JPS62248551A - Molten metal supplying control apparatus for low pressure casting - Google Patents

Molten metal supplying control apparatus for low pressure casting

Info

Publication number
JPS62248551A
JPS62248551A JP9094286A JP9094286A JPS62248551A JP S62248551 A JPS62248551 A JP S62248551A JP 9094286 A JP9094286 A JP 9094286A JP 9094286 A JP9094286 A JP 9094286A JP S62248551 A JPS62248551 A JP S62248551A
Authority
JP
Japan
Prior art keywords
pressure
molten metal
flow rate
value
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9094286A
Other languages
Japanese (ja)
Inventor
Tetsuo Yamazaki
哲男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP9094286A priority Critical patent/JPS62248551A/en
Publication of JPS62248551A publication Critical patent/JPS62248551A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control pressure and flow rate of introducing air into a holding furnace and to execute stable casting by correcting the setting pressure value and flow rate value of the introducing air in accordance with a detected air pressure value in the holding furnace at the time of detecting rise of molten metal to a gate part in a mold. CONSTITUTION:After filling up the molten metal 12 into a crucible 13, air is introduced into the holding furnace 11, to rise the pressure in the furnace, and the molten metal in the crucible 13 is supplied into the mold 14 through a stoke 15. When the molten metal is reached to the gate 14a of the mold 14, a sensor 31 is detected and a signal is transmitted to a controller 100. And in accordance with the actual measured pressure value in the holding furnace 11 transmitted from the sensor 30, an operation correcting the setting pressure value and the setting flow rate value is executed by an arithmetic circuit 102 and a working signal is outputted from the controller 100 to a servo-driver 24, to control automatically valve opening degree of the pressure valve 22 and the flow valve 23.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、所定樋の溶湯を収容した密閉保温炉内を加圧
してストークにより連結された鋳型内に順次溶湯を供給
して鋳造成形を行う低圧鋳造を実施する際、鋳造ショツ
ト数に拘らず鋳型内への給湯条件を常に一定に維持する
為の低圧鋳造用給湯側御!I装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention performs casting molding by pressurizing the inside of a sealed heat-insulating furnace containing molten metal in a predetermined gutter and sequentially supplying the molten metal into molds connected by stalks. When performing low-pressure casting, control the hot water supply side for low-pressure casting to always maintain constant hot water supply conditions into the mold regardless of the number of casting shots! Regarding the I device.

(従来技術) 低圧鋳造時の保温炉内加圧パターンは、第4図示の通り
であり、溶湯を鋳型ゲート部迄上昇させる一次圧パター
ンa、詩型内へ注入する二次圧パターン勢、鋳型内注入
後に押湯する三次圧パターンC1及び最終押湯圧(四次
圧)パターンdから成る。而して、安定した鋳込み特性
を得る為には、鋳造ショツト数に拘らず、二次圧パター
ンb及び三次加圧パターンCの傾斜を常に一定に維持し
て鋳型内への給湯条件が不変のものとなるよう制御する
ことが必要となる。
(Prior art) The pressurization pattern in the heat retention furnace during low-pressure casting is as shown in Figure 4, which includes a primary pressure pattern a for raising the molten metal to the mold gate, a secondary pressure pattern for injecting it into the mold, and a mold. It consists of a tertiary pressure pattern C1 and a final feeder pressure (quaternary pressure) pattern d, which are heated after internal injection. Therefore, in order to obtain stable casting characteristics, regardless of the number of casting shots, the inclinations of the secondary pressure pattern B and the tertiary pressure pattern C must always be kept constant so that the conditions for supplying hot water into the mold remain unchanged. It is necessary to control it so that it becomes a thing.

