JPS6224621B2 - - Google Patents

Info

Publication number
JPS6224621B2
JPS6224621B2 JP8874378A JP8874378A JPS6224621B2 JP S6224621 B2 JPS6224621 B2 JP S6224621B2 JP 8874378 A JP8874378 A JP 8874378A JP 8874378 A JP8874378 A JP 8874378A JP S6224621 B2 JPS6224621 B2 JP S6224621B2
Authority
JP
Japan
Prior art keywords
expansion chamber
cylinder
small
piston
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8874378A
Other languages
Japanese (ja)
Other versions
JPS5514979A (en
Inventor
Shintaro Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP8874378A priority Critical patent/JPS5514979A/en
Publication of JPS5514979A publication Critical patent/JPS5514979A/en
Publication of JPS6224621B2 publication Critical patent/JPS6224621B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/044Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines having at least two working members, e.g. pistons, delivering power output
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2244/00Machines having two pistons
    • F02G2244/50Double acting piston machines
    • F02G2244/52Double acting piston machines having interconnecting adjacent cylinders constituting a single system, e.g. "Rinia" engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 本発明は、吸熱効率を高めた熱力学往復機械に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermodynamic reciprocating machine with increased heat absorption efficiency.

従来のこの種の熱力学往復機械としては、第5
図に示す如く、膨張室3′、吸熱用熱交換器とし
ての連通部材60′、蓄熱器9′、クーラー1
0′、そして圧縮室5′とからなる作動ガス空間
が、隣接するピストン2′とある適当な位相差を
持つて往復作動することによつて熱ガス往復機械
の作動ガスサイクルを形成するものがある。この
ものでは、前記膨張室3′と圧縮室5′の中間にあ
る流体摩擦抵抗の大きな蓄熱器9′のために、膨
張室3′又は圧縮室5′のピストン2′によつて押
し出され又は引かれる作動ガスの多くが、蓄熱器
9′を流れずに、ピストン2′側の近くで往復して
いる状態を呈し、吸熱用熱交換器としての連通部
材60′を流れる作動ガスの流量が少なく、吸熱
用熱交換器としの連通部材60′の蓄熱器9′側と
膨張室3′側の作動ガス流量の大きさに可成りの
差が生じ、又配管の間でも僅かな形状などの違い
による流量の差が大きい。これは吸熱用熱交換器
としての連通部材60′の温度分布に影響を与
え、各配管の間の温度のバラツキ及び同じ配管の
位置によるバラツキを大きくする。従つて、吸熱
用熱交換器としての連通部材60′を流れる作動
ガスの流量が少なく温度分布が悪いことにより、
燃焼ガスと吸熱用熱交換器としての連通部材6
0′の作動ガスの平均温度差が大きくなつて吸熱
用熱交換器としての連通部材60′の効率が低下
し、又膨張室3′内の作動ガスの温度の低下と熱
伝達係数低下による吸熱用熱交換器としての連通
部材60′の容積の増大により作動ガスサイクル
の出力が低下して、熱ガス往復機械の出力と効率
の低下を引起すという不具合がある。
As a conventional thermodynamic reciprocating machine of this type, the fifth
As shown in the figure, an expansion chamber 3', a communication member 60' as an endothermic heat exchanger, a heat storage device 9', a cooler 1
0' and compression chamber 5' reciprocate with the adjacent piston 2' with a certain appropriate phase difference, thereby forming a working gas cycle of the hot gas reciprocating machine. be. In this case, due to the heat storage 9' having a large fluid frictional resistance located between the expansion chamber 3' and the compression chamber 5', the heat storage device 9' is pushed out by the piston 2' of the expansion chamber 3' or the compression chamber 5'. Most of the drawn working gas does not flow through the heat storage device 9', but reciprocates near the piston 2' side, and the flow rate of the working gas flowing through the communication member 60', which serves as an endothermic heat exchanger, decreases. However, there is a considerable difference in the working gas flow rate between the heat accumulator 9' side and the expansion chamber 3' side of the communication member 60', which functions as an endothermic heat exchanger, and there is also a slight difference in shape between the piping. There is a large difference in flow rate due to the difference. This affects the temperature distribution of the communication member 60' as an endothermic heat exchanger, and increases temperature variations between each pipe and variations depending on the position of the same pipe. Therefore, because the flow rate of the working gas flowing through the communication member 60' as an endothermic heat exchanger is small and the temperature distribution is poor,
Communication member 6 as a heat exchanger for combustion gas and endothermic absorption
The average temperature difference of the working gas at 0' increases, and the efficiency of the communication member 60' as a heat exchanger for heat absorption decreases, and the temperature of the working gas in the expansion chamber 3' decreases and the heat transfer coefficient decreases, causing heat absorption. The increase in the volume of the communication member 60' as a heat exchanger reduces the output of the working gas cycle, causing a reduction in the output and efficiency of the hot gas reciprocating machine.

