JPS6224731B2 - - Google Patents

Info

Publication number
JPS6224731B2
JPS6224731B2 JP55071796A JP7179680A JPS6224731B2 JP S6224731 B2 JPS6224731 B2 JP S6224731B2 JP 55071796 A JP55071796 A JP 55071796A JP 7179680 A JP7179680 A JP 7179680A JP S6224731 B2 JPS6224731 B2 JP S6224731B2
Authority
JP
Japan
Prior art keywords
voltage
lower limit
circuit
compensation
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55071796A
Other languages
Japanese (ja)
Other versions
JPS56168130A (en
Inventor
Juichiro Nakagawa
Eiji Nakai
Isao Kai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP7179680A priority Critical patent/JPS56168130A/en
Publication of JPS56168130A publication Critical patent/JPS56168130A/en
Publication of JPS6224731B2 publication Critical patent/JPS6224731B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • G01K7/24Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit
    • G01K7/25Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor in a specially-adapted circuit, e.g. bridge circuit for modifying the output characteristic, e.g. linearising

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 この発明は、サーミスタや測温抵抗体などの感
温素子を用いて体温を測定する電子式体温計に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electronic thermometer that measures body temperature using a temperature sensing element such as a thermistor or a resistance temperature detector.

この種の体温計は感温素子の温度による抵抗値
変化などを検出しこれを所望の手法により処理し
て表示するものであり、処理回路中には増巾回路
のように周囲温度の変動によつて増巾度が変化し
たり、係数が変化する回路が含まれている。そし
てこれらの係数が変化すると体温の測定が不正確
となる。電子式体温計は電源として電池を用いる
ことが多く、電源電圧の変動もまた測定誤差の原
因となり、これらの誤差原因を補償することが必
要となる。
This type of thermometer detects changes in the resistance value of the temperature-sensitive element due to temperature, processes this using a desired method, and displays it. It includes circuits in which the degree of amplification changes and the coefficients change. And when these coefficients change, the measurement of body temperature becomes inaccurate. Electronic thermometers often use batteries as a power source, and fluctuations in power supply voltage also cause measurement errors, and it is necessary to compensate for these sources of error.

この発明は、処理回路中の係数または定数の変
化および電源電圧の変動を自動的に補償する機能
をもつ電子式体温計を提供するものである。
The present invention provides an electronic thermometer that has the ability to automatically compensate for changes in coefficients or constants in the processing circuitry and variations in power supply voltage.

以下図面を参照してこの発明の実施例について
詳しく説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図において、処理すべき信号は体温測定抵
抗回路21と補償抵抗回路22から発生する。体
温測定抵抗回路21は固定抵抗31と、サーミス
タまたは測温抵抗体などの感温素子32とが直列
に接続されて構成されている。補償抵抗回路22
は3個の固定抵抗33,34,35が直列に接続
されて構成されている。両抵抗回路21,22に
はともに電源電圧Vが印加されている。抵抗回路
21の抵抗31と感温素子32との間の電圧を
Vxと、抵抗回路22の抵抗33,34間の電圧
および抵抗34,35間の電圧をそれぞれ補償上
下限電圧Vma,Vmiとする。抵抗回路22の抵抗
33〜35は、周囲温度の変化によるその抵抗値
の変化ができるだけ小さいものを選定することが
好ましい。
In FIG. 1, the signals to be processed originate from a body temperature measurement resistor circuit 21 and a compensation resistor circuit 22. The body temperature measuring resistance circuit 21 is configured by connecting a fixed resistor 31 and a temperature sensing element 32 such as a thermistor or a resistance temperature detector in series. Compensation resistance circuit 22
is composed of three fixed resistors 33, 34, and 35 connected in series. A power supply voltage V is applied to both resistance circuits 21 and 22. The voltage between the resistor 31 of the resistor circuit 21 and the temperature sensing element 32 is
Vx, the voltage between the resistors 33 and 34 of the resistance circuit 22, and the voltage between the resistors 34 and 35 are defined as compensation upper and lower limit voltages Vma and Vmi, respectively. It is preferable to select the resistors 33 to 35 of the resistor circuit 22 so that their resistance values change as little as possible due to changes in ambient temperature.

