JPS62241015A - Control circuit for reactive power compensating device - Google Patents

Control circuit for reactive power compensating device

Info

Publication number
JPS62241015A
JPS62241015A JP62014417A JP1441787A JPS62241015A JP S62241015 A JPS62241015 A JP S62241015A JP 62014417 A JP62014417 A JP 62014417A JP 1441787 A JP1441787 A JP 1441787A JP S62241015 A JPS62241015 A JP S62241015A
Authority
JP
Japan
Prior art keywords
reactive power
multiplier
current
component
steady
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62014417A
Other languages
Japanese (ja)
Other versions
JPH0621968B2 (en
Inventor
Atsushi Nishidai
西台 惇
Shinichiro Nishimura
信一郎 西村
Takashi Masuda
隆 増田
Makoto Azuma
信 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP62014417A priority Critical patent/JPH0621968B2/en
Publication of JPS62241015A publication Critical patent/JPS62241015A/en
Publication of JPH0621968B2 publication Critical patent/JPH0621968B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Landscapes

  • Control Of Electrical Variables (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To reduce the 2nd higher harmonic wave ripple produced to the output of a multiplier by subtracting a current equivalent to the semi-steady component of the reactive power out of the current signal of the multiplier that produces the instantaneous value of the reactive power. CONSTITUTION:The 90 deg. phase-delayed waveform of voltage is multiplied by a load current through a multiplier X4 for generation of the reactive power. The 2nd higher harmonic wave contained in the reactive power is deleted by an LPF2 and smoothed. In this case, a long time constant of about one - several sec is selected for the characteristics of the LPF2 and the therefore the fluctuation component of the reactive power is averaged and not shown. Thus the semi-steady reactive power is obtained. A waveform which has a 90 deg. phase delay compared with the voltage waveform and is proportional to the semi- steady reactive power value means a current component corresponding to the semi-steady component of the reactive power. Thus the amplitude of the current supplied to a multiplier X1 can be reduced by subtracting said current component out of the current signal of the multiplier X1 which produces the instantaneous value of the reactive power. Then the 2nd higher harmonic wave ripple contained in the output of the multiplier X1 can be reduced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、例えばアーク炉の運転により生ずるようなフ
リフカを抑制する高速度応答形の無効電力補償装置の制
御回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control circuit for a high-speed response type reactive power compensator that suppresses fluff caused by, for example, operation of an arc furnace.

[従来技術と問題点コ 例えば、アーク炉の運転により生ずるようなフリッカを
抑制するには、その無効電力変動の補償をする必要があ
り、このような目的に副うちのとしてサイリスタ形無効
電力補償装置の適用が考えられる。第4図はサイリスク
形無効電力補償装置の構成を説明するための概略図であ
る。系統に変圧器T1.T2を介してアーク炉FIIF
2が接続され、これと並列に変圧器T3を介してリアク
トルReと双方向に通電可能のようにサイリスタThを
組合せた通電制御素子とを直列とした遅相無効電力11
!路とコlデンサCおよびインダクタンスしよりなる進
相コンデンサ兼フィルタ回路が接続される。そしてアー
ク炉FI+F2の電流を検出する変流器c’rlt C
T2と電圧変成器PTとより、無効電力検出器DDにお
いて、時々刻々の無効電力成分が計算され、変動する無
効電力は基準値と比較され、基準値より正又は負の大き
さに従ってサイリスタの点弧制御端子に加えられるパル
ス位相を制御するようなuI御パルス発生装ffPGに
加えられ、この制御パルス発生karllPGの出力端
はサイリスタの点弧制御端子に接続され、無効電力の制
御が行われる。パルスがある位相から遅らされれば、リ
アクトルReを流れる電流は減少し、系統電圧は上ゲ?
する。
[Prior art and problems] For example, in order to suppress flicker caused by the operation of an arc furnace, it is necessary to compensate for the fluctuations in reactive power. The application of the device is considered. FIG. 4 is a schematic diagram for explaining the configuration of the SIRISK type reactive power compensator. There is a transformer T1 in the system. Arc furnace FIIF via T2
2 is connected, and in parallel with this, a reactor Re is connected via a transformer T3, and an energization control element combining a thyristor Th so as to be able to energize in both directions is connected in series.
! A phase advancing capacitor/filter circuit consisting of a capacitor C and an inductance is connected to the line. and a current transformer c'rlt C that detects the current of the arc furnace FI+F2
From T2 and the voltage transformer PT, the reactive power component at every moment is calculated in the reactive power detector DD, and the fluctuating reactive power is compared with a reference value, and the thyristor point is determined according to the magnitude that is more positive or negative than the reference value. It is added to a uI control pulse generator ffPG that controls the pulse phase applied to the arc control terminal, and the output terminal of this control pulse generator karllPG is connected to the firing control terminal of the thyristor to control reactive power. If the pulse is delayed from a certain phase, the current flowing through the reactor Re will decrease and the system voltage will rise.
do.