つまり、前記吸熱用熱交換器としての連通部材
60′が前記膨張室3′と流体摩擦抵抗が大きい蓄
熱器9′との間に位置しているために、ピストン
2′によつて往復運動する作動ガスの流量が該吸
熱用熱交換器として連通部材60′内では少ない
ために生ずる吸収熱量の減少及び温度勾配の増大
によつて熱力学往復機械の出力及び効率の低下が
生じる。
In other words, since the communication member 60' serving as the endothermic heat exchanger is located between the expansion chamber 3' and the heat storage device 9' having a large fluid frictional resistance, it is reciprocated by the piston 2'. The reduced flow rate of the working gas in the endothermic heat exchanger communication member 60' results in a reduction in the amount of heat absorbed and an increase in the temperature gradient, resulting in a reduction in the power and efficiency of the thermodynamic reciprocating machine.

そこで本発明は、前記不具合を解消すると共に
より実用的な吸熱効率を高めた熱力学往復機械を
提供することをその目的とするものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a thermodynamic reciprocating machine that eliminates the above-mentioned problems and has improved heat absorption efficiency for practical use.

以下本発明の一実施例並びに他の変形実施例を
添付図面に基づいて説明する。先ず、第1図に基
づいて多気筒タイプの熱力学往復機械の一実施例
の構成から説明すると、1は断面が略T字型をし
たシリンダで、互いに連通するその大径シリンダ
1aと小径シリンダ1bとには、該T字型に適合
する大径部2aと小径部2bとを一体的に備えた
ピストン2が摺動可能に嵌挿されている。このピ
ストン2のロツド2cは、図示しない動力発生源
に連結されている。3は膨張室である大空間、4
は膨張室である小空間で、前記シリンダ1の大径
シリンダ1aをピストン2の大径部2aによつて
上下に二分割されることによつて形成される。5
は圧縮室で、前記シリンダ1の小径シリンダ1b
とピストン2の小径部2bによつて形成される。
6,7は前記膨張室である大空間3と膨張室であ
る小空間4とを連通せしめる連通部材で、強制的
な吸熱用熱交換器としての機能を有している。8
は前記連通部材6,7を加熱するためのバーナー
である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment and other modified embodiments of the present invention will be described below based on the accompanying drawings. First, the structure of an embodiment of a multi-cylinder type thermodynamic reciprocating machine will be explained based on FIG. A piston 2 integrally provided with a large diameter portion 2a and a small diameter portion 2b that fit into the T-shape is slidably inserted into the piston 1b. The rod 2c of the piston 2 is connected to a power generation source (not shown). 3 is a large space that is an expansion chamber, 4
is a small space which is an expansion chamber, and is formed by dividing the large diameter cylinder 1a of the cylinder 1 into upper and lower halves by the large diameter portion 2a of the piston 2. 5
is a compression chamber, and the small diameter cylinder 1b of the cylinder 1 is
and the small diameter portion 2b of the piston 2.
Reference numerals 6 and 7 are communication members that communicate the large space 3 that is the expansion chamber with the small space 4 that is the expansion chamber, and have a function as a heat exchanger for forced heat absorption. 8
is a burner for heating the communication members 6 and 7.

9は蓄熱器、10はクーラーで、該蓄熱器9は
前記膨張室である小空間4と連通部材11を介し
て連通し、また、該クーラー10は別の気筒の圧
縮室5に連通部材12を介して連通する構成とな
つている。以上のような基本的な構成が組合され
て、多気筒タイプの熱力学往復機構が構成され
る。
9 is a heat storage device, and 10 is a cooler. The heat storage device 9 communicates with the small space 4 which is the expansion chamber through a communication member 11, and the cooler 10 communicates with the compression chamber 5 of another cylinder through a communication member 12. It is configured to communicate via. A multi-cylinder type thermodynamic reciprocating mechanism is constructed by combining the above basic configurations.

