JPS62242676A - Glycidyl ether-type polyepoxy compound and production thereof - Google Patents

Glycidyl ether-type polyepoxy compound and production thereof

Info

Publication number
JPS62242676A
JPS62242676A JP8615986A JP8615986A JPS62242676A JP S62242676 A JPS62242676 A JP S62242676A JP 8615986 A JP8615986 A JP 8615986A JP 8615986 A JP8615986 A JP 8615986A JP S62242676 A JPS62242676 A JP S62242676A
Authority
JP
Japan
Prior art keywords
compound
average
epoxy
parts
naphthol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8615986A
Other languages
Japanese (ja)
Other versions
JPH0545607B2 (en
Inventor
Shigeyoshi Hara
原 重義
Hiroo Inada
稲田 博夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8615986A priority Critical patent/JPS62242676A/en
Publication of JPS62242676A publication Critical patent/JPS62242676A/en
Publication of JPH0545607B2 publication Critical patent/JPH0545607B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Epoxy Compounds (AREA)
  • Epoxy Resins (AREA)

Abstract

NEW MATERIAL:An essentially soluble/meltable glycidyl ether-type polyepoxy compound of formula (X and Y are Cl, Br or CH3; R1 is 1-10C hydrocarbon group; R is mono or dicarbonyl compound residue having an average carbon number of 1-10 and average valence of 2-4; m is 0-2 on an average; m' is 0-1 on an average; n is 1-5 on an average; p is 1-2 on an average; q is 0-8 on an average; = and ... are present or absent atomic valence). USE:A raw material for a curable resin having excellent heat-resistance and low hygroscopicity, easily processable to a flame-retardant composition and suitable for materials for advanced technology, etc. PREPARATION:The compound of formula can be produced by reacting one of (A) a polynaphthol compound and (B) dihydric naphthol with (C) a bisphenol diglycidyl ether-type epoxy compound. The molar ratio of the epoxy groups in the compound C to the phenolic hydroxyl groups in the compound A or B is selected so as to give a soluble or meltable product by the addition reaction.

Description

【発明の詳細な説明】 本発明は、耐熱性に優れ、吸湿性が低く、かつ容易に難
燃化しうる硬化物を与える新規エポキシ樹脂用化合物及
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel epoxy resin compound that provides a cured product that has excellent heat resistance, low hygroscopicity, and can be easily made flame retardant, and a method for producing the same.

エポキシ樹脂は各種U材との優れた接着性を有し、また
広範な硬化剤の使用が可能であり、硬化剤の選択により
広範な硬化特性が得られる事、更には一般に耐化学薬品
性が優れている事等の特徴のため、塗料、接着剤、封止
剤、複合材料用マトリックス樹脂等広範な用途に用いら
れてきている。
Epoxy resins have excellent adhesion with various U materials, and can be used with a wide range of curing agents. Depending on the selection of curing agents, a wide range of curing properties can be obtained, and they generally have good chemical resistance. Due to its excellent characteristics, it has been used in a wide range of applications such as paints, adhesives, sealants, and matrix resins for composite materials.

特に先端技術材料用として、炭素繊維、アラミド繊維等
を強化材として用いる先進複合材用マトリックス樹脂と
して、またガラス織布を強化材として用いるプリント基
板用マトリックス樹脂として、更にIC,LSI等の半
導体素子用封止材等の用途に急速に需要が拡大している
Especially for advanced technology materials, as a matrix resin for advanced composite materials using carbon fiber, aramid fiber, etc. as a reinforcing material, as a matrix resin for printed circuit boards using glass woven fabric as a reinforcing material, and also for semiconductor devices such as ICs and LSIs. Demand is rapidly expanding for applications such as encapsulating materials.

かかるエポキシ樹脂において、ビスフェノール八とエビ
クロルヒドリンとの反応によって得られるビスフェノー
ルへ一グリシジルエーテル系のエポー1゛シ樹脂は、安
価な原料からバランスのとれた性質を右するエポキシ樹
脂が得られる事、しがも両省の反応比を調節することに
よって液状から高分子機の樹脂まで広範なビスエポキシ
化合物が得られるために最大の生産用を誇り、非常に広
い範囲に用いられている。
Among such epoxy resins, bisphenol-glycidyl ether-based epoxy resin obtained by the reaction of bisphenol-8 and shrimp chlorohydrin is an epoxy resin with well-balanced properties that can be obtained from inexpensive raw materials. However, by adjusting the reaction ratio of both substances, a wide range of bis-epoxy compounds can be obtained, from liquids to polymeric resins, so it boasts the largest production capacity and is used in a very wide range of applications.

しかしながらかかるエポキシ化合物は、耐熱性や耐湿性
の面で充分な性能を有しているとはいえず、そのため該
ビスエポキシ化合物以外の各種エポキシ樹脂が開発され
できている。しかしながら、かかるエポキシ樹脂は各々
エビクロルヒドリン等との反応を行って製造される事に
なるとどうしても高価になってしまい、用途が限定され
てしまうという欠点を有していた。
However, such epoxy compounds cannot be said to have sufficient performance in terms of heat resistance and moisture resistance, and therefore various epoxy resins other than the bis-epoxy compounds have been developed. However, each of these epoxy resins has the drawback of being expensive and having limited applications if they are manufactured by reacting with shrimp chlorohydrin or the like.

そこで本発明者等は、比較的分子足の高い固体状のビス
フェノールA−グリシジルエーテル系の樹脂を液状のビ
スフェノールA−ジグリシジルエーテルとビスフエノー
ルAとの熔融反応で得ている事に着目し、ビスフェノー
ルAの代りに、より高い耐熱性、耐湿性を与えうるポリ
フェノール性ヒトOキシ化合物を選べばその面で改良さ
れたポリ大ボキシ化合物が得られる可能性があると考え
、ベンゼン核の代りにナフタレン核を導入することによ
り主として形成されるポリヒドリックナフトール系化合
物を用いる事を試みた所、改良された硬化樹脂を与えう
るポリエポキシ化合物が得られる事を見出し得て本発明
に到達したものである。
Therefore, the present inventors focused on the fact that a solid bisphenol A-glycidyl ether resin with a relatively high molecular weight is obtained by a melt reaction between liquid bisphenol A-diglycidyl ether and bisphenol A. We believe that if we choose a polyphenolic human oxygen compound that can provide higher heat resistance and moisture resistance in place of bisphenol A, we may be able to obtain a poly-large box compound that is improved in that respect, The present invention was achieved by attempting to use a polyhydric naphthol compound mainly formed by introducing a naphthalene nucleus and finding that a polyepoxy compound capable of providing an improved cured resin could be obtained. It is.