遅相波形と負荷?TI流の乗算を行っているが、一般的
に前記乗算による無効電力値中に第2高調波が含まれる
ことになる。この第2高調波を除去するために、低域ろ
波器(以下LPFという)等を用いているが、これを除
去しないと、通電制御素子によるリアクトルの通電制御
において、線制御を行うことになる。 LPFのため急
速な無効電力の変化には追従できず、フリ、力対束のよ
うな速い変動を検出し、これを打消すように無効電力制
御を要する装置には適■できなかった。
Slow phase waveform and load? Although TI-style multiplication is performed, the second harmonic is generally included in the reactive power value resulting from the multiplication. In order to remove this second harmonic, a low pass filter (hereinafter referred to as LPF) is used, but if this is not removed, line control will be performed in the energization control of the reactor by the energization control element. Become. Because it is an LPF, it cannot follow rapid changes in reactive power, and it cannot be applied to devices that detect fast fluctuations such as fluctuations in force and flux and require reactive power control to counteract these fluctuations.

[問題を解決するための手段] 本発明は上記の問題を解決する目的でなされたものであ
って、無効電力瞬時値を発生させる乗算器の電流信号の
うち、有効電力成分に該当する電流成分および/または
無効電力瞬時値を発生させる乗算器の電流信号のうち、
l!!(動電力の亭定常分に該当する電流成分を差引い
て、乗算器に入力される電流信号の振幅を小ならしめ、
乗算器出力(無効型出力)に含イ「する第2高調波リツ
プルを小ならしめるものである。
[Means for Solving the Problem] The present invention has been made for the purpose of solving the above problem, and the present invention has been made for the purpose of solving the above problem. and/or of the current signal of the multiplier that generates the reactive power instantaneous value,
l! ! (The amplitude of the current signal input to the multiplier is reduced by subtracting the current component corresponding to the steady portion of the dynamic force,
This reduces the second harmonic ripple contained in the multiplier output (ineffective output).

以上は第2高調波リブプルの大きさは乗算器入力交流電
流波高値の大きさに比例するから、リフプルを極力抑え
るには、乗T1.器に入力する電流信号をできるだけ必
要とする無効電力変動分に相当する?TtfLのみに限
定するとの観点に立つものである。
As mentioned above, since the magnitude of the second harmonic rib pull is proportional to the magnitude of the peak value of the multiplier input AC current, in order to suppress the ripple pull as much as possible, the multiplier T1. Is it equivalent to the reactive power fluctuation that requires the current signal input to the device as much as possible? This is based on the viewpoint that it is limited to TtfL only.

以下図面に示す実施例により本発明を説明する。The present invention will be explained below with reference to embodiments shown in the drawings.

第1図実施例に示すように、母線に電圧変成器PTおよ
び変動負荷LvおよびリアクトルReと双方向に通電す
る逆並列接続のサイリスタThの直列回路および進相兼
フィルター用のコンデンサCが並列に接続される。なお
L+は電源線路のインダクタンスを示している。
As shown in the example in FIG. 1, a series circuit of anti-parallel connected thyristors Th and a capacitor C for phase advancement and filtering are connected in parallel to the bus bar, and the voltage transformer PT, the variable load Lv, and the reactor Re are bidirectionally connected. Connected. Note that L+ indicates the inductance of the power supply line.