また、第2図に基づいて多気筒タイプの熱力隔
往復機械の他の変形実施例の構成を、前述した一
実施例と相違する点を中心にして説明する。第1
図の連通部材11を廃し、連通部材6を途中で分
岐させて、その分岐連通部材6aを蓄熱器9に接
続させる。その他の点は全て前述した一実施例と
全く同一である。
Further, based on FIG. 2, the configuration of another modified embodiment of the multi-cylinder type thermodynamically spaced reciprocating machine will be explained, focusing on the differences from the above-mentioned embodiment. 1st
The communication member 11 shown in the figure is eliminated, the communication member 6 is branched in the middle, and the branch communication member 6a is connected to the heat storage device 9. All other points are exactly the same as the embodiment described above.

更に、第3図に基づいて多気筒タイプの熱力学
往復機械の更に他の変形実施例の構成を、前述し
た一実施例と相違する点を中心にして説明する。
第2図の連通部材6と11を廃し、膨張室である
大空間3と蓄熱器9とを別の連通部材60によつ
て接続させる。その他の点は全て前述した一実施
例と同じである。
Furthermore, based on FIG. 3, the configuration of yet another modified embodiment of the multi-cylinder type thermodynamic reciprocating machine will be described, focusing on the differences from the above-mentioned embodiment.
The communication members 6 and 11 in FIG. 2 are eliminated, and the large space 3, which is the expansion chamber, and the heat storage device 9 are connected by another communication member 60. All other points are the same as the embodiment described above.

そして、第4図に基づいて1気筒タイプの熱力
学往復機械の他の変形実施例の構成を、前述した
一実施例と相違する点を中心にして説明する。1
はシリンダで、大径シリンダ1aと小径シリンダ
1bとには、大径部2aと小径部2b、更には該
小径部2bとは分離された同じ径の小径部2′b
とを一体的に備えたピストン2が摺動可能に嵌挿
されている。このピストン2のロツド2cは、図
示しない動力発生源に連結されている。3は膨張
室である大空間、4は膨張室である小空間で、前
記シリンダ1の大径シリンダ1aをピストン2の
大径径部2aによつて上下に二分割されることに
よつて形成される。5は圧縮室で、前記シリンダ
1の大径シリンダ1aと小径シリンダ1bの境界
部で且つ前記ピストン2の小径部2b,2′b間
に形成される。6,7は前記膨張室である大空間
3と膨張室である小空間4とを連通せしめる連通
部材で、強制的な吸熱用熱交換器としての機能を
有している。8は前記連通部材6,7を加熱する
ためのバーナである。
Next, the configuration of another modified embodiment of the one-cylinder type thermodynamic reciprocating machine will be explained based on FIG. 4, focusing on the differences from the above-mentioned embodiment. 1
is a cylinder, and the large-diameter cylinder 1a and the small-diameter cylinder 1b include a large-diameter portion 2a and a small-diameter portion 2b, and a small-diameter portion 2'b of the same diameter separated from the small-diameter portion 2b.
A piston 2 integrally provided with is slidably inserted. The rod 2c of the piston 2 is connected to a power generation source (not shown). 3 is a large space that is an expansion chamber, and 4 is a small space that is an expansion chamber, which is formed by dividing the large diameter cylinder 1a of the cylinder 1 into two vertically by the large diameter portion 2a of the piston 2. be done. A compression chamber 5 is formed at the boundary between the large diameter cylinder 1a and the small diameter cylinder 1b of the cylinder 1 and between the small diameter portions 2b and 2'b of the piston 2. Reference numerals 6 and 7 are communication members that communicate the large space 3, which is the expansion chamber, and the small space 4, which is the expansion chamber, and have a function as a heat exchanger for forced heat absorption. 8 is a burner for heating the communication members 6 and 7.

9は蓄熱器、10はクーラーで、共に前記シリ
ンダ1の大径シリンダ1a内に固着され、これら
の内部に前記ピストン2の小径部2bが摺動可能
に嵌挿されている。また、前記蓄熱器9とクーラ
ー10とは、直接前記膨張室である小空間4と圧
縮室5とに連通する構成となつている。
9 is a heat storage device, and 10 is a cooler, both of which are fixed in the large diameter cylinder 1a of the cylinder 1, into which the small diameter portion 2b of the piston 2 is slidably inserted. Further, the heat storage device 9 and the cooler 10 are configured to directly communicate with the small space 4, which is the expansion chamber, and the compression chamber 5.