即ち本発明は、 1、 下記構造式(I) [但し、式中X、YはCI、 Br、 −04gから選
ばれる少くとも1種を表わし、R1は炭素原子数1〜1
0の炭化水素基の少くとも1種を表わし、Rは平均炭素
原子数1〜10の平均2〜4価のジカルボニル化合物残
塁を表わし、■は平均O〜29m′は平均O〜1.nは
平均1〜5.pは平均1〜2.0は平均0〜8であり、
−及び−は存在又は非存在の原子価を表わす。] より主としてなる実質的に可溶及び/又は可融性のグリ
シジルエーテル型ポリエポキシ化合物及び 2、 下記(A)及び(B) (A)モノ及び/又はジヒドリックナフトールとモノ及
び/又はジカルボニル化合物との酸触媒存在下の縮合反
応によって得られたポリナフトール化合物。
That is, the present invention has the following features: 1. The following structural formula (I) [wherein X and Y represent at least one selected from CI, Br, -04g, and R1 has 1 to 1 carbon atoms.
0 represents at least one type of hydrocarbon group, R represents an average dicarbonyl compound residue having an average number of carbon atoms of 1 to 10, and ■ represents an average of O to 29 m' represents an average of O to 1. n is 1 to 5 on average. p is an average of 1 to 2.0, and an average of 0 to 8;
- and - represent valence of presence or absence. ] Substantially soluble and/or fusible glycidyl ether type polyepoxy compound consisting mainly of 2, the following (A) and (B) (A) mono- and/or dihydric naphthol and mono- and/or dicarbonyl A polynaphthol compound obtained by a condensation reaction with a compound in the presence of an acid catalyst.

(B)ジヒドリックナフトール かうなる群から選ばれた少くとも1種の化合物と、(C
)置換又は非置換ビスフェノールのジグリシジルエーテ
ル型エポキシ化合物とを、好ましくはプロトン受容体の
存在下、<C>中のエポキシ基の含有モル数が(A)及
び(B)中のフェノール性水1’i!基の含有モル数に
比して付加反応後において可溶性及び/又は可融性を維
持できる以上のモル比となる割合で反応せしめる事を特
徴とするグリシジルエーテル型ポリエポキシ化合物の製
造法である。
(B) at least one compound selected from the group consisting of dihydric naphthol, and (C
) A diglycidyl ether type epoxy compound of substituted or unsubstituted bisphenol, preferably in the presence of a proton acceptor, in which the number of moles of epoxy groups in <C> is 1 of the phenolic water in (A) and (B). 'i! This is a method for producing a glycidyl ether type polyepoxy compound, which is characterized in that the reaction is carried out at a molar ratio greater than the number of moles of groups that can maintain solubility and/or fusibility after the addition reaction.

本発明のポリエポキシ化合物を得るのに用いられる置換
又は非置換ビスフェノールのジグリシジルエーテル型エ
ポキシ化合物(C)は下記一般式にて表わす事が出来る
The diglycidyl ether type epoxy compound (C) of substituted or unsubstituted bisphenol used to obtain the polyepoxy compound of the present invention can be represented by the following general formula.

ここでR1は炭素数1〜10の炭化水素の少なくとも一
種を表わすが、一般にはモノカルボニル化合物残基とし
て導入される場合が多いが、それ以外の導入方法もある
。好ましい例として−012−タジエニレン基)等をあ
げる事が出来るが、最後のものはカルボニル115基ぐ
はなく導入された例である。特に好ましい例としては、
メチレン基(ビスフェノールFに対応)とイソプロピリ
デン基(ビスフェノール八に対応)をあげる事が出来る
が、エポキシ化合物としての入手し°やすさからいえば
、就中イソプロピリデン基がさらに好ましい事になる。
Here, R1 represents at least one type of hydrocarbon having 1 to 10 carbon atoms, and is generally introduced as a monocarbonyl compound residue in many cases, but there are other methods of introduction. Preferred examples include -012-tadienylene group), and the last one is an example in which carbonyl 115 groups are completely introduced. A particularly preferable example is
Examples include a methylene group (corresponding to bisphenol F) and an isopropylidene group (corresponding to bisphenol VIII), but the isopropylidene group is particularly preferred from the viewpoint of easy availability as an epoxy compound.

n+は平均値として表わされ、0〜4のものが用いられ
るが、n、が大きくなると、本発明のポリエポキシ化合
物の分子門が大きくなり、エポキシ当はも大きくなり過
ぎて、好適な用途が狭くbる所から+1+は小さい方が
好ましく、m=2の範囲が好適に用いられるが、特にO
に近いものが好ましい。
n+ is expressed as an average value, and a value of 0 to 4 is used, but as n becomes larger, the molecular weight of the polyepoxy compound of the present invention becomes larger, and the epoxy compound also becomes too large, making it difficult to use for suitable applications. +1+ is preferably smaller since b is narrower, and the range of m=2 is preferably used, but especially when O
It is preferable that it be close to .

Xはビスフェノールの置換基として導入されるもので、
Cj、Sr及び−〇)+3があげられるが、3rが得ら
れるエポキシ化合物に高度な難燃性を与えるため最も好
ましい。
X is introduced as a substituent of bisphenol,
Examples include Cj, Sr and -〇)+3, with 3r being the most preferred since it imparts a high degree of flame retardancy to the resulting epoxy compound.

mも全体の平均として表わした場合最大で2までであり
特に、テトラブロモビスフェノール八からのジグリシジ
ルエーテルのみ用いた場合が、m=2に対応し、該化合
物とビスフェノール八からのジグリシジルエーテルとを
要求される難燃性に、合わけて適宜混合してmの平均値
を0<m<2の範囲になるようにして用いる事が多い。
m is also up to 2 when expressed as the overall average, and in particular, when only the diglycidyl ether from tetrabromobisphenol 8 is used, m = 2, and the combination of this compound and the diglycidyl ether from bisphenol 8 is In order to meet the flame retardancy required, these are often mixed appropriately so that the average value of m falls within the range of 0<m<2.

以上の説明によって明らかな如く本発明で用いられるエ
ポキシ化合物として最も好適な化合物として、 ビスフェノールAジグリシジルエーテル(m=0に対応
)(Jla CH3 及び3.り、3’ 、5’−テトラブロモビスフェノー
ルAジグリシジルニーデル3r   CH3Br をあげる事が出来る。
As is clear from the above explanation, the most suitable compound as the epoxy compound used in the present invention is bisphenol A diglycidyl ether (corresponding to m=0) (Jla CH3 and 3'-tetrabromobisphenol). A diglycidyl needle 3r CH3Br can be given.