各抵抗回路21,22の出力電圧Vx,Vma,
Vmiは切換スイツチング回路23の入力端子S
1,S2,S3にそれぞれ送られる。このスイツ
チング回路23は中央処理装置(以下CPUとい
う)30によつて制御され、後述するように入力
端子をS2,S1,S3の順に切換える。CPU
としてはマイクロプロセツサが好ましい。スイツ
チング回路23の出力は増巾度Gの増巾回路24
でそれぞれ電圧GVx,GVma,GVmiに増巾され
て次段の測定回路25に送られる。
Output voltages Vx, Vma, of each resistance circuit 21, 22,
Vmi is the input terminal S of the switching circuit 23
1, S2, and S3, respectively. This switching circuit 23 is controlled by a central processing unit (hereinafter referred to as CPU) 30, and switches the input terminals in the order of S2, S1, and S3 as described later. CPU
A microprocessor is preferred. The output of the switching circuit 23 is an amplification circuit 24 with an amplification degree of G.
The voltages are amplified to voltages GVx, GVma, and GVmi, respectively, and sent to the next stage measurement circuit 25.

測定回路25はA―D変換回路であつて、基準
となる上下限電圧V2,V1を発生する基準抵抗
回路26、増巾回路24の出力(便宜上GVxで代
表する)と上下限電圧V2,V1を切換えるスイ
ツチング回路27、三角波発生回路28、および
スイツチング回路27と三角波発生回路28の出
力を比較する比較回路29から構成されている。
抵抗回路26もまた直列に接続された3個の固定
抵抗36,37,38から構成され、電源電圧V
が印加されている。抵抗36,37間および抵抗
37,38間の電圧が上下限電圧V2,V1であ
る。増巾回路24の出力GVxと上下限電圧V2,
V1はスイツチング回路27の入力端子S4,S
5,S6にそれぞれ送られる。スイツチング回路
27および三角波発生回路28はCPU30によ
つて制御され、スイツチング回路27は入力端子
をS6,S4,S5の順に切換える。比較回路2
9の出力はCPU30に入力する。第1図におい
てはスイツチング回路23,27は便宜上有接点
回路として図示されているが、もちろん無接点回
路が用いられることが好ましい。
The measurement circuit 25 is an A-D conversion circuit, and includes a reference resistor circuit 26 that generates reference upper and lower limit voltages V2 and V1, the output of the amplification circuit 24 (represented by GVx for convenience) and upper and lower limit voltages V2 and V1. It consists of a switching circuit 27 for switching, a triangular wave generating circuit 28, and a comparison circuit 29 for comparing the outputs of the switching circuit 27 and the triangular wave generating circuit 28.
The resistance circuit 26 is also composed of three fixed resistances 36, 37, and 38 connected in series, and is connected to the power supply voltage V.
is applied. The voltages between the resistors 36 and 37 and between the resistors 37 and 38 are upper and lower limit voltages V2 and V1. The output GVx of the amplifier circuit 24 and the upper and lower limit voltage V2,
V1 is the input terminal S4, S of the switching circuit 27
5 and S6, respectively. The switching circuit 27 and the triangular wave generation circuit 28 are controlled by the CPU 30, and the switching circuit 27 switches the input terminals in the order of S6, S4, and S5. Comparison circuit 2
The output of 9 is input to the CPU 30. In FIG. 1, the switching circuits 23 and 27 are shown as contact circuits for convenience, but it is of course preferable to use non-contact circuits.

