, when the copper content in the lead-copper alloy lattice containing 2.5% by weight of antimony reaches 0.06% by weight, the hydrogen overvoltage gradually decreases, but when it exceeds 0.06% by weight, there is almost no change. In addition, the amount of decrease in hydrogen overvoltage between the initial period a and after 700 hours b is as follows: when the antimony content in the lead-antimony alloy lattice is 3.0% by weight or less, and when the copper content in the lead-copper alloy lattice containing 2.5% antimony. When it is 0.06% by weight or less, it is stable with almost no difference between the initial stage a and 700 hours later b, which is also reflected in the small amount of liquid loss c.

陽極の格子合金については、第3図に示すよう
に、初期aは第2図と同様の傾向を示すが、700
時間後bは鉛−アンチモン合金格子におけるアン
チモン含有量が3.0重量%以上の場合と2.5重量%
のアンチモン含有の鉛−銅合金格子における銅含
有量が0.03重量%以上の場合に共に水素過電圧の
急激な低下があり、液減り量も増加することがわ
かる。
Regarding the anode lattice alloy, as shown in Figure 3, the initial a shows the same tendency as in Figure 2, but 700
After time b, the antimony content in the lead-antimony alloy lattice is 3.0% by weight or more and 2.5% by weight.
It can be seen that when the copper content in the antimony-containing lead-copper alloy lattice is 0.03% by weight or more, the hydrogen overvoltage decreases rapidly and the amount of liquid loss also increases.

尚、上記においては、陽極格子中にアンチモン
と銅が共存する場合の例として、アンチモン含有
量が2.5重量%のものを示したが、アンチモン含
有量が2.0〜3.0重量%の範囲ならば、同様の特性
を表わすことを確認している。
In the above, an example in which antimony and copper coexist in the anode lattice is shown in which the antimony content is 2.5% by weight, but the same applies if the antimony content is in the range of 2.0 to 3.0% by weight. It has been confirmed that the characteristics of

以上より、陰極格子合金として、上記故鉛を基
本材料にしてアンチモン含有量を2.0〜3.0重量
%、銅含有量を0.06重量%以下の少量に調製した
鉛合金を用いると共に、陽極格子合金として、上
記故鉛を基本材料にしてアンチモン含有量を2.0
〜3.0重量%、銅含有量を0.03重量%以下の少量
に調製した鉛合金を用いるという故鉛の有効利用
を計ることによつて、長時間の過充電においても
水素過電圧の低下が少なく、従つて液減り量の急
激な増加もないことから、寿命末期に補水頻度が
多くなることがない鉛蓄電池を安価に得ることが
でき、更に本発明における格子合金は、故鉛の諸
成分の内アンチモンと銅の含有量のみを調製する
ことによつて簡単に得られる。
From the above, as the cathode lattice alloy, we used a lead alloy made from the above-described deceased lead as a basic material and prepared the antimony content to a small amount of 2.0 to 3.0% by weight and the copper content to a small amount of 0.06% by weight or less, and as the anode lattice alloy, The antimony content is 2.0 using the above deceased lead as the basic material.
By effectively utilizing waste lead by using a lead alloy with a small amount of ~3.0% by weight and a copper content of 0.03% by weight or less, the drop in hydrogen overvoltage is small even during long-term overcharging. Since there is no rapid increase in the amount of liquid lost during heating, it is possible to obtain a lead-acid battery at a low cost that does not require frequent rehydration at the end of its life. It can be easily obtained by preparing only the copper content.

上述したように、本発明は工業的価値甚だ大な
るものである。
As mentioned above, the present invention has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は鉛合金板中のアンチモンまたは銅の含
有量に対する水素過電圧低下量を示す曲線図、第
2図は鉛蓄電池の陰極格子合金中のアンチモンま
たは銅の含有量に対する水素過電圧低下量、液減
り量を示すそれぞれ曲線図、第3図は鉛蓄電池の
陽極格子合金中のアンチモンまたは銅の含有量に
対する水素過電圧低下量、液減り量を示すそれぞ
れ曲線図である。 Aは鉛−銅合金の場合、Bは鉛−アンチモン合
金の場合、Cは2.5重量%のアンチモン含有の鉛
−銅合金の場合、aは初期の水素過電圧低下量、
bは700時間充電後の水素過電圧低下量、cは700
時間充電後の液減り量。
Figure 1 is a curve diagram showing the hydrogen overvoltage drop as a function of the antimony or copper content in the lead alloy plate. FIG. 3 is a curve diagram showing the hydrogen overvoltage reduction amount and the liquid reduction amount with respect to the content of antimony or copper in the anode grid alloy of a lead-acid battery. A is a lead-copper alloy, B is a lead-antimony alloy, C is a lead-copper alloy containing 2.5% by weight of antimony, a is the initial hydrogen overvoltage drop,
b is the hydrogen overvoltage drop after 700 hours of charging, c is 700
Amount of fluid lost after charging for hours.