一方、本発明のポリエポキシ化合物をqるのに用いられ
るもう一方の成分であるポリヒドリックナフトール系化
合物としては下記一般式(Δ−B)で表わされる。
On the other hand, the polyhydric naphthol compound, which is the other component used to prepare the polyepoxy compound of the present invention, is represented by the following general formula (Δ-B).

[但し、式中、YはC1,Br、−C)+3の少なくと
61種m′は平均0〜1.pは平均1〜2.Qは平均0
〜8.=及び−−−は存在又は非存在の原子価を表ねり
。] かかるポリヒドリックナフトール系化合物としては(A
>モノ及びジヒドリックナフトールをあげる事が出来る
[However, in the formula, Y is C1, Br, -C)+3 at least 61 types m' have an average of 0 to 1. p is 1 to 2 on average. Q has an average of 0
~8. = and --- represent presence or absence of valence. ] Such polyhydric naphthol compounds include (A
> Mono and dihydric naphthol can be listed.

ジヒドリックナフトール(B)としては、1.5− 、
 1.6− 、 2.7−又は2.6−シヒドロキシナ
フトール及びそのブロム化物やメチル置換体をあげる事
が出来る。
As dihydric naphthol (B), 1.5-,
Examples include 1,6-, 2,7- or 2,6-hydroxynaphthol and its brominated products and methyl substituted products.

ポリナフトール化合室(A>の製造に用いられるモノ及
びジヒドリックナフトールとしては、α−及びβ−ナフ
トール、2.7−又は2.6−シヒドロキシナフトール
及びそのブロム化物やメチル置換体をあげる事が出来る
。本発明の目的に用いるにはα−ナフトール、β−ナフ
トールが好ましく特にα−ナフトールが好ましい。
Mono- and dihydric naphthols used in the production of polynaphthol compound (A>) include α- and β-naphthol, 2,7- or 2,6-hydroxynaphthol, and their brominated and methyl-substituted products. For use in the purpose of the present invention, α-naphthol and β-naphthol are preferred, and α-naphthol is particularly preferred.

一方、モノ及びジカルボニル化合物としては、ホルムア
ルデヒド、アセトアルデヒド、アセトンシクロヘキサノ
ン、シクロペンタノン、ベンツアルデヒド、p−ヒドロ
キシベンツアルデヒド、グリAキザール、グルタルアル
デヒド、テレフタルアルデヒド、イソフタルアルデヒド
等をあげる事が出来る。本発明の目的に用いるにはホル
ムアルデヒド、アセトン、グルタルアルデヒド等が好ま
しく、特にホルムアルデヒドが好ましい。
On the other hand, examples of mono- and dicarbonyl compounds include formaldehyde, acetaldehyde, acetone cyclohexanone, cyclopentanone, benzaldehyde, p-hydroxybenzaldehyde, glyAxal, glutaraldehyde, terephthalaldehyde, isophthalaldehyde, and the like. For the purpose of the present invention, formaldehyde, acetone, glutaraldehyde and the like are preferred, with formaldehyde being particularly preferred.

従って、本発明に用いるポリナフトール化合物(A)と
してはα−ナフトールノボラック或はそのブロム化物、
β−ナフトール・ホルムアルデヒド縮合二量体が最も好
ましい。
Therefore, the polynaphthol compound (A) used in the present invention is α-naphthol novolak or its brominated product,
Most preferred is the β-naphthol formaldehyde condensed dimer.

かくして、ビスフェノール、ジグリシジルニーデル便エ
ポキシ化合物(C)とポリヒドリックナフトール系化合
物(A−8)との反応によって得られる本発明のエポキ
シ化合物(D)は理想的に反応がいったと考えると下記
式で表される事にな、  る。
Thus, considering that the reaction of the epoxy compound (D) of the present invention obtained by the reaction of the bisphenol, diglycidyl needle epoxy compound (C) and the polyhydric naphthol compound (A-8) was ideal. It is expressed by the following formula.

[但し、式中の各記号については前記定義の通りである
。1 勿論、実際の反応生成物は、上記式の如く表わされるも
のだけでなく、未反応のナフトール性のOHが一部残存
している。(エポキシ当mの測定によれば、10〜50
当m%のナノトール性OHが残存していると考えられる
場合が多い。)さらに、ビスフェノールグリシジルエー
テル型エポキシ化合物(C)の片方のみではなく、両方
がナフトール性OH基と反応してブリッジとして反応物
内にはいっている場合、両方とも未反応で反応混合物内
に残存する場合もあるし、グリセロールニーデル結合中
の第2級アルコールとエポキシ基との反応による分岐が
生じている場合もある事が考えられる。
[However, each symbol in the formula is as defined above. 1. Of course, the actual reaction product is not only that represented by the above formula, but also contains a portion of unreacted naphtholic OH. (According to the measurement of epoxy m, 10 to 50
It is often considered that 1 m% of nanotol OH remains. ) Furthermore, if not only one but both of the bisphenol glycidyl ether type epoxy compounds (C) react with the naphtholic OH group and enter the reaction mixture as a bridge, both remain unreacted in the reaction mixture. In some cases, branching may occur due to a reaction between the secondary alcohol and the epoxy group in the glycerol needle bond.

かかる不完全な構造を有する反応生成物も本発明による
エポキシ化合物に包含されるものである。
Reaction products having such incomplete structures are also included in the epoxy compounds according to the present invention.

本発明によるエポキシ化合物を得るためのビスフェノー
ルジグリシジルエーテル型エポキシ化合物(C)とポリ
ヒドリックナフトール系化合物(A−8)との反応は原
理的には溶媒中で、エポキシ成分が出来るだけ過剰の状
態で反応し、かつ反応後、分別沈澱等によって目的生成
物に近いものを選択的に取り出すのが理想的であるが、
実用的には両者を熔融状態で反応せしめそれをそのまま
本発明の目的とするエポキシ樹脂成分として使用するの
が最も安価で簡単であり、その見地からこの方法が好ま
しい事になる。当然、当該技術者の慣用手段として両者
の中部的な方法を工夫して用いる事が出来る。
In principle, the reaction between the bisphenol diglycidyl ether type epoxy compound (C) and the polyhydric naphthol type compound (A-8) to obtain the epoxy compound according to the present invention is carried out in a solvent so that the epoxy component is in as much excess as possible. Ideally, the reaction should be carried out in the same state, and after the reaction, products close to the desired product should be selectively extracted by fractional precipitation, etc.
Practically speaking, it is the cheapest and simplest method to react the two in a molten state and use the reaction as it is as the epoxy resin component targeted by the present invention, and from that point of view, this method is preferred. Naturally, it is possible for the engineer concerned to devise and use methods that are intermediate between the two.