測定回路25は次の原理により電圧GVxを測定
する。第2図を参照して、三角波の電圧が上下限
電圧V2,V1および電圧GVxと一致する点をそ
れぞれP2,P1,Pxとする。一致点P1から
Pxまでの時間をT0、点PxからP2までの時間
をT1とすると、次式が成立する。
The measurement circuit 25 measures the voltage GVx based on the following principle. Referring to FIG. 2, the points where the voltage of the triangular wave coincides with the upper and lower limit voltages V2 and V1 and the voltage GVx are respectively designated P2, P1 and Px. From matching point P1
When the time from point Px to Px is T0, and the time from point Px to P2 is T1, the following equation holds true.

GVx−V1/V2−V1=T0/T0+T1 …(1) これよりGVxを求めると GVx=T0/T0+T1(V2−V1)+V1 …(2) となる。電圧V1,V2はあらかじめ定められた
一定値であるから、時間T0,T1を測定するこ
とにより電圧GVxが求められる。
GVx-V1/V2-V1=T0/T0+T1...(1) Calculating GVx from this results in GVx=T0/T0+T1(V2-V1)+V1...(2). Since the voltages V1 and V2 are predetermined constant values, the voltage GVx can be found by measuring the times T0 and T1.

スイツチング回路27によつてまず端子S6が
選択されている。比較回路29は、スイツチング
回路27を経て入力する下限電圧V1と三角波発
生回路28の三角波出力電圧とを比較して一致す
ると(点P1)出力を発生する。CPU30はこ
の一致検出にもとづいて時間T0の計時を開始す
るとともに、スイツチング回路27に指令を送つ
て入力端子S4に切換える。したがつて比較回路
29には増巾回路24の出力電圧GVxが入力す
る。時間の経過とともに三角波出力が増大し、電
圧GVxと一致(点Px)すると再び比較回路29
から出力が発生する。CPU30はこの時点で時
間T0の計時を停止してその値を記憶するととも
に、今度は時間T1の計時を開始する。またスイ
ツチング回路27を入力端子S5に切換えるので
上限電圧V2が比較回路29に入力することにな
る。そして、電圧V2と三角波出力とが一致(点
P2)すると、比較回路29から一致出力が発生
し、CPU30は時間T1の計時を止め、この時
間T1の値を読取る。またスイツチング回路27
を端子S6に切換えておくとともに、三角波発生
回路28の出力を電圧V1以下に減少させる。
CPU30はこのようにして時間T0,T1を測
定し、第(2)式にもとづいて電圧GVxを算出する。
The switching circuit 27 first selects the terminal S6. The comparator circuit 29 compares the lower limit voltage V1 inputted through the switching circuit 27 with the triangular wave output voltage of the triangular wave generating circuit 28, and when they match (point P1), generates an output. Based on this coincidence detection, the CPU 30 starts counting the time T0 and sends a command to the switching circuit 27 to switch to the input terminal S4. Therefore, the output voltage GVx of the amplification circuit 24 is input to the comparison circuit 29. As time passes, the triangular wave output increases, and when it matches the voltage GVx (point Px), the comparison circuit 29
Output is generated from. At this point, the CPU 30 stops counting the time T0, stores the value, and then starts counting the time T1. Further, since the switching circuit 27 is switched to the input terminal S5, the upper limit voltage V2 is input to the comparator circuit 29. When the voltage V2 and the triangular wave output match (point P2), a matching output is generated from the comparator circuit 29, and the CPU 30 stops counting the time T1 and reads the value of this time T1. Also, the switching circuit 27
is switched to the terminal S6, and the output of the triangular wave generation circuit 28 is reduced to below the voltage V1.
The CPU 30 thus measures the times T0 and T1, and calculates the voltage GVx based on equation (2).

時間T0,T1の計時、比較回路29の出力に
もとづくスイツチング回路27および三角波発生
回路28の制御ならびに電圧GVxの算出は、
CPU30に限らず、クロツクパルス発生回路、
クロツクパルスを計数するカウンタ、タイミング
制御回路および演算回路によつても達成しうるこ
とは言うまでもない。
The timing of times T0 and T1, the control of the switching circuit 27 and the triangular wave generation circuit 28 based on the output of the comparison circuit 29, and the calculation of the voltage GVx are as follows:
Not limited to CPU30, clock pulse generation circuit,
It goes without saying that this can also be achieved by a counter that counts clock pulses, a timing control circuit, and an arithmetic circuit.