この種低圧鋳造用湯制御装置として は、特開昭59−16664号開示のものがある。即ち
、保温炉内の溶湯を保温炉上方の鋳型に導くストークを
保温炉側に取付けた大径ストークと鋳型側に取付けた小
径ストークとの2分割構成とし、大径ストーク内に小径
ストークを挿入するとともに大径ストークを小径ストー
クの周囲に設けた伸縮継手を介して鋳型に気密に連結し
、小径ストーク外周と大径ストーク及び伸縮継手内周と
の間に鋳造時に形成される密閉室ff1f部に圧力検出
装置を接続して構成したものであり、圧力検出装置の伝
号を保温炉への加圧ガス供給系にフィードバックして加
圧を制御せしめることにより、給湯条件を常に一定に維
持せんとしたちのである。
This type of low-pressure casting hot water control device is disclosed in Japanese Patent Application Laid-Open No. 59-16664. In other words, the stalk that guides the molten metal in the insulating furnace to the mold above the insulating furnace is divided into two parts: a large-diameter stalk attached to the insulating furnace side and a small-diameter stalk attached to the mold side, and the small-diameter stalk is inserted into the large-diameter stalk. At the same time, the large-diameter stalk is airtightly connected to the mold via an expansion joint provided around the small-diameter stalk, and a sealed chamber ff1f portion is formed during casting between the outer periphery of the small-diameter stalk and the inner periphery of the large-diameter stalk and the expansion joint. A pressure detection device is connected to the furnace, and the signal from the pressure detection device is fed back to the pressurized gas supply system to the heating furnace to control pressurization, thereby maintaining constant water supply conditions. Toshichino.

しかし乍ら、E記構成のものでは、保温炉内の溶湯が鋳
型内に供給されている間、密閉空間部のカス川は溶湯移
動開始+iijのカス圧に維持されることとなり、圧力
変化が生じるのは、溶湯供給路Y後となる。従って、−
・沈圧パターンから二次圧パターンへの切り換えタイミ
ングを実際に溶湯が鋳型ゲート部に到達した時点とリン
クさせることが出来ず、それ故に、二次用以降の圧力切
換えタイミングがショット毎にまちまちとなって給湯条
件を一定となし得ない問題点を有している。
However, in the configuration described in E, while the molten metal in the insulating furnace is being supplied into the mold, the scum river in the closed space is maintained at the scum pressure of molten metal movement start + iij, and the pressure changes. This occurs after the molten metal supply path Y. Therefore, −
・It is not possible to link the timing of switching from the submersion pressure pattern to the secondary pressure pattern with the point in time when the molten metal actually reaches the mold gate, and therefore the timing of pressure switching after secondary use varies from shot to shot. Therefore, there is a problem in that hot water supply conditions cannot be kept constant.

(発明の目的) 本発明は、上記の如き喉情に鑑み、二次圧パターンへの
切換えタイミングを実際に溶湯が145ゲ一ト部に到達
した時点にリンクさせ几つその時点の保温炉内実測圧力
値を基準として二次圧パターン以降の圧力変化を制御す
ることにより、常に安定した鋳込み特性を得ることを可
能にする低圧鋳造用給湯制御装置の提供、をその目的と
する。
(Object of the Invention) In view of the above-mentioned circumstances, the present invention links the timing of switching to the secondary pressure pattern to the point in time when the molten metal actually reaches the 145 gate part. The object of the present invention is to provide a low-pressure casting hot water supply control device that makes it possible to always obtain stable casting characteristics by controlling pressure changes after the secondary pressure pattern based on actually measured pressure values.

(発明の構1&) この為1本発明に係る低圧鋳造用給湯制御装置は、第1
図示の如く、鋳型ゲート部への溶湯上昇を検知する溶湯
検知手段と、保温炉内のエア圧を検出する圧力検出手段
と、前記溶湯検知手段による溶湯上昇検知時の前記圧力
検出手段による検出圧力値に基づいて導入エアの設定圧
力値及び設定流M(#を補正する圧力1流呈補1E−1
:段と、該圧力・流量補正手段による補正圧力値及び補
正流g、値に基づいて導入エアの圧力及び流量を制御す
る制御手段とを備え、鋳型ゲート部への溶湯上昇を検知
した時点で二次圧への加圧パターン切り換えを行うと共
に、その時点での保温炉内エア圧の実測値に基づいて導
入エアの流量及び圧力を制御することにより、常に一定
の加圧パターンを維持し、ショット会に拘らず安定した
鋳込み特性を得るよう構成されている。
(Structure of the Invention 1&) For this reason, the low-pressure casting hot water supply control device according to the present invention has the following features:
As shown in the figure, there is a molten metal detection means for detecting the rise of the molten metal to the mold gate, a pressure detection means for detecting the air pressure in the insulating furnace, and a pressure detected by the pressure detection means when the molten metal detection means detects the rise of the molten metal. Pressure 1 flow correction 1E-1 to correct the set pressure value and set flow M (#) of the introduced air based on the value
: stage, and a control means for controlling the pressure and flow rate of the introduced air based on the corrected pressure value and the corrected flow g value by the pressure/flow rate correction means, and when the rising of the molten metal to the mold gate part is detected. By switching the pressurization pattern to the secondary pressure and controlling the flow rate and pressure of the introduced air based on the actual value of the air pressure inside the heating furnace at that time, a constant pressurization pattern is always maintained. It is constructed to obtain stable casting characteristics regardless of shot conditions.