反応に当ってはフェノール性水fllllとエポキシ基
の反応を促進するために、少量の触媒を使用するのが好
ましい。触媒としては、塩基性化合物が有効であるが、
強塩基性化合物、例えば三級アミン類、苛性アルカリ、
四級アンモニウム、ハイドロオギサイド等を用いると、
アルコール性水酸基とエポキシとの反応及びエポキシの
集合等の触媒となり、分岐、架橋等の好ましくない副反
応が多くおこるため注意が必要である。
In the reaction, it is preferable to use a small amount of a catalyst in order to promote the reaction between the phenolic water and the epoxy group. Basic compounds are effective as catalysts, but
Strong basic compounds, such as tertiary amines, caustic alkalis,
When quaternary ammonium, hydrogen oxide, etc. are used,
Care must be taken because it acts as a catalyst for the reaction between alcoholic hydroxyl groups and epoxy and for the aggregation of epoxy, and many undesirable side reactions such as branching and crosslinking occur.

萌述した如く本発明で使用されているフェノール系水[
Jとエポキシの反応は分子量の比較的大きいビスフェノ
ール系のジグリシジルエーテル系エポキシ化合物の製造
に広く用いられており、分岐の少ない生成物を与える触
媒は各種検討され、提案されている。一般的なものとし
ては、I−リフェニルフオスフイン、四級フォスフオニ
ウムヒドロオキサイドのような化合物が触媒として用い
られる。触媒の使用量は一般に全反応物質のO,GO1
〜10重量%好ましくは0.05〜5重量%である。
As mentioned above, the phenolic water used in the present invention [
The reaction between J and epoxy is widely used in the production of bisphenol-based diglycidyl ether-based epoxy compounds with relatively large molecular weights, and various catalysts that yield products with less branching have been investigated and proposed. Compounds such as I-liphenylphosphine and quaternary phosphonium hydroxide are commonly used as catalysts. The amount of catalyst used is generally O, GO1 of the total reactants.
-10% by weight, preferably 0.05-5% by weight.

また、反応温度は用いる触媒によっても、異なるが、一
般的には70℃〜200℃の範囲が用いられる。
Although the reaction temperature varies depending on the catalyst used, a range of 70°C to 200°C is generally used.

両反応成分の使用モル比は、フェノール性水酸基のモル
当量の二倍のエポキシのモル当量を用いるのが理論比と
なるが、実際にはゲル化を防ぎながら、反応を出来るだ
けすすめるため、エポキシ成分の方を過剰に用いる場合
もある。反応の進行については、反応系中のエポキシ含
量をはかる事によって容易に追跡する事が可能である。
The theoretical molar ratio of both reaction components is to use a molar equivalent of epoxy that is twice the molar equivalent of the phenolic hydroxyl group, but in reality, in order to promote the reaction as much as possible while preventing gelation, epoxy In some cases, an ingredient may be used in excess. The progress of the reaction can be easily monitored by measuring the epoxy content in the reaction system.

かくして、得られた本発明のエポキシ化合物は、実質的
に可溶可融のものをいい、反応中に生じた不溶不融のゲ
ル状物は、必要に応じて、濾別除去して用いられる。
The epoxy compound of the present invention obtained in this way is substantially soluble and fusible, and the insoluble and infusible gel-like substance generated during the reaction can be removed by filtration if necessary. .

本発゛明のエポキシ化合物は、必要に応じて、分別沈澱
、抽出、溶解濾過等の汎用手段によって精製して使用す
る事が出来る。
The epoxy compound of the present invention can be purified and used by general-purpose means such as fractional precipitation, extraction, and dissolution filtration, if necessary.

本発明のエポキシ化合物は一般に常温では固体であり、
適当な硬化剤と熔融混合或は溶液混合混線等の汎用手段
によって混合し、加熱硬化してエポキシ樹脂硬化物とす
る事が出来る。硬化剤はエポキシMI411R硬化剤と
して知られ【いるものはいずれも用いる事が出来る。ア
ミン系硬化剤、酸無水物系硬化剤、ポリフェノール系硬
化剤、カチオン系硬化剤、アニオン系硬化剤等がその代
表的なものの例としてあげる事が出来る。硬化条件や得
られる硬化物の性質等については用いる硬化剤の種類に
よって異なるが、いずれにおいても、ナフタレン核の存
在の故に対応するビスフェノールジグリシジルエーテル
系エポキシ化合物からのものに比して、二次転移点、吸
湿性、燃焼性等の面で好ましい方向の性質を有しており
塗料、接着剤、封止剤、複合材料用マトリックス樹脂等
に好適に用いられるが特に半導体等電子素子用封止剤、
プリント基板用マトリックス樹脂、先進複合材料用マト
リックス樹脂用としてその特性を生かして用いられる。
The epoxy compound of the present invention is generally solid at room temperature,
A cured epoxy resin can be obtained by mixing with a suitable curing agent using general-purpose means such as melt mixing or solution mixing, and heating and curing. As the curing agent, any known epoxy MI411R curing agent can be used. Typical examples include amine curing agents, acid anhydride curing agents, polyphenol curing agents, cationic curing agents, and anionic curing agents. Curing conditions and the properties of the resulting cured product vary depending on the type of curing agent used, but in all cases, due to the presence of naphthalene nuclei, secondary It has favorable properties in terms of transition point, hygroscopicity, combustibility, etc., and is suitably used for paints, adhesives, sealants, matrix resins for composite materials, etc., but is especially suitable for sealing for electronic devices such as semiconductors. agent,
Taking advantage of its properties, it is used as a matrix resin for printed circuit boards and advanced composite materials.

一般に電子材料用に用いられるエポキシ樹脂は残留塩素
の少ないものが要求されるが、本発明のエポキシ化合物
はその原料のビスフェノールジグリシジルエーテル系エ
ポキシ化合物に残留塩素分の少ないものを用いればその
まま、それの含有けの少ないものが得られる事になる。
Generally, epoxy resins used for electronic materials are required to have low residual chlorine, but the epoxy compound of the present invention can be used as is if the bisphenol diglycidyl ether-based epoxy compound used as the raw material has a low residual chlorine content. This results in a product containing less .

以下に実施例をあげて、本発明を詳述する。実施例は説
明のためであってそれに限定されるものではない。
The present invention will be explained in detail with reference to Examples below. The examples are illustrative and not limiting.

実施例中の物性測定 エポキシ当量: 塩酸ジオキサン法で測定。Measurement of physical properties in Examples Epoxy equivalent: Measured using the hydrochloric acid dioxane method.