さて、抵抗回路22およびスイツチング回路2
3は、電源電圧の変動、および周囲温度の変化ま
たは経年変化による各種回路の係数または定数の
変化にもとづく測定誤差を補償するものである。
電圧GVmaは電圧V2よりも低くかつこれに非常
に近い値に、電圧GVmiは電圧V1よりも高くか
つこれに非常に近い値に設定されている。スイツ
チング回路23が端子S3を選択している場合に
は上述のようにして時間T0,T1が測定され、
GVxを求めるためにT0/(T0+T1)≡K0
(第2式参照)が算出される。同じようにしてス
イツチング回路23が端子S1を選択している場
合には、この場合の時間T0,T1に対応する時
間をそれぞれT0a,T1aとすればT0a/
(T0a+T1a)≡aが算出される。また、ス
イツチング回路23が端子S2を選択している場
合には、時間T0,T1に対応する時間をそれぞ
れT0i,T1iとしてT0i/(T0i+T1
i)≡bが算出される(いずれも第3図参照)。
Now, the resistance circuit 22 and the switching circuit 2
3 compensates for measurement errors due to fluctuations in power supply voltage and changes in coefficients or constants of various circuits due to changes in ambient temperature or changes over time.
The voltage GVma is set to a value lower than and very close to the voltage V2, and the voltage GVmi is set to a value higher than and very close to the voltage V1. When the switching circuit 23 selects the terminal S3, the times T0 and T1 are measured as described above,
To find GVx, T0/(T0+T1)≡K0
(see formula 2) is calculated. When the switching circuit 23 selects the terminal S1 in the same way, if the times corresponding to the times T0 and T1 in this case are respectively T0a and T1a, then T0a/
(T0a+T1a)≡a is calculated. Further, when the switching circuit 23 selects the terminal S2, the times corresponding to the times T0 and T1 are set as T0i and T1i, respectively, and T0i/(T0i+T1
i) ≡b is calculated (see Figure 3 for both).

増巾後の電圧GVx,GVma,GVmiは、上記の
K0,aおよびbを用いて、それぞれ次のように
表わされる。
The voltages GVx, GVma, and GVmi after the amplification are expressed as follows using the above K0, a, and b, respectively.

GVx=K0(V2−V1)+V1 …(3) GVma=a(V2−V1)+V1 …(4) GVmi=b(V2−V1)+V1 …(5) 電圧GVx,GVma,GVmiの測定は極めて近接し
た時間内に行なわれるので、その間のG,V2お
よびV1の変化は無視でき、これらを一定とする
ことができる。第(3)式から第(5)式のK0,aおよ
びbを用いて、 K1=K0−b/a−b …(6) で表わされる数値K1を求めると、 K1=GVx−GVmi/GVma−GVmi =Vx−Vmi/Vma−Vmi …(7) となる。これより Vx=K1(Vma−Vmi)+Vmi =K1・A+B …(8) ただし A=(Vma−Vmi) B=Vmi を得る。温度変化、電圧変化、経年変化等による
誤差は打ち消されるから、増巾回路24の増巾度
その他の定数および電源電圧に変動があつても、
補償抵抗回路22の各抵抗33〜35が変化しな
いかぎり第(8)式によつて算出される電圧Vxは常
に一定値となる。したがつて、処理回路中の係数
または定数の変化および電源電圧の変動に対して
測定値が自動的に補償される。
GVx=K0(V2-V1)+V1...(3) GVma=a(V2-V1)+V1...(4) GVmi=b(V2-V1)+V1...(5) Measurements of voltages GVx, GVma, and GVmi are extremely close. Since this is carried out within a certain period of time, changes in G, V2, and V1 during that time can be ignored and can be kept constant. Using K0, a and b in equations (3) to (5), we obtain the numerical value K1 expressed as K1=K0-b/a-b...(6), K1=GVx-GVmi/GVma -GVmi =Vx-Vmi/Vma-Vmi (7). From this, we obtain Vx=K1(Vma-Vmi)+Vmi=K1・A+B...(8) However, A=(Vma-Vmi) B=Vmi. Errors due to temperature changes, voltage changes, aging, etc. are canceled out, so even if there are fluctuations in the amplification degree of the amplification circuit 24, other constants, and power supply voltage,
As long as the resistances 33 to 35 of the compensation resistance circuit 22 do not change, the voltage Vx calculated by equation (8) will always be a constant value. The measured value is thus automatically compensated for changes in coefficients or constants in the processing circuit and for variations in the power supply voltage.