(実施例) 第2図において、低圧鋳造装置10は、密閉構造とした
保温炉ll内に溶湯12を収容したルツボ13を設置し
、上方に設けられた鋳型14のゲートfi14aに上端
を連結したストーク15のド端をルツボ13内に配置し
て構成されている。
(Example) In FIG. 2, a low-pressure casting apparatus 10 includes a crucible 13 containing a molten metal 12 in a heat-retaining furnace 11 having a closed structure, and an upper end thereof is connected to a gate fi 14a of a mold 14 provided above. The stalk 15 is configured such that the end thereof is placed inside the crucible 13.

保温炉ll内には、圧力源21より圧力弁22、Nt埴
方弁23介してエアを導入するエアダクト20が連結開
口されており、圧力弁z2、流量弁23の弁開度は、コ
ントローラ100からの制御信号によって作動するサー
ボドライバ24により調整されるようになっている。
An air duct 20 that introduces air from a pressure source 21 through a pressure valve 22 and a Nt valve 23 is connected and opened in the heat retention furnace 11, and the valve opening degrees of the pressure valve z2 and the flow rate valve 23 are controlled by the controller 100. The adjustment is performed by a servo driver 24 operated by a control signal from the servo driver 24.

ストーク15最上端には、溶湯E昇を検知する為の感熱
センサ等から戚る溶湯センサ31が設置されており、溶
湯を昇検知時の出力信号はコントローラ100に送られ
るようになっている。
A molten metal sensor 31, such as a heat-sensitive sensor, is installed at the top end of the stalk 15 to detect the rise of the molten metal E, and an output signal when detecting the rise of the molten metal is sent to the controller 100.

又、保温炉ll内には、保温炉内エア圧を検出する為の
圧力センサ30が設置されており、その出力信号は、溶
湯センサ31の検知信号人力時にコントローラ100か
ら出力される制御信号に基づいて開成するゲート回路1
01を経て演算回路102に入力され、演算回路102
による演算結果がコントローラlθOに出力されるよう
になっている。尚、103は、演算回路102の演算プ
ログラムを格納すると共に各種データを一時保管する為
のメモリ回路である。
Further, a pressure sensor 30 is installed in the heat retention furnace 1 for detecting the air pressure inside the heat retention furnace, and its output signal is connected to the detection signal of the molten metal sensor 31 and the control signal output from the controller 100 during manual operation. Gate circuit 1 developed based on
01 to the arithmetic circuit 102;
The calculation result is output to the controller lθO. Note that 103 is a memory circuit for storing the arithmetic program of the arithmetic circuit 102 and temporarily storing various data.

このように構成される給湯制御装置の作動を第3図に示
すフローチャートに基づいて説明する。
The operation of the hot water supply control device configured as described above will be explained based on the flowchart shown in FIG.

コントローラ100は、予め設定された導入エアの初期
圧力値Paと流量値Qoに対応する制御信号をサーボド
ライバ24に出力して、−法用パターンによる保温炉l
O内加圧を行う。
The controller 100 outputs a control signal corresponding to the preset initial pressure value Pa and flow rate value Qo of the introduced air to the servo driver 24, and controls the temperature control furnace l according to the legal pattern.
Pressurize inside O.

次いで、溶湯センサ31からの溶湯上昇検知信号が入力
されるとコントローラlOOよリゲート101開成信号
が出力され、圧力センサ30の検出信号が演算回路10
2に入力される。@算回路102は、圧力センサ30に
より検…された実測圧力値Pをメモリ回路103に格納
すると共に、メモリ回路103にtめ記憶されていた溶
湯比玉ρを読出し、溶湯へ一/ ト減少高さhを求める
演算(h=P/ρ)を行う。
Next, when the molten metal rise detection signal from the molten metal sensor 31 is input, the controller lOO outputs the ligate 101 opening signal, and the detection signal of the pressure sensor 30 is input to the arithmetic circuit 10.
2 is input. The calculation circuit 102 stores the measured pressure value P detected by the pressure sensor 30 in the memory circuit 103, reads out the molten metal ratio ρ stored in the memory circuit 103, and decreases the molten metal by 1/t. A calculation (h=P/ρ) is performed to obtain the height h.