1Llニ ジオキサンを用いた凝固点時下法により測定。1Llni Measured by sub-freezing point method using dioxane.

融 点: YANAGIMOTOMFG、GoのMICROMEL
TING  POINTAPPARATUSを用い昇温
速度2℃/sinで測定した。
Melting point: YANAGIMOTOMFG, Go's MICROMEL
Measurement was performed using TING POINT APPARATUS at a temperature increase rate of 2° C./sin.

ガラス転移温度(T(+ ) : 熱機械分析装置(理学電機サーモフレックス10910
90)T昇温速度10℃/分e測定。
Glass transition temperature (T(+): Thermomechanical analyzer (Rigaku Denki Thermoflex 10910)
90) T temperature increase rate 10°C/min e measurement.

1設も: 成形片を12#11+1 X 50111 X 5 a
mに切削加工した物を清水に浸漬して1週間処理し、下
記式に従って吸水率を求めた。
1 facility: 12#11+1 x 50111 x 5 a molded pieces
The material cut into a shape of m was immersed in clean water for one week, and the water absorption rate was determined according to the following formula.

ΔW= ((Will −Wd ) /Wd ) x 
 100(%)[式中 ΔW:吸水率 Wd:清水処理前の樹IW1重嬶 WW:  〃 侵      〕 合成例1 α−ナフトール576部、トルエン500部にシュウl
’l 7,2部を水72部に溶かした溶液を加え、N2
気流下95℃オイルバス中にてα−ナフトールが溶解す
るまで放置した。ここに撹拌下35%のホルマリン27
4部を1時間30分で滴下し、さらに同温度で2時間3
0分反応した。次いでバス温を105℃にして4時間反
応した後、脱水を行った。この後減圧下溶媒のトルエン
を留去し、さらに乾燥した。
ΔW=((Will −Wd)/Wd) x
100 (%) [In the formula ΔW: Water absorption rate Wd: Tree IW before clear water treatment 1 Weight WW: [Absorption] Synthesis Example 1 576 parts of α-naphthol and 500 parts of toluene were added
Add a solution of 7.2 parts of 'l dissolved in 72 parts of water, and add N2
The mixture was left in an oil bath at 95° C. under air flow until α-naphthol was dissolved. Add 35% formalin 27 to this while stirring.
4 parts were added dropwise over 1 hour and 30 minutes, and then kept at the same temperature for an additional 2 hours and 3 hours.
Reacted for 0 minutes. Next, the bath temperature was raised to 105°C and the mixture was reacted for 4 hours, followed by dehydration. Thereafter, the toluene solvent was distilled off under reduced pressure, and the mixture was further dried.

得られたノボラック型ナフトール樹脂は550部で融点
は131〜145℃で分子量は573(分子中にデフ1
〜−ル成分を平均3.75個、ホルムアルデヒド成分を
平均2.75個含み、かつ分子中にヒドロキシル基2.
75個含む)であった。
The obtained novolak naphthol resin was 550 parts, had a melting point of 131 to 145°C, and a molecular weight of 573 (def1 in the molecule).
Contains an average of 3.75 ~ - alcohol components, an average of 2.75 formaldehyde components, and 2.75 hydroxyl groups in the molecule.
(including 75 pieces).

合成例2 α−ナフトールホルムアルデヒ゛ノボラック樹脂の合成 α−ナフトール392部、ホルムアルデヒド35%水溶
液125部、シュウ酸1.0部を水40部に溶かした溶
液を撹拌下1時間遠流し、そこに36%塩酸15部を加
え、さらに35分間反応を継続する。その後加熱をやめ
、反応混合物に多層の水を加え、さらに30分間撹拌を
続けた後、水をデカンテーションで除き、残りの樹脂を
減圧乾燥する。得られたノボラック型ナフトール樹脂は
381部で、融点は78〜92℃9分子量は273(分
子中にナフトール成分を平均1.92個、ホルムアルデ
ヒド成分を平均0.92個含み、かつ分子中にヒドロキ
シル基を0.92個含む)であった。
Synthesis Example 2 Synthesis of α-naphthol formaldehyde novolac resin A solution of 392 parts of α-naphthol, 125 parts of a 35% formaldehyde aqueous solution, and 1.0 part of oxalic acid dissolved in 40 parts of water was stirred for 1 hour, and 36 Add 15 parts of % hydrochloric acid and continue the reaction for an additional 35 minutes. Thereafter, the heating is stopped, a layer of water is added to the reaction mixture, stirring is continued for an additional 30 minutes, the water is removed by decantation, and the remaining resin is dried under reduced pressure. The obtained novolak naphthol resin weighed 381 parts, had a melting point of 78 to 92°C, and a molecular weight of 273 (containing an average of 1.92 naphthol components and an average of 0.92 formaldehyde components in the molecule, and hydroxyl in the molecule). (contains 0.92 groups).

合成例3     ゛ β−ナフトール284部、トルエン154部、シュウ酸
2.2部を水22部にとかした溶液を120℃に加熱溶
融し、この中に35%ホルムアルデヒド水溶液84部を
105℃で撹拌下1.5時間で滴下し、さらに2.5時
開反応を継続した。反応混合物より水を留去した後、熱
時濾過で濾別した固体を熱水で洗浄し、減圧乾燥する。
Synthesis Example 3 A solution of 284 parts of β-naphthol, 154 parts of toluene, and 2.2 parts of oxalic acid dissolved in 22 parts of water was heated and melted at 120°C, and 84 parts of a 35% formaldehyde aqueous solution was stirred therein at 105°C. The mixture was added dropwise after 1.5 hours, and the reaction was continued for another 2.5 hours. After water is distilled off from the reaction mixture, the solid separated by hot filtration is washed with hot water and dried under reduced pressure.

得られたナフトール樹脂は280部で、融点は199〜
202℃1分子量は300〈分子中にナフトール成分を
2個、ホルムアルデヒド成分を1個含み、かつ分子中に
ヒドロキシルlを2個含む)。
The naphthol resin obtained was 280 parts, and the melting point was 199~
The molecular weight at 202°C is 300 (contains two naphthol components, one formaldehyde component, and two hydroxyls in the molecule).