次に第4図を参照してこの電子式体温計の全体
的な動作について説明する。まずスイツチング回
路23によつて入力端子S2に切換え、電圧Vmi
をスイツチング回路23、増巾回路24を経て取
込み、電圧Vxの場合と同じようにして電圧GVmi
をデジタル量に変換して測定し、数値bを算出す
る(ステツプ(1))。そして、算出したbが負であ
るかどうかをみて(ステツプ(2))、負であれば電
圧GVmiがV1よりも小さいのであるから測定が
不可能であつてエラーを表示して(ステツプ
(14))、処理を終える。bが零または正であれば
この値bを記憶し、次にスイツチング回路23の
入力端子をS1に切換え、電圧Vmaを取込んで
同じように電圧GVmaを測定し数値aを算出する
(ステツプ(3))。そして、aが1を超えていればエ
ラー表示をして(ステツプ(14))、1以下であれ
ばaを記憶したのち、スイツチング回路23の入
力端子をS3に切換えて電圧GVxを測定してK0
を算出する(ステツプ(5))。数値a,bおよびK
0が求まると、第(6)式にもとづいてK1を算出し
(ステツプ(6))、続いて第(8)式により温度tを求め
る(ステツプ(7))。上述の上下限電圧Vmi,Vma
は所定の温度(たとえば32℃、42℃)に対応する
ようあらかじめ定められているから、第(8)式の電
圧により温度tが得られる。この電子式体温計に
は婦人測定用の切換スイツチ(図示略)が設けら
れている。通常体温計は0.1℃単位の精度で測定
できれば充分であるが婦人の場合にはさらに高精
度の測定が要求される場合が多い。上記切換スイ
ツチによつて婦人用に切換えられている場合に
は、0.05℃単位の最小目盛を選択し(ステツプ
(10))、婦人用でない場合には0.1℃単位の表示のた
めに測定値を四捨五入する(ステツプ(9))。そし
て、ステツプ(7)で算出した温度tが32℃を超え
(ステツプ(11))かつ42℃以下(ステツプ(12))であ
るかどうかをみて、この範囲内にあれば、ステツ
プ(9)または(10)で選択した単位で温度tを表示する
(ステツプ(13))。ステツプ(11)で温度tが32℃以
下の場合は低いという意味の表示をし(ステツプ
(15))、ステツプ(12)で温度tが42℃を超えている
場合には高い旨の表示をする(ステツプ(16))。
Next, the overall operation of this electronic thermometer will be explained with reference to FIG. First, the switching circuit 23 switches the input terminal S2 to the voltage Vmi.
is taken in through the switching circuit 23 and amplification circuit 24, and the voltage GVmi is obtained in the same way as the voltage Vx.
is converted into a digital quantity, measured, and the numerical value b is calculated (step (1)). Then, it is checked whether the calculated b is negative (step (2)). If it is negative, the voltage GVmi is smaller than V1, so measurement is impossible and an error is displayed (step (14)). )), finish processing. If b is zero or positive, store this value b, then switch the input terminal of the switching circuit 23 to S1, take in the voltage Vma, measure the voltage GVma in the same way, and calculate the numerical value a (step ( 3)). Then, if a exceeds 1, an error is displayed (step (14)), and if it is less than 1, a is memorized, and then the input terminal of the switching circuit 23 is switched to S3 and the voltage GVx is measured. K0
Calculate (step (5)). Numerical values a, b and K
When 0 is found, K1 is calculated based on equation (6) (step (6)), and then temperature t is found using equation (8) (step (7)). Above upper and lower limit voltages Vmi, Vma
is predetermined to correspond to a predetermined temperature (for example, 32° C., 42° C.), so the temperature t can be obtained from the voltage in equation (8). This electronic thermometer is provided with a changeover switch (not shown) for female measurement. Normally, it is sufficient for thermometers to measure with an accuracy of 0.1°C, but in the case of women, even higher precision is often required. If it has been changed to women's wear using the above switch, select the minimum scale in 0.05°C increments (step 1).
(10)), if the product is not for women's use, round the measured value to the nearest 0.1°C (step (9)). Then, check whether the temperature t calculated in step (7) is over 32°C (step (11)) and below 42°C (step (12)), and if it is within this range, proceed to step (9). Or display the temperature t in the unit selected in step (10) (step (13)). In step (11), if the temperature t is below 32℃, a message indicating that the temperature is low is displayed (step (15)), and in step (12), if the temperature t is over 42℃, a message indicating that the temperature is high is displayed. (Step (16)).