次いで、得られた溶湯ヘッド減少高さ hと、?めメモリ回路103に記憶された。Then, the resulting molten metal head decreases in height h and? The data was stored in the memory circuit 103.

溶湯ヘッド減少高さhとそれに対応する保温炉内空隙容
積Vとの関係を示す二次元テーブルから、そのlj点で
の保温炉内空隙容積Vを読み出し、同様に予めメモリ回
路103に記憶された0ショット時の空隙容積VOと対
比して温暖補正係数Kを求める演′1I(K=V/Vo
)を実行する。
From the two-dimensional table showing the relationship between the molten metal head reduction height h and the corresponding void volume V in the heat insulating furnace, the void volume V in the heat insulating furnace at the lj point is read out and similarly stored in advance in the memory circuit 103. Operation '1I (K=V/Vo
).

次いで、得られた流量補1F係数にと初期流9値Qoか
ら補正流駿偵QのrD4算(Q=Qo/K)を実行し、
演算結果をコントローラ100に出力する。
Next, perform the rD4 calculation of the corrected flow rate Q (Q = Qo / K) from the obtained flow rate correction 1F coefficient and the initial flow 9 value Qo,
The calculation result is output to the controller 100.

補正流量値Qの演算結果を出力後、演算回路102は、
予めメモリ回路103に記憶された二次圧パターンbの
設定圧力傾斜率Δp/Δtを読出し、これとメモリ回路 103に格納された圧力センサ30による上記実測圧力
値Pとから、′F記式による補正圧力値P (t)の演
算を実行し、演算結果をコントローラ100に出力する
After outputting the calculation result of the corrected flow rate value Q, the calculation circuit 102
The set pressure gradient rate Δp/Δt of the secondary pressure pattern b stored in the memory circuit 103 in advance is read out, and from this and the above-mentioned actual pressure value P measured by the pressure sensor 30 stored in the memory circuit 103, the value is calculated according to the 'F notation. The corrected pressure value P (t) is calculated, and the calculation result is output to the controller 100.

上記補正圧力値P (t)の演算は、予め設定された二
次圧設定時間T2が経過する迄繰返し実行され、T7経
過後は、三次圧設定時間T3が経過する迄三次圧パター
ンCの設定傾斜率Δp/Δtに基づく補正圧力値 p (t)を、T3経過後は、四次圧パターンdの設定
傾斜率Δp/Δt(本実施例の場合はl)に基づく補正
圧力値P(t)を夫々コントローラ100に出力し、四
次圧設定時間T4経過により制御プログラムの実行を終
了する。
The calculation of the corrected pressure value P (t) is repeatedly executed until the preset secondary pressure setting time T2 has elapsed, and after T7 has elapsed, the tertiary pressure pattern C is set until the tertiary pressure setting time T3 has elapsed. After T3, the corrected pressure value p(t) based on the slope rate Δp/Δt is changed to the corrected pressure value P(t) based on the set slope rate Δp/Δt (l in this example) of the quaternary pressure pattern d. ) are output to the controller 100, and the execution of the control program is ended when the quaternary pressure setting time T4 has elapsed.

而して、コントローラ100は、 y4g回路102に
より実行−出力された上記演算結果に対応する制御上%
)をサーボドライバ24に出力する。
Therefore, the controller 100 performs the control % corresponding to the above calculation result executed and outputted by the y4g circuit 102.
) is output to the servo driver 24.

このように構成する給湯制御装置では、ルツボ13内に
溶湯を充填した後保温炉11内にエアを導入して保温炉
内圧力を)1.昇させ。
In the hot water supply control device configured in this way, after filling the crucible 13 with molten metal, air is introduced into the heat retention furnace 11 to control the pressure inside the heat retention furnace. Let it rise.