実施例1 合成例1で合成した分子間573のα−ナフトール−ホ
ルムアルデヒドノボラック化合物38.2部とエポキシ
当量195のビスフェノールAタイプエポキシ化合物9
1.1部にトリフェニルボスフィン0.21部を加え、
チッ素気流下、20℃から3℃/分の昇温速度で150
℃まで昇温した。内温が155℃まで上昇したら加熱を
やめた。
Example 1 38.2 parts of the α-naphthol-formaldehyde novolac compound with an intermolecular structure of 573 synthesized in Synthesis Example 1 and a bisphenol A type epoxy compound 9 with an epoxy equivalent of 195.
Add 0.21 part of triphenylbosphine to 1.1 part,
150 at a heating rate of 3°C/min from 20°C under nitrogen flow
The temperature was raised to ℃. Heating was stopped when the internal temperature rose to 155°C.

得られた樹脂はMEK、DMF、ジオキサン等に可溶で
エポキシ当II 366、分子1529. mp43〜
51℃であった。
The resulting resin is soluble in MEK, DMF, dioxane, etc., and has an epoxy compound of 366% and a molecular weight of 1529%. mp43~
The temperature was 51°C.

実施例2 合成例1で合成した分子間573のα−ナフトール−ホ
ルムアルデヒドノボラック化合物22.1部とエポキシ
当量195のビスフェノールAタイプエポキシ化合物1
13.1部にローブチルトリフェニルホスホニウムヒド
ロキナイド−ヒスフェノールA(1:2)化合物0.2
0部を加え、実施例1と同様の反応を行った。反応は内
温が一旦165℃に上界し再び降温し150℃以下にな
ってからさらに150℃の油浴中で30分行った。
Example 2 22.1 parts of the α-naphthol-formaldehyde novolak compound with an intermolecular structure of 573 synthesized in Synthesis Example 1 and bisphenol A type epoxy compound 1 with an epoxy equivalent of 195.
13.1 parts of lobed tiltriphenylphosphonium hydroquinide-hisphenol A (1:2) compound 0.2
0 part was added, and the same reaction as in Example 1 was carried out. The reaction was carried out in an oil bath at 150°C for an additional 30 minutes after the internal temperature once exceeded 165°C and then dropped again to below 150°C.

得られた樹脂はエポキシ当量2981分子l 499゜
mp8〜28℃であった。
The resulting resin had an epoxy equivalent of 2981 molecules 1, 499°mp, and a temperature of 8 to 28°C.

実施例3 合成例2で合成した分子両273のα−ナフトール−ホ
ルムアルデヒドノボラック化合物149部と1ポキシ当
ff1195のビスフェノールAタイプエポキシ化合物
390部にn−ブチルトリフェニルホスホニウムヒトO
キサイド−テトラブロモビスフェノールA(1:1)化
合物0.30部を加え、実施例2と同様の反応を行った
Example 3 149 parts of the α-naphthol-formaldehyde novolak compound of 273 molecules synthesized in Synthesis Example 2 and 390 parts of a bisphenol A type epoxy compound of 1195 ff per 1 poxy were mixed with n-butyltriphenylphosphonium human O.
0.30 parts of oxide-tetrabromobisphenol A (1:1) compound was added, and the same reaction as in Example 2 was carried out.

得られた樹脂はエポキシ当fi 475.分子m 77
0゜−p58〜65であった。
The resulting resin was an epoxy grade 475. molecule m 77
0°-p58-65.

実施例4 合成例2で合成した分子m273のα−ナフトールホル
ムアルデヒドノボラック化合物149部とエポキシ当f
f1195のビスフェノールAタイプエポキシ化合物7
80部にトリフェニルホスフィン0.50部を加え、実
施例2と同様の反応を行った。得られた樹脂はエポキシ
当l 288.分子m 444. mp10〜33℃で
あった。
Example 4 149 parts of α-naphthol formaldehyde novolac compound of molecule m273 synthesized in Synthesis Example 2 and epoxy part f
f1195 bisphenol A type epoxy compound 7
0.50 part of triphenylphosphine was added to 80 parts, and the same reaction as in Example 2 was carried out. The resin obtained was equivalent to epoxy 288. Molecule m 444. mp was 10-33°C.

実施例5 合成例2で合成した分子間287のα−ナフトールホル
ムアルデヒドノボラック化合物32.2部とエポキシ当
用331のテトラブロモビスフェノールAエポキシ化合
物142.8部にn−プチルトリフェニルホスフォニウ
ムヒドロキナイドーテトラプOモビスフェノールA化合
物0.354jを加え実施例2ど1t71様の反応を行
った。得られた樹脂はエポキシ当1i 821.分子量
1536.1p75〜81であった。
Example 5 32.2 parts of the α-naphthol formaldehyde novolac compound with an intermolecular structure of 287 synthesized in Synthesis Example 2 and 142.8 parts of a tetrabromobisphenol A epoxy compound of 331 for epoxy were mixed with n-butyltriphenylphosphonium hydroquine. 0.354j of Dotetrap O Mobisphenol A compound was added and a reaction similar to Example 2 and 1t71 was carried out. The resin obtained was epoxy 1i 821. The molecular weight was 1536.1p75-81.

実施例6 分子間287のα−ナフトールホルムアルデヒドノボラ
ック化合物44.4部とエポキシ当量331のテトラブ
ロモビスフェノールAエポキシ化合物36.0部エポキ
シ当覆195のビスフェノールAタイプエポキシ化合物
94.6部にn−ブチルトリフェニルホスフォニウムヒ
ドロキサイドテトラブロモビスフェノールA(1:1)
化合物0.35部を加え、実施例2と同様の反応を行っ
た。得られた樹脂はエボ’Fシ当Fli 557. 分
子m 948. mp75〜81t’アッタ。
Example 6 44.4 parts of an α-naphthol formaldehyde novolac compound with an intermolecular weight of 287 and 36.0 parts of a tetrabromobisphenol A epoxy compound with an epoxy equivalent of 331. 94.6 parts of a bisphenol A type epoxy compound with an epoxy equivalent of 195 and n-butyl. Triphenylphosphonium hydroxide tetrabromobisphenol A (1:1)
0.35 parts of the compound was added, and the same reaction as in Example 2 was carried out. The resulting resin was Evo'Fli 557. Molecule m 948. mp75-81t'atta.

実施例7 分子1yj 573のα−ナフ1−−ルーホルムアルデ
ヒドノボラック デトラブロ七ビスフェノール△エポキシ化合物12、9
部,エポキシ当量195のビスフェノールAタイプエポ
キシ化合物33.1部にn−ブチルトリフェニルホスフ
ォニウムヒドロキサイドテトラブロモビスフェノールA
(1:1)化合物0.25部を加えN2気流下20℃か
ら3℃/分の昇温速度で150℃よで屏温した。内温が
151℃になったら加熱をやめた。得られた樹脂はエポ
キシ当用381。
Example 7 Alpha-naph 1--formaldehyde novolac detrabro heptabisphenol Δ epoxy compound 12,9 with molecule 1yj 573
n-butyltriphenylphosphonium hydroxide tetrabromobisphenol A to 33.1 parts of bisphenol A type epoxy compound with an epoxy equivalent of 195 parts.
0.25 parts of a (1:1) compound was added, and the mixture was heated from 20°C to 150°C at a heating rate of 3°C/min under a N2 stream. Heating was stopped when the internal temperature reached 151°C. The obtained resin was epoxy grade 381.