Claims (1)

【特許請求の範囲】[Claims] 1 回収再生した鉛、アンチモン、砒素、錫、
銀、ビスマス、銅を含有する故鉛を用い、アンチ
モン含有量を2.0〜3.0重量%に、銅含有量を0.06
重量%以下の少量に調製し、該調製鉛合金を用い
て陰極格子とすると共に、上記故鉛を用い、アン
チモン含有量を2.0〜3.0重量%に、銅含有量を
0.03重量%以下の少量に調製し該調製鉛合金を用
いて陽極格子とすることを特徴とする鉛蓄電池の
製造法。
1 Recovered and recycled lead, antimony, arsenic, tin,
Using waste lead containing silver, bismuth, and copper, the antimony content is 2.0 to 3.0% by weight and the copper content is 0.06%.
The prepared lead alloy is prepared in a small amount of 2.0 to 3.0% by weight and the copper content is reduced to 2.0 to 3.0% by weight, using the prepared lead alloy as a cathode grid.
1. A method for producing a lead-acid battery, which comprises preparing a small amount of lead alloy of 0.03% by weight or less and using the prepared lead alloy to form an anode grid.
JP12560179A 1979-09-28 1979-09-28 Lead-acid battery Granted JPS5650070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12560179A JPS5650070A (en) 1979-09-28 1979-09-28 Lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12560179A JPS5650070A (en) 1979-09-28 1979-09-28 Lead-acid battery

Publications (2)

Publication Number Publication Date
JPS5650070A JPS5650070A (en) 1981-05-07
JPS6224911B2 true JPS6224911B2 (en) 1987-05-30

Family

ID=14914167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12560179A Granted JPS5650070A (en) 1979-09-28 1979-09-28 Lead-acid battery

Country Status (1)

Country Link
JP (1) JPS5650070A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03280358A (en) * 1990-03-28 1991-12-11 Shin Kobe Electric Mach Co Ltd Base of positive electrode for lead acid storage battery
JPH0732709Y2 (en) * 1990-05-11 1995-07-31 鹿島建設株式会社 Brace structure

Also Published As

Publication number Publication date
JPS5650070A (en) 1981-05-07

Similar Documents

Publication Publication Date Title
JP3555877B2 (en) Alloy for battery grid
JP3876931B2 (en) Lead acid battery
US4092462A (en) Electrode grids for lead accumulators
JP4646572B2 (en) Positive electrode plate for sealed lead-acid battery and sealed lead-acid battery using the positive electrode plate
JPS6459769A (en) Negative current collector for zinc-alkaline battery
US2860969A (en) Lead-acid accumulator alloy
US2694628A (en) Grid metal alloy
JP3113895B2 (en) Lead alloy for storage battery
JPS6224911B2 (en)
JP6601654B2 (en) Control valve type lead acid battery
JPS61116755A (en) Zinc powder for alkaline manganese battery and alkaline manganese battery
US4169192A (en) Lead-acid storage battery having Pb-Cd-Zn-Sn plate straps
US4253871A (en) Alloys for making electrode supports in lead accumulators
US2994626A (en) Low loss battery
JPS6365041A (en) Lead alloy for storage battery
JPH0770321B2 (en) Sealed lead acid battery
CA1041164A (en) Maintenance-free battery and method for reducing the current draw of such batteries
JPH09330700A (en) Lead-acid battery
JPS6051546B2 (en) Lattice alloy for lead-acid batteries
JPS6129100B2 (en)
JPS6213102B2 (en)
JP3658871B2 (en) Lead acid battery
JPS63141263A (en) Lead-base alloy for storage battery
JPS59177864A (en) Electrode material for lead-acid battery
JPS6048867B2 (en) lead acid battery