体温の測定において感温素子32の出力電圧
Vxは時間の経過とともに上昇していくから、上
記の測定を所定の周期で繰返えし測定した温度を
逐次表示する。体温測定中において処理回路の定
数または係数および電源電圧が大きく変化するこ
とはないから、ステツプ(1)〜(4)までの処理は測定
の初期にのみ行えばよく、ステツプ(5)〜(13)の
処理を繰返えす。そして、測定温度tが所要複数
回にわたつて同値となつたときにすべての測定処
理を終了するようにするとよい。
In measuring body temperature, the output voltage of the temperature sensing element 32
Since Vx increases with the passage of time, the above measurements are repeated at a predetermined period and the measured temperatures are displayed one after another. Since the constants or coefficients of the processing circuit and the power supply voltage do not change significantly during body temperature measurement, steps (1) to (4) only need to be performed at the beginning of the measurement, and steps (5) to (13) ) repeat the process. Then, it is preferable that all the measurement processing be completed when the measured temperature t becomes the same value a plurality of times.

以上のようにこの発明による電子式体温計は、
所定の電源電圧が印加され、温度の変化に応じて
出力電圧が変化する感温素子、温度変化による抵
抗値変化の少ない抵抗から構成され、かつ上記電
源電圧が印加されることにより所定の補償上、下
限電圧を発生する補償抵抗回路、上記感温素子の
出力電圧、上記補償上、下限電圧を順次選択する
ためのスイツチング回路、測定の基準となる上、
下限基準電圧の発生回路、ならびに上記スイツチ
ング回路の出力と上記上、下限基準電圧とを比較
することによつて上記上、下限基準電圧を用いて
表わされる上記感温素子の出力電圧および上記補
償上、下限電圧を求め、さらに上記感温素子の出
力電圧および上記補償上、下限電圧から上記上、
下限基準電圧を消去して、上記補償上、下限電圧
によつて表わされる上記感温素子の出力電圧を求
める測定手段を備えていることを特徴とする。
As described above, the electronic thermometer according to the present invention has
It consists of a temperature sensing element whose output voltage changes according to temperature changes when a predetermined power supply voltage is applied, and a resistor whose resistance value changes little due to temperature changes. , a compensation resistor circuit that generates a lower limit voltage, an output voltage of the temperature sensing element, a switching circuit that sequentially selects the compensation upper and lower limit voltages, and serves as a reference for measurement.
By comparing the output of the lower limit reference voltage generation circuit and the switching circuit with the upper and lower limit reference voltages, the output voltage of the temperature sensing element expressed using the upper and lower limit reference voltages and the compensation upper limit are determined. , find the lower limit voltage, and further calculate the output voltage of the temperature sensing element and the above compensation, and from the lower limit voltage, the above upper limit,
The present invention is characterized by comprising a measuring means for erasing the lower limit reference voltage and determining the output voltage of the temperature sensing element represented by the lower limit voltage for compensation.