分子間681, mp55〜63℃であった。The intermolecular temperature was 681, and the mp was 55-63°C.

実IM例8 合成例3で合成したβ−ナフトールホルムアルデヒドノ
ボラック化合物150部とエポキシ5偵195のビスフ
ェノールAタイプエポキシ化合物390部にトリノIニ
ルホスフィン10部を加え、実施例2と同様の反応を行
った。
Practical IM Example 8 To 150 parts of the β-naphthol formaldehyde novolac compound synthesized in Synthesis Example 3 and 390 parts of a bisphenol A type epoxy compound of epoxy 5-195, 10 parts of trino-I-nylphosphine was added, and the same reaction as in Example 2 was carried out. Ta.

得られた樹脂はエポキシ当量330,分子ffl 61
0。
The resulting resin had an epoxy equivalent of 330 and a molecular ffl of 61.
0.

sp55〜62℃であった。sp 55-62°C.

実施例9 合成例3で合成したβ−ナフトール−ホルムアルデヒド
ノボラック化合物150部とエポキシ当量331のテト
ラブロモビスフェノールAエポキシ化合物59部,エポ
キシ当量195のビスフェノールAタイプエポキシ化合
物306部にn−ブチルトリフェニルホスフォニウムヒ
ドロキサイド−ビスフェノール(1:2)化合物6部を
加え、実施例2と同様の反応を行った。得られた樹脂は
エポキシ当量5GO,分子付992, mp57〜77
℃であった。
Example 9 150 parts of the β-naphthol-formaldehyde novolac compound synthesized in Synthesis Example 3, 59 parts of a tetrabromobisphenol A epoxy compound having an epoxy equivalent of 331, and 306 parts of a bisphenol A type epoxy compound having an epoxy equivalent of 195 were mixed with n-butyltriphenylphosphide. 6 parts of a phonium hydroxide-bisphenol (1:2) compound was added, and the same reaction as in Example 2 was carried out. The obtained resin has an epoxy equivalent of 5GO, a molecular weight of 992, and an mp of 57 to 77.
It was ℃.

実施例10 1、6−ジヒドロキシ1フ91280部とエポキシ5司
195のビスフェノールAタイプエポキシ化合物390
部にトリフェニルホスフィン5部を加え実施例2と同様
の反応を行った。
Example 10 Bisphenol A type epoxy compound containing 91,280 parts of 1,6-dihydroxy 1-fluoride and 195 parts of epoxy resin 390 parts
The same reaction as in Example 2 was carried out by adding 5 parts of triphenylphosphine.

得られたmtiはエポキシ当用444.分子ffi B
2O。
The mti obtained was 444. Molecule ffi B
2O.

11142〜59℃であった。The temperature was 11142-59°C.

実施例11 2、7−ジヒドロキシ1フ91280部とエポキシ当用
331のデトラブロモごスフエノールΔエポキシ化合物
662部にn−ブチルトリフェニルホスフォニウムヒド
ロキサイドービスフェノールA(1:2)化合物3.7
部を加え実施例2と同様の実験を行った。得られた樹脂
は、エポキシ当ffi 697,分子間1216, s
p74〜80であった。
Example 11 91,280 parts of 2,7-dihydroxy 1-fluoride and 662 parts of epoxy 331 detrabromo-sphenol Δ epoxy compound were mixed with 3.7 parts of n-butyltriphenylphosphonium hydroxide-bisphenol A (1:2) compound.
The same experiment as in Example 2 was conducted by adding The resulting resin has an epoxy ffi of 697, an intermolecular molecular weight of 1216, s
It was p74-80.

実施例12〜22 実施例1〜11で合成した樹脂に4.4′ −ジアミノ
ジフェニルスルホンを該樹脂のエポキシ基と4、4′ 
−ジアミノジフェニルスルホンの活性水素原子が等モル
になる様に加え、これにメチルエヂルケトンを上記仕込
み岳の50〜100重量%加えて均一溶液としだ後40
〜60分間かけて80〜130℃で溶媒を留ムし、さら
にプレス成形機で180〜200’C.80Kg/al
で40〜80分かけて硬化させた後200〜220℃で
4時間熱処理した。得られた樹脂注型品を用いて、To
及び吸水率を測定した結果を表1に示した。
Examples 12 to 22 4,4'-diaminodiphenylsulfone was added to the resin synthesized in Examples 1 to 11 with the 4,4' epoxy group of the resin.
- Add diaminodiphenylsulfone so that the active hydrogen atoms are equimolar, and add 50 to 100% by weight of methyl edyl ketone to the above mixture to make a homogeneous solution.
The solvent was distilled off at 80-130°C for ~60 minutes, and further heated at 180-200°C in a press molding machine. 80Kg/al
After curing for 40 to 80 minutes, heat treatment was performed at 200 to 220°C for 4 hours. Using the obtained resin cast product, To
Table 1 shows the results of measuring the water absorption rate.

比較例1.2 エポキシ当量195のビスフェノールAタイプエポキシ
化合物及びエボギシ当量470のビスフェノールAタイ
プエポキシ化合物を用いて実施例12〜22と同様の方
法で注型品を作成し、Tg及び吸水率を測定した。結果
を表1に示したが、吸水率。
Comparative Example 1.2 Cast products were created in the same manner as Examples 12 to 22 using a bisphenol A type epoxy compound with an epoxy equivalent of 195 and a bisphenol A type epoxy compound with an epoxy equivalent of 470, and the Tg and water absorption were measured. did. The results are shown in Table 1, water absorption rate.

T(l供ナフタレン骨格を含有した本発明の樹脂の方が
優れている事がわかった。
It was found that the resin of the present invention containing a T(l donor naphthalene skeleton) was superior.