ルツボ13内の溶湯をストーク15を介して鋳型14内
に供給する。溶湯が鋳型14のゲ−N4aに到達すると
、溶湯センサ31がこれを検知してコントローラ100
に出力信号を送り、圧力センサ30から送られてきた保
温炉11内の実測圧力値に基づいて演算回路102にて
設定圧力値及び設定流ψ値を補正する所定の演算が行わ
れ、演算結果に対応する作動信号がコントローラ100
からサーボドライバ24に出力されて圧力弁22゜流植
弁23の弁開度が自動制御される。
The molten metal in the crucible 13 is supplied into the mold 14 via the stalk 15. When the molten metal reaches the gate N4a of the mold 14, the molten metal sensor 31 detects this and the controller 100
A predetermined calculation is performed in the calculation circuit 102 to correct the set pressure value and the set flow ψ value based on the measured pressure value in the heat retention furnace 11 sent from the pressure sensor 30, and the calculation result is The actuation signal corresponding to the controller 100
The signal is output from the servo driver 24 to automatically control the valve opening degrees of the pressure valve 22 and the flow implantation valve 23.

(発明の効果) 上記の如き、本発明に係る低圧鋳造用給湯制御装置に依
れば、溶湯の鋳型ゲート部到達時にリンクしてニー法王
パターンへの切り換えが行われると共に、ショット毎に
実測される保温炉内エア圧に基づいて導入エアの圧力及
び波間が制御されるので、ショツト数に拘らず鋳型内−
1の給湯条件を常に一定に維持することが出来、安定し
た鋳込み特性を得ることが可能となる。
(Effects of the Invention) As described above, according to the low-pressure casting metal supply control device according to the present invention, when the molten metal reaches the mold gate, switching to the Knee Pope pattern is performed, and the actual measurement is performed for each shot. Since the pressure and wave width of the introduced air are controlled based on the air pressure inside the heat insulating furnace, the air inside the mold is controlled regardless of the number of shots.
The hot water supply condition No. 1 can always be maintained constant, and stable casting characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第り図は本発明に係る低圧鋳造用給湯制御装置の構成を
示すブロック図、第2図はその実施例を示すシステム構
成図、第3図は給湯制御のフローチャート図、第4図は
加圧パターンを示す圧力特性図である。 11・・・保温炉 12・・・溶湯 14・・・鋳型 14a・・・ゲート部 15・・・ストーク 22・・・圧力弁 23・・・流量弁 24・・・サーボドライバ 30・・・圧力センサ 31・・・溶湯センサ lOO・・・コントローラ 101・・・ゲート回路 102・・・演算回路 103・・・メモリ回路 第3図
Fig. 2 is a block diagram showing the configuration of a low-pressure casting hot water supply control device according to the present invention, Fig. 2 is a system configuration diagram showing an embodiment thereof, Fig. 3 is a flowchart of hot water supply control, and Fig. 4 is a pressurization It is a pressure characteristic diagram showing a pattern. 11... Heat retention furnace 12... Molten metal 14... Mold 14a... Gate portion 15... Stoke 22... Pressure valve 23... Flow rate valve 24... Servo driver 30... Pressure Sensor 31...Molten metal sensor lOO...Controller 101...Gate circuit 102...Arithmetic circuit 103...Memory circuit FIG.

Claims (1)

【特許請求の範囲】 ストークを介して鋳型内へ供給される溶湯 を収容した保温炉内に導入されるエアの圧力及び流量を
変動させて鋳型内への給湯制御を行うものに於いて、 鋳型ゲート部への溶湯上昇を検知する溶湯 検知手段と、 保温炉内のエア圧を検出する圧力検出手段 と、 前記溶湯検知手段による溶湯上昇検知時の 前記圧力検出手段による検出圧力値に基づいて導入エア
の設定圧力値及び設定流量値を補正する圧力・流量補正
手段と、 該圧力・流量補正手段による補正圧力値及 び補正流量値に基づいて導入エアの圧力及び流量を制御
する制御手段、 とを備えたこと、を特徴とする低圧鋳造用 給湯制御装置。
[Scope of Claims] In a device that controls the supply of hot water into the mold by varying the pressure and flow rate of air introduced into a heat-retaining furnace containing molten metal supplied into the mold via a stalk, A molten metal detection means that detects the rise of molten metal to the gate part, a pressure detection means that detects the air pressure in the heat retention furnace, and a pressure value detected by the pressure detection means when the molten metal detection means detects the rise of the molten metal. A pressure/flow rate correction means for correcting a set pressure value and a set flow rate value of air; and a control means for controlling the pressure and flow rate of introduced air based on the corrected pressure value and corrected flow rate value by the pressure/flow rate correction means. A hot water supply control device for low pressure casting, which is characterized by:
JP9094286A 1986-04-19 1986-04-19 Molten metal supplying control apparatus for low pressure casting Pending JPS62248551A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9094286A JPS62248551A (en) 1986-04-19 1986-04-19 Molten metal supplying control apparatus for low pressure casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9094286A JPS62248551A (en) 1986-04-19 1986-04-19 Molten metal supplying control apparatus for low pressure casting