この発明によると、上記感温素子の出力電圧お
よび上記補償抵抗回路の上記補償上、下限電圧を
上記スイツチング回路によつて比較的短時間の間
に切換えて上記上、下限基準電圧と順次比較し、
上記感温素子の出力電圧および上記補償上、下限
電圧を上記上、下限基準電圧を用いて表わされた
値として測定し、上記感温素子の出力電圧および
上記補償上、下限電圧から上記上、下限基準電圧
を消去し、上記感温素子の出力電圧を最終的に上
記補償上、下限電圧を用いて表わすようにしてお
り、上記補償上、下限電圧は温度変化にかかわら
ずほぼ一定に保たれているから、上記上、下限基
準電圧発生回路や増幅回路等の各種回路の係数、
定数等が温度によつて変化しても、常に正確な体
温測定が可能となる。また上記感温素子と上記補
償抵抗回路とに同じ電源電圧が印加されているこ
と、および上記の理由、すなわち上記感温素子の
出力電圧が最終的に上記補償上、下限電圧を用い
て表わされていることによつて、電源電圧の変動
に基づく測定誤差要因も除去することができる。
According to the present invention, the output voltage of the temperature sensing element and the compensation upper and lower limit voltages of the compensation resistor circuit are switched in a relatively short period of time by the switching circuit and are sequentially compared with the upper and lower limit reference voltages. ,
The output voltage of the temperature sensing element and the above compensation upper and lower limit voltages are measured as values expressed using the above upper and lower limit reference voltages. , the lower limit reference voltage is erased, and the output voltage of the temperature sensing element is finally expressed using the lower limit voltage for the above compensation, and for the above compensation, the lower limit voltage is kept almost constant regardless of temperature changes. Therefore, the coefficients of various circuits such as the above upper and lower limit reference voltage generation circuits and amplifier circuits,
Even if constants etc. change depending on temperature, accurate body temperature measurement is always possible. In addition, the same power supply voltage is applied to the temperature sensing element and the compensation resistance circuit, and for the above reason, that is, the output voltage of the temperature sensing element is ultimately expressed using the lower limit voltage for the compensation. By doing so, it is also possible to eliminate measurement error factors due to fluctuations in the power supply voltage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電子式体温計を示す電気回路図、第2
図は測定原理を示す波形図、第3図は補償上下限
電圧の測定を示す波形図、第4図は測定処理実行
手順を示すフロー・チヤートである。 21…体温測定抵抗回路、22…補償抵抗回
路、23…スイツチング回路、25…測定回路、
32…感温素子、V1,V2…上下限基準電圧、
Vma,Vmi…補償上下限電圧。
Figure 1 is an electrical circuit diagram showing an electronic thermometer, Figure 2
3 is a waveform diagram showing the measurement principle, FIG. 3 is a waveform diagram showing the measurement of the compensation upper and lower limit voltages, and FIG. 4 is a flow chart showing the procedure for executing the measurement process. 21... Body temperature measurement resistance circuit, 22... Compensation resistance circuit, 23... Switching circuit, 25... Measurement circuit,
32... Temperature sensing element, V1, V2... Upper and lower limit reference voltage,
Vma, Vmi…Compensation upper and lower limit voltages.