表  1 手続補正書 昭和61年6月72日Table 1 Procedural amendment June 72, 1986

Claims (1)

【特許請求の範囲】 1、下記構造式( I ) ▲数式、化学式、表等があります▼・・・( I ) [但し、式中X、YはCl、Br、−CH_3から選ば
れる少くとも1種を表わし、R_1は炭素原子数1〜1
0の炭化水素基の少くとも1種を表わし、Rは平均炭素
原子数1〜10の平均2〜4価のジカルボニル化合物残
基を表わし、mは平均0〜2、m′は平均0〜1、nは
平均1〜5、pは平均1〜2、qは平均0〜8であり、
=及び■は存在又は非存在の原子価を表わす。] より主としてなる実質的に可溶及び/又は可融性のグリ
シジルエーテル型ポリエポキシ化合物。 2、下記(A)及び(B) (A)モノ及び/又はジヒドリックナフトールとモノ及
び/又はジカルボニル化合物との酸触媒存在下の縮合反
応によって得られたポリナフトール化合物。 (B)ジヒドリックナフトールからなる群から選ばれた
少くとも1種の化合物と、 (C)置換又は非置換ビスフェノールのジグリシジルエ
ーテル型エポキシ化合物とを、好ましくはプロトン受容
体の存在下、(C)中のエポキシ基の含有モル数が(A
)及び(B)中のフェノール性水酸基の含有モル数に比
して付加反応後において可溶性及び/又は可融性を維持
できる以上のモル比となる割合で反応せしめる事を特徴
とするグリシジルエーテル型ポリエポキシ化合物の製造
[Claims] 1. The following structural formula (I) ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) [However, in the formula, X and Y are at least selected from Cl, Br, -CH_3 1 type, R_1 has 1 to 1 carbon atoms
R represents at least one type of hydrocarbon group with an average number of carbon atoms of 1 to 10, m represents an average of 0 to 2, and m' represents an average of 0 to 2. 1, n is an average of 1 to 5, p is an average of 1 to 2, q is an average of 0 to 8,
= and ■ represent the valence of presence or absence. ] A substantially soluble and/or fusible glycidyl ether type polyepoxy compound mainly consisting of: 2. (A) and (B) below (A) A polynaphthol compound obtained by a condensation reaction of a mono- and/or dihydric naphthol and a mono- and/or dicarbonyl compound in the presence of an acid catalyst. (B) at least one compound selected from the group consisting of dihydric naphthols; and (C) a diglycidyl ether type epoxy compound of substituted or unsubstituted bisphenol, preferably in the presence of a proton acceptor; ) The number of moles of epoxy groups contained in (A
) and (B), the glycidyl ether type is reacted at a molar ratio greater than the number of moles of phenolic hydroxyl groups contained in (B) to maintain solubility and/or fusibility after the addition reaction. Manufacturing method of polyepoxy compound
JP8615986A 1986-04-16 1986-04-16 Glycidyl ether-type polyepoxy compound and production thereof Granted JPS62242676A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8615986A JPS62242676A (en) 1986-04-16 1986-04-16 Glycidyl ether-type polyepoxy compound and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8615986A JPS62242676A (en) 1986-04-16 1986-04-16 Glycidyl ether-type polyepoxy compound and production thereof

Publications (2)

Publication Number Publication Date
JPS62242676A true JPS62242676A (en) 1987-10-23
JPH0545607B2 JPH0545607B2 (en) 1993-07-09

Family

ID=13878960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8615986A Granted JPS62242676A (en) 1986-04-16 1986-04-16 Glycidyl ether-type polyepoxy compound and production thereof

Country Status (1)

Country Link
JP (1) JPS62242676A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122714A (en) * 1990-09-12 1992-04-23 Hitachi Chem Co Ltd Production of high molecular weight epoxy resin
JPH04122713A (en) * 1990-09-12 1992-04-23 Hitachi Chem Co Ltd Production of high molecular weight epoxy resin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2043645A1 (en) * 1970-09-03 1972-03-16 Koelbel H Epoxide resin precursors - by reacting bisphenol with diisocyanate and epoxy-alcohol
JPS60206824A (en) * 1984-03-30 1985-10-18 Toshiba Corp Epoxy resin composition for sealing semiconductor
JPS6173719A (en) * 1984-09-20 1986-04-15 Dainippon Ink & Chem Inc Novel epoxy resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2043645A1 (en) * 1970-09-03 1972-03-16 Koelbel H Epoxide resin precursors - by reacting bisphenol with diisocyanate and epoxy-alcohol
JPS60206824A (en) * 1984-03-30 1985-10-18 Toshiba Corp Epoxy resin composition for sealing semiconductor
JPS6173719A (en) * 1984-09-20 1986-04-15 Dainippon Ink & Chem Inc Novel epoxy resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04122714A (en) * 1990-09-12 1992-04-23 Hitachi Chem Co Ltd Production of high molecular weight epoxy resin
JPH04122713A (en) * 1990-09-12 1992-04-23 Hitachi Chem Co Ltd Production of high molecular weight epoxy resin

Also Published As

Publication number Publication date
JPH0545607B2 (en) 1993-07-09

Similar Documents

Publication Publication Date Title
JP3137202B2 (en) Epoxy resin, method for producing the same, and epoxy resin composition
US4368299A (en) Epoxy resin compositions
JPH02189326A (en) Epoxy resin composition for sealing electronic component
US20020065386A1 (en) Cyclopentylene compound and intermediate thereof, epoxy resin composition, molding material, and resin-encapsulated electronic device
JPS62167318A (en) Curing of epoxy resin
JPS62242676A (en) Glycidyl ether-type polyepoxy compound and production thereof
JP3074013B2 (en) Epoxy resin composition and cured product thereof
JP2000103941A (en) Epoxy resin composition and semiconductor sealing material
JPH05287052A (en) Epoxy resin composition, preparation of epoxy resin, and semiconductor sealing material
JPH04255714A (en) Polyfunctional epoxy resin and its production
JPS62283969A (en) Polyepoxy compound and halogen-containing aryl glycidyl ether type and production thereof
JPS60170653A (en) Small shrinkage acid-curable mixture for furan bonding agent and manufacture
JP3770343B2 (en) Epoxy resin composition and semiconductor sealing material
JP2001064358A (en) Epoxy resin composition
JPH10324733A (en) Epoxy resin composition, production of epoxy resin and semiconductor-sealing material
JPS6377915A (en) Phenol novolaks and its production
JPS6317875A (en) Novel halogen-containing epoxy compound and production thereof
JPH0570552A (en) Epoxy resin composition
JPH07216052A (en) Epoxy resin and epoxy resin composition
JPS6215217A (en) Production of bisphenol a novolak resin
JPH04282331A (en) Novel compound, resin, resin composition and cured product
JPH11209584A (en) Epoxy resin composition and semiconductor-sealing material
JPH07224142A (en) Epoxy resin and epoxy resin composition
JPH0570553A (en) Epoxy resin composition
JP3091861B2 (en) Epoxy resin composition