電圧変成WPTの2次側は90度位相器PSに接続され
、30度位相器PSの出力側は乗r1.器X+に接続さ
れ、一方、変動11荷Lvの電流Iを検出する変流器C
Tが変動負′4RLvに結合され、変流器CTの2次側
は減rL器Sおよび乗算器X2と接続され、乗算器X2
は電圧変成′、J4PTの2次側とも接続される。乗’
7− VQ X2の出力側は低域ろ波器LPF+を介し
て乗算器X3に接続され、乗算器X3は電圧変成器PT
の2次側と接続される。乗算器X2において、イT効電
力を発生させるが、これには第2高調波が含イfされて
いるので、LPF+にてこれを除去平滑化する。電圧波
形と同相でを動電力Pに比例した波形が目的とする有効
電力成分に該当する電流成分であるので、これを電圧波
形と有効電力Pとの乗算によって発生させる。
The secondary side of the voltage transformer WPT is connected to a 90 degree phase shifter PS, and the output side of the 30 degree phase shifter PS is connected to the power r1. A current transformer C is connected to the transformer X+ and detects the current I of the variable load Lv.
T is coupled to the variable negative '4RLv, the secondary side of the current transformer CT is connected to the reducer S and the multiplier X2,
is also connected to the voltage transformer' and the secondary side of J4PT. Square'
7- The output side of VQ X2 is connected via a low-pass filter LPF+ to a multiplier
connected to the secondary side of The multiplier X2 generates an effective power, but since this includes the second harmonic, it is removed and smoothed by the LPF+. A waveform in phase with the voltage waveform and proportional to the dynamic force P is a current component corresponding to the target active power component, so this is generated by multiplying the voltage waveform and the active power P.

有効電流成分をIpとすれば、 I p sla ωtOc pxv sin ct+を
有効電力成分は上述のようにLPF+を通されるので、
有効電力成分に変化があっても、Ipはなだらかな変化
を打するIpavとして現われる。
If the active current component is Ip, then I p sla ωtOc pxv sin ct+ Since the active power component is passed through LPF+ as mentioned above,
Even if there is a change in the active power component, Ip appears as Ipav, which shows a gradual change.

この乗算器X3の出力を減算器Sに入力し、減算器Sの
出力は乗ri、′aX1に入力する。乗算”14X+の
出力側は1/4サイクルに相当する時間Zd延回路TC
に接続され、その出力側に接続した加算器A+において
、乗算器X+よりの直接入力によって第2高調波リブプ
ルの除去、平滑化がはかられるが、必ずしもl/4サイ
クル遅延回路を用いて除去平滑化をとる必要はなく、従
来のLPFによってもよい。
The output of this multiplier X3 is input to the subtracter S, and the output of the subtracter S is input to the multiplier ri,'aX1. The output side of the multiplication "14X+" is a time Zd extension circuit TC corresponding to 1/4 cycle.
In the adder A+ connected to the output side of the adder A+, the second harmonic rib pull is removed and smoothed by direct input from the multiplier X+, but it is not necessarily removed using a 1/4 cycle delay circuit. It is not necessary to perform smoothing, and a conventional LPF may be used.

第1図に示す実施例に対して、第2図に実施例は無効電
力瞬8.シ値を発生させる乗算器の電流信号のうち無効
電力の準定常分に該当する?l!流を差引けば、乗算器
X1に入力される電流の振幅を小なすることができる。
In contrast to the embodiment shown in FIG. 1, the embodiment shown in FIG. Does this correspond to the quasi-stationary component of reactive power in the current signal of the multiplier that generates the value? l! By subtracting the current, the amplitude of the current input to the multiplier X1 can be reduced.

無効電力変動分に該当する電流波形は次のようにして発
生させる。
The current waveform corresponding to the reactive power fluctuation is generated as follows.

電圧の90度遅相波形と負荷電流とを乗算なx4で乗算
し無効電力を発生させる。これに含まれる第2高調波は
LPF2によって除去、平滑化される。
The 90-degree delayed voltage waveform and the load current are multiplied by x4 to generate reactive power. The second harmonic included therein is removed and smoothed by the LPF2.

この場合、 LPF2の特性を数秒程度の長い時定数を
有するものに選ぶことによって!!に動電力の変動成分
は平均化されて現われず、準定常的な無効電力を得るこ
とができる。
In this case, by choosing the characteristics of LPF2 to have a long time constant of several seconds! ! The fluctuating components of the dynamic force are averaged out and do not appear, and quasi-steady reactive power can be obtained.

電圧波形から90度遅相しnつ振巾が上記準定常無効電
力値Qに比例する波形が0的とする無効電力準定常成分
に該当する電流成分であるので、これを電圧波形の90
度遅相電圧と前記準定常無効電力とを乗算器X5に入れ
ると、平均的な無効電流成分1qILvをf(Jること
ができる。Iqavslnωj QCQXV sln 
(ωt −90” )で表わされる。
A waveform that is 90 degrees behind the voltage waveform and whose amplitude is proportional to the quasi-steady reactive power value Q is a current component that corresponds to the quasi-steady component of the reactive power, where the waveform is 0.
By inputting the degree-lag phase voltage and the quasi-stationary reactive power into the multiplier X5, the average reactive current component 1qILv can be f(J.Iqavslnωj QCQXV sln
(ωt −90”).