Claims (1)

【特許請求の範囲】 1 所定の電源電圧が印加され、温度の変化に応
じて出力電圧が変化する感温素子、 温度変化による抵抗値変動の少ない抵抗から構
成され、かつ上記電源電圧が印加されることによ
り所定の補償上、下限電圧を発生する補償抵抗回
路、 上記感温素子の出力電圧、上記補償上、下限電
圧を順次選択するためのスイツチング回路、 測定の基準となる上、下限基準電圧の発生回
路、ならびに 上記スイツチング回路の出力と上記上、下限基
準電圧とを比較することによつて上記上、下限基
準電圧を用いて表わされる上記感温素子の出力電
圧および上記補償上、下限電圧を求め、さらに上
記感温素子の出力電圧および上記補償上、下限電
圧から上記上、下限基準電圧を消去して、上記補
償上、下限電圧によつて表わされる上記感温素子
の出力電圧を求める測定手段、 を備えた電子式体温計。
[Claims] 1. A temperature sensing element to which a predetermined power supply voltage is applied and whose output voltage changes according to changes in temperature, and a resistor whose resistance value changes little due to temperature changes, and to which the above power supply voltage is applied. A compensation resistor circuit that generates a predetermined compensation upper and lower limit voltage by performing a predetermined compensation, a switching circuit that sequentially selects the output voltage of the temperature sensing element, the compensation upper and lower limit voltages, and upper and lower limit reference voltages that serve as measurement standards. By comparing the output of the generation circuit and the switching circuit with the upper and lower limit reference voltages, the output voltage of the temperature sensing element and the compensation upper and lower limit voltages are determined using the upper and lower limit reference voltages. Further, the output voltage of the temperature sensing element represented by the compensation lower limit voltage is determined by deleting the upper and lower limit reference voltages from the output voltage of the temperature sensing element and the compensation lower limit voltage. An electronic thermometer equipped with a measuring means.
JP7179680A 1980-05-28 1980-05-28 Electronic clinical thermometer Granted JPS56168130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7179680A JPS56168130A (en) 1980-05-28 1980-05-28 Electronic clinical thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7179680A JPS56168130A (en) 1980-05-28 1980-05-28 Electronic clinical thermometer

Publications (2)

Publication Number Publication Date
JPS56168130A JPS56168130A (en) 1981-12-24
JPS6224731B2 true JPS6224731B2 (en) 1987-05-29

Family

ID=13470876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7179680A Granted JPS56168130A (en) 1980-05-28 1980-05-28 Electronic clinical thermometer

Country Status (1)

Country Link
JP (1) JPS56168130A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6279127U (en) * 1985-11-06 1987-05-20

Also Published As

Publication number Publication date
JPS56168130A (en) 1981-12-24

Similar Documents

Publication Publication Date Title
US4210024A (en) Temperature measurement apparatus
US3688581A (en) Device for correcting the non-linear variation of a signal as a function of a measured magnitude
US4847794A (en) Error compensation method for transducers having non-linear characteristics, and an assembly for carrying out said method
JPH02136754A (en) Method and apparatus for measuring fine electrical signal
US4823087A (en) Salimeter
US4413917A (en) Resistance measuring system
JPS6224731B2 (en)
JPH03501915A (en) analog to digital converter
JPH102807A (en) Thermocouple measuring device
JPS6248280B2 (en)
JP3084579B2 (en) Temperature sensor linearization processing method
JPH11118617A (en) Temperature controller
SU1739211A1 (en) Temperature difference metering device
RU2025675C1 (en) Device for measuring temperature and temperature difference
JP2973048B2 (en) Temperature sensor linearization processing method
JP2013024808A (en) Measuring apparatus and measuring method
JPS62261968A (en) Measuring instrument for physical quantity
JPS609711Y2 (en) heat flow measuring device
JPS5819465Y2 (en) thermometer
SU968633A1 (en) Device for measuring temperature difference
JPH0814521B2 (en) Temperature compensation method for semiconductor pressure sensor
JPH048734B2 (en)
SU947783A1 (en) Device for measuring parameters and calibrating linear non-uniform materials
JPS5937710Y2 (en) temperature measuring device
SU1585782A1 (en) Apparatus for determining parameters of transfer function of linear dynamic object