以上の如き構成において、第1図に示した本発
明の一実施例のものでは、ピストン2の大径部2
aが下死点から上死点に移動すると、膨張室であ
る大空間3に入つている作動ガスは、吸熱用熱交
換器としての機能を有する連通部材6,7を通つ
て膨張室である小空間4に入り、残りのガスは、
連通部材11を通つて蓄熱器9に送られ、次にピ
ストン2が上死点から下死点に移動すると、前記
小空間4の作動ガスが連通部材6,7を通つて前
記大空間3に入り、蓄熱器9からも連通部材11
を通つて大空間3に入つて1サイクルを完了す
る。この1サイクルにおいて、蓄熱器9の目詰ま
り状態の如何にかかわらず、小空間4と大空間3
との間を往来する作動ガスは、連通部材6内で滞
留せず常に流動することになる。このため、連通
部材6内の作動ガスの流動分布のバラツキが生ぜ
ず、作動ガスの温度が、各々の配管の間で、ある
いは、同じ配管の異なる位置について、均一化さ
れる。従つて、燃焼ガスの温度が有効に膨張室た
る大空間3及び小空間4側に伝えられ、スターリ
ング機関の効率の低下は生じない。このようにし
て、前記ピストン2は、上下往復運動を効率的に
おこない、ロツド2cから図示しない動力発生源
を作動させる。
In the above configuration, in the embodiment of the present invention shown in FIG.
When a moves from the bottom dead center to the top dead center, the working gas entering the large space 3, which is the expansion chamber, passes through the communication members 6 and 7, which function as an endothermic heat exchanger, to the expansion chamber. Enters the small space 4, and the remaining gas is
The working gas in the small space 4 passes through the communication members 6 and 7 to the large space 3 when the piston 2 moves from the top dead center to the bottom dead center. from the heat storage device 9 to the communication member 11
It enters large space 3 through it and completes one cycle. In this one cycle, regardless of the clogging state of the heat storage device 9, the small space 4 and the large space 3
The working gas flowing back and forth between the two does not stay in the communication member 6 but always flows. Therefore, variations in the flow distribution of the working gas within the communication member 6 do not occur, and the temperature of the working gas is made uniform between each piping or at different positions of the same piping. Therefore, the temperature of the combustion gas is effectively transmitted to the large space 3 and small space 4, which are expansion chambers, and the efficiency of the Stirling engine does not decrease. In this way, the piston 2 efficiently performs vertical and reciprocating motion, and operates a power generation source (not shown) from the rod 2c.

また、第2図、第3図、そして第4図に示した
本発明の夫々の他の変形実施例の場合も前述と同
様の作動をする。
Further, the other modified embodiments of the present invention shown in FIGS. 2, 3, and 4 operate in the same manner as described above.

以上の如く本発明によれば、作動ガスがピスト
ンの大径部により強制的に吸熱用熱交換器として
の機能を有する連通部材を通つて膨張室である大
空間と小空間の間を往復させられることにより、
蓄熱器の流体摩擦抵抗とは無関係に、多量の作動
ガスが前記連通部材を流れることから、流量分布
も一様になつて、ヒータの効率及び作動ガスサイ
クルの出力が上がり、熱ガス往復機械の効率と出
力が増加する。
As described above, according to the present invention, the working gas is forced by the large diameter portion of the piston to reciprocate between the large space, which is the expansion chamber, and the small space, through the communication member that functions as an endothermic heat exchanger. By being
Since a large amount of working gas flows through the communication member, regardless of the fluid friction resistance of the heat storage, the flow distribution becomes uniform, increasing the efficiency of the heater and the output of the working gas cycle, and improving the efficiency of the hot gas reciprocating machine. Efficiency and output increase.

尚、本説明は、熱ガス往復機械の実施例をいく
つか示したが、同じ熱力学サイクルを行なう冷凍
機に対しても容易に適用し得ることは説明するま
でもなく明らかであろう。
Although this description has shown some embodiments of hot gas reciprocating machines, it is obvious that it can be easily applied to refrigerators that perform the same thermodynamic cycle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明吸熱効率を高めた熱ガス往復機
械の一実施例を示す一部縦断面図、第2図は本発
明の変形実施例を示す縦断面図、第3図は本発明
の更に他の変形実施例を示す縦断面図、第4図は
本発明の更に他の変形実施例を示す一部縦断面
図、そして第5図は従来の多気筒熱ガス往復機械
の一部縦断面図である。 1…シリンダ、1a…大径シリンダ、2…ピス
トン、2a…大径部、3…大空間、4…小空間、
6,7…連通部材。
Fig. 1 is a partial vertical sectional view showing an embodiment of the hot gas reciprocating machine with improved heat absorption efficiency of the present invention, Fig. 2 is a longitudinal sectional view showing a modified embodiment of the invention, and Fig. 3 is a longitudinal sectional view showing an embodiment of the hot gas reciprocating machine of the present invention. FIG. 4 is a partial vertical cross-sectional view showing still another modified embodiment of the present invention, and FIG. 5 is a partial vertical cross-sectional view of a conventional multi-cylinder hot gas reciprocating machine. It is a front view. DESCRIPTION OF SYMBOLS 1...Cylinder, 1a...Large diameter cylinder, 2...Piston, 2a...Large diameter part, 3...Large space, 4...Small space,
6, 7...Communication member.