なお第2高調波リブプルの除去、平滑化に1/4す第3
図に示す実施例は、無効電力瞬時値を発生させる乗算器
の電流信号のうち、無効電力の準定常分に該当する電流
と無効電力瞬時値を発生させる乗算器の電流信号のうち
、何効電力成分に該当する電流成分とを差引いて、乗算
器に入力する例である。構成としては第2図の回路と第
3図の回路の有効電力成分に該当する電流成分を発生さ
せる回路と無効電力の準定常無効電力に該当する電流を
発生させる回路が設けられ、百出力信号は加算器A2に
入力され、その加算器出力を負荷電流!より差引いて、
乗算2iX+に入力するように構成したものである。
Note that 1/4th of the second harmonic rib pull is removed and smoothed.
In the embodiment shown in the figure, the current corresponding to the quasi-stationary component of the reactive power out of the current signal of the multiplier that generates the instantaneous value of reactive power and the current signal of the multiplier that generates the instantaneous value of reactive power are calculated. This is an example in which a current component corresponding to a power component is subtracted and the result is input to a multiplier. The configuration includes a circuit that generates a current component corresponding to the active power component of the circuit shown in Figure 2 and the circuit shown in Figure 3, and a circuit that generates a current corresponding to the quasi-steady reactive power of the reactive power. is input to adder A2, and the adder output is the load current! By subtracting from
It is configured to be input to the multiplication 2iX+.

図では、l/4サイクル遅延回路を用いているが、LP
Fを用いても差支えない。
In the figure, a 1/4 cycle delay circuit is used, but the LP
There is no problem even if F is used.

無効電力に瞬発的な変動を生じた場合、前述のように無
効電力に該当する無効電流を発生させる回路には特定数
の大きいLPF2が用いられており、てのみしか現われ
ない。負荷電流!中より無効電流成分Iqavおよび又
は有効電流成分I P&Vが差引かれると1−(Ipa
v + Lqav)によって発生する無効電力値Δqは
殆んど急激な変動に基づいて生ずるものとすることがで
きる。この無効電力値Δqを無効電力位相変換回路QP
Sを経て制御パルス発生S装置PGに入力させその出力
によりリアクトルReに接続されたサイリスタThの点
弧位相の制御により無効電力を制御する。
When an instantaneous fluctuation occurs in the reactive power, only a specific number of large LPFs 2 are used in the circuit that generates the reactive current corresponding to the reactive power as described above, and only a small change occurs. Load current! When reactive current component Iqav and/or active current component I P&V are subtracted from the inside, 1-(Ipa
The reactive power value Δq generated by v + Lqav) can be generated on the basis of almost abrupt fluctuations. This reactive power value Δq is converted to reactive power phase conversion circuit QP.
The reactive power is input to the control pulse generating S device PG via S, and its output controls the firing phase of the thyristor Th connected to the reactor Re.

[発明の効果] 以上説明のように、本発明においては、無効電力を求め
る乗算器への負荷電流信号より、¥r効電電力成分相当
する電流成分および/または無効電力の準定常値に相当
する電流成分を差引いて入力させている。この有効電力
成分に相当する電流成分と無効電力成分の準定常値に相
当するf[を流成分第2高調波はなく、負荷電流信号か
らこれら電流成分を差し引くことによって、振幅を小さ
くし、無効電力乗rl″Bに入力する電流信号を制御に
必要とする無効電力変動分に相当する電流信号のみに近
づけることができ、単に直接乗算器に負荷電流信号を入
力するものに比べ、その乗算出力に生じる第2高調波リ
フプルを小とすることができる。
[Effects of the Invention] As explained above, in the present invention, from the load current signal to the multiplier for calculating reactive power, the current component corresponding to the ¥r active power component and/or the quasi-steady value of the reactive power is calculated. The current component is subtracted and inputted. The current component corresponding to this active power component and the current component corresponding to the quasi-steady value of the reactive power component f The current signal input to the power multiplier rl''B can be brought close to only the current signal corresponding to the reactive power fluctuation required for control, and the multiplier output is smaller than that of simply inputting the load current signal directly to the multiplier. It is possible to reduce the second harmonic ripple that occurs in the second harmonic wave.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は、本発明の実施例を示す。 第4図は従来の無効電力補償getを示す。 PT・・・電圧変成器、CT + CT I+ CT 
2・・・変流器、T’++’r2 、T3・・・変圧器
、C・・・コンデンサ、L、L+・・・インダクタンス
、Th・・・サイリスク、X+ 、X2 、X3 、X
4 、X5・・・乗算器、A+ lA2・・・加算器、
S・・・減算器、LPF+。 LPF2・・・低域ろ波器、TC・・・遅延回路、ps
−・・位相器、PG・・・制御パルス発生装置、Fl+
F2・・・アーク、炉、Lv・・・変動負?Y、QPS
・・・無効電力位相変換回路。 茅1図 第 2 図 茅 3 図 を4 図 手続補正IF(自発) 昭和62年 2月戸7日
1, 2 and 3 show embodiments of the invention. FIG. 4 shows a conventional reactive power compensation get. PT...Voltage transformer, CT + CT I+ CT
2...Current transformer, T'++'r2, T3...Transformer, C...Capacitor, L, L+...Inductance, Th...Sirisk, X+, X2, X3, X
4, X5...multiplier, A+ lA2...adder,
S...Subtractor, LPF+. LPF2...Low pass filter, TC...Delay circuit, ps
-...Phase shifter, PG...Control pulse generator, Fl+
F2...Arc, Furnace, Lv...Negative fluctuation? Y,QPS
...Reactive power phase conversion circuit. Figure 1 Figure 2 Figure 3 Figure 4 Figure procedure amendment IF (voluntary) February 7, 1988