Publications (1)

Publication Number Publication Date
JPS62248551A true JPS62248551A (en) 1987-10-29

Family

ID=14012507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9094286A Pending JPS62248551A (en) 1986-04-19 1986-04-19 Molten metal supplying control apparatus for low pressure casting

Country Status (1)

Country Link
JP (1) JPS62248551A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290674A (en) * 1987-05-21 1988-11-28 Aichi Mach Ind Co Ltd Pressure raising device for low pressure casting machine
JPH01143754A (en) * 1987-11-27 1989-06-06 Mazda Motor Corp Molten metal feeding control device for molten metal feeder
JPH01180774A (en) * 1987-12-28 1989-07-18 Morita Mfg Co Ltd Automatic precision casting method and its device
US6247521B1 (en) 1996-08-15 2001-06-19 Toyota Jidosha Kabushiki Kaisha Pressure difference control method for filling a cavity with melt
JP2013141691A (en) * 2012-01-11 2013-07-22 Honda Motor Co Ltd Method for calculating volume of air chamber in furnace, casting method, device for calculating volume of air chamber in furnace and program for calculating volume of air chamber in furnace
CN105689689A (en) * 2016-04-25 2016-06-22 长沙市致能电子科技有限公司 Low-pressure casting method and equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290674A (en) * 1987-05-21 1988-11-28 Aichi Mach Ind Co Ltd Pressure raising device for low pressure casting machine
JPH0426936B2 (en) * 1987-05-21 1992-05-08 Aichi Machine Ind
JPH01143754A (en) * 1987-11-27 1989-06-06 Mazda Motor Corp Molten metal feeding control device for molten metal feeder
JPH01180774A (en) * 1987-12-28 1989-07-18 Morita Mfg Co Ltd Automatic precision casting method and its device
US6247521B1 (en) 1996-08-15 2001-06-19 Toyota Jidosha Kabushiki Kaisha Pressure difference control method for filling a cavity with melt
JP2013141691A (en) * 2012-01-11 2013-07-22 Honda Motor Co Ltd Method for calculating volume of air chamber in furnace, casting method, device for calculating volume of air chamber in furnace and program for calculating volume of air chamber in furnace
CN105689689A (en) * 2016-04-25 2016-06-22 长沙市致能电子科技有限公司 Low-pressure casting method and equipment

Similar Documents

Publication Publication Date Title
US6688532B2 (en) Controller, temperature controller and heat processor using same
JPS62248551A (en) Molten metal supplying control apparatus for low pressure casting
JP3388019B2 (en) Pressure control method and pressure control device in low pressure casting
US5630714A (en) Process for controlling combustion of burners in furnace and an apparatus therefor
JPH01245120A (en) Method and apparatus for measuring fluid medium
JPH05200519A (en) Method for controlling temperature of die
JPH07180904A (en) Hot water-supplying apparatus
JP2927686B2 (en) Heating device for refractory-lined container and heating control method thereof
JPH07110511B2 (en) Heating cylinder temperature control method and apparatus for injection molding machine
JPH0616382Y2 (en) Temperature rise control device for coolant in pressurizer
JP3268304B2 (en) Pressure control device in low pressure casting machine
JPS63290697A (en) Control method for quantity of heat of laser heating apparatus
JPH087239Y2 (en) Boiler combustion control device
JP3154377B2 (en) Pressure control method for low pressure casting machine
SU415394A1 (en)
SU796806A1 (en) Gas flow temperature regulating device
JPH0890200A (en) Method for improving accuracy of molten metal supply in method for controlling pre-level molten metal supply
JPH01234700A (en) Steam tracing device
JP2002085256A (en) Steam pot with operation controller
JP2003240446A (en) Method for heating and drying refractory buildup
SU1126775A1 (en) Method of controlling masout feed to burning
JPH02205246A (en) Die cooler for low-pressure casting
SU1738763A1 (en) Method of control of heating conditions of regenerative glass-making furnace
JPS63302105A (en) Turbine governor warming device
JPH0942766A (en) Combustion appliance having hot water supply function and correction data input device