Claims (1)

【特許請求の範囲】[Claims] 1 シリンダの大径部および小径部にピストンの
大径部および小径部を夫々摺動可能に嵌挿せしめ
て前記シリンダの大径部内ならびに小径部内に、
夫夫膨張室大空間および膨張室小空間ならびに圧
縮室を画成し、前記膨張室大空間と前記膨張室小
空間とを吸熱用熱交換器の機能を備えた連通部材
によつて連通せしめると共に、前記膨張室小空間
と前記シリンダと隣り合うシリンダの圧縮室とを
蓄熱器およびクーラーを介して連結してなる、吸
熱効率を高めた熱力学往復機械。
1. The large diameter part and the small diameter part of the piston are slidably inserted into the large diameter part and the small diameter part of the cylinder, respectively, into the large diameter part and the small diameter part of the cylinder,
A large expansion chamber space, a small expansion chamber space, and a compression chamber are defined, and the large expansion chamber space and the small expansion chamber space are communicated with each other by a communication member having a function of an endothermic heat exchanger. , a thermodynamic reciprocating machine with improved heat absorption efficiency, in which the expansion chamber small space and the compression chamber of the cylinder adjacent to the cylinder are connected via a heat storage device and a cooler.
JP8874378A 1978-07-20 1978-07-20 Thermodynamic reciprocator with high heat efficiency Granted JPS5514979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8874378A JPS5514979A (en) 1978-07-20 1978-07-20 Thermodynamic reciprocator with high heat efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8874378A JPS5514979A (en) 1978-07-20 1978-07-20 Thermodynamic reciprocator with high heat efficiency

Publications (2)

Publication Number Publication Date
JPS5514979A JPS5514979A (en) 1980-02-01
JPS6224621B2 true JPS6224621B2 (en) 1987-05-29

Family

ID=13951387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8874378A Granted JPS5514979A (en) 1978-07-20 1978-07-20 Thermodynamic reciprocator with high heat efficiency

Country Status (1)

Country Link
JP (1) JPS5514979A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR900001875B1 (en) * 1985-02-20 1990-03-26 미쓰비시전기주식회사 Air-conditioner
KR900006505B1 (en) * 1985-08-22 1990-09-03 미쓰비시전기 주식회사 Air-conditioner
US7171811B1 (en) * 2005-09-15 2007-02-06 Global Cooling Bv Multiple-cylinder, free-piston, alpha configured stirling engines and heat pumps with stepped pistons

Also Published As

Publication number Publication date
JPS5514979A (en) 1980-02-01

Similar Documents

Publication Publication Date Title
CA1063360A (en) Stirling cycle type engine and method of operation
DE3662071D1 (en) Stirling machine
US4622813A (en) Stirling cycle engine and heat pump
JPS6224621B2 (en)
EP0162868B1 (en) Stirling cycle engine and heat pump
US7114334B2 (en) Impingement heat exchanger for stirling cycle machines
JPS5825556A (en) Starring engine with bayonet heater
JPH0614865U (en) Heat compression heat pump
JPH03164558A (en) Stirling engine
EP0174504B1 (en) Stirling engine and stirling engine heater
TWI690653B (en) Regenerative displacer for use in a stirling engine
JP2603683B2 (en) Hot side heat exchanger of Stirling cycle engine
JPS62168956A (en) Heat engine by means of external heating
JP3043153B2 (en) Hot gas engine
JPH0219858U (en)
JPS5963347A (en) High temperature heat exchanger for stering engine
JPS59200044A (en) Stirling engine
JP2542637B2 (en) Stirling engine
JP3695814B2 (en) Free-piston Virmier cycle engine
JPS63277845A (en) Stirling engine
JPH05157388A (en) Hot gas engine
JPH0678740B2 (en) Stirling engine
JPS6313021B2 (en)
JPH0631692B2 (en) Heat exchanger
RU2045674C1 (en) Stirling engine