Claims (1)

【特許請求の範囲】[Claims] (1)母線に接続された変動負荷に対し、前記母線に前
記変動負荷と並列に逆並列接続した通電制御素子とリア
クトルを直列に接続した遅相無効電力調整回路と進相兼
フィルタ回路を接続した無効電力補償装置の無効電力制
御回路において、90度遅相の電圧と負荷電流とを乗算
器に入力して前記通電素子に対する制御無効電力値を求
める際、前記負荷電流中の有効電力成分に相当する電流
成分および/また前記負荷電流中の準定常的無効電力成
分に相当する電流成分を除去して入力する無効電力制御
回路を備えることを特徴とする無効電力補償装置の制御
回路。
(1) For a fluctuating load connected to a bus bar, a lagging reactive power adjustment circuit and a phase advancing/filter circuit are connected to the bus bar in which a energization control element and a reactor connected in series are connected in parallel and anti-parallel to the fluctuating load. In the reactive power control circuit of the reactive power compensator, when inputting the 90-degree phase-lag voltage and the load current to a multiplier to obtain the control reactive power value for the energizing element, the active power component in the load current is A control circuit for a reactive power compensator, comprising a reactive power control circuit that removes and inputs a corresponding current component and/or a current component that corresponds to a quasi-steady reactive power component in the load current.
JP62014417A 1979-10-27 1987-01-23 Control circuit of reactive power compensator Expired - Lifetime JPH0621968B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62014417A JPH0621968B2 (en) 1979-10-27 1987-01-23 Control circuit of reactive power compensator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP13899779A JPS5663622A (en) 1979-10-27 1979-10-27 Compensating device for reactive electric power
JP62014417A JPH0621968B2 (en) 1979-10-27 1987-01-23 Control circuit of reactive power compensator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13899779A Division JPS5663622A (en) 1979-10-27 1979-10-27 Compensating device for reactive electric power

Publications (2)

Publication Number Publication Date
JPS62241015A true JPS62241015A (en) 1987-10-21
JPH0621968B2 JPH0621968B2 (en) 1994-03-23

Family

ID=15235058

Family Applications (2)

Application Number Title Priority Date Filing Date
JP13899779A Granted JPS5663622A (en) 1979-10-27 1979-10-27 Compensating device for reactive electric power
JP62014417A Expired - Lifetime JPH0621968B2 (en) 1979-10-27 1987-01-23 Control circuit of reactive power compensator

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP13899779A Granted JPS5663622A (en) 1979-10-27 1979-10-27 Compensating device for reactive electric power

Country Status (1)

Country Link
JP (2) JPS5663622A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525452A (en) * 1975-07-01 1977-01-17 Fuji Electric Co Ltd Control process of reactive power readjusting system
JPS5366550A (en) * 1976-11-26 1978-06-14 Mitsubishi Electric Corp Control circuit for reactive power compensator
JPS547978A (en) * 1977-06-20 1979-01-20 Torio Kk Audio wattmeter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5322659B2 (en) * 1973-03-27 1978-07-10
JPS5513050B2 (en) * 1974-08-22 1980-04-05

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525452A (en) * 1975-07-01 1977-01-17 Fuji Electric Co Ltd Control process of reactive power readjusting system
JPS5366550A (en) * 1976-11-26 1978-06-14 Mitsubishi Electric Corp Control circuit for reactive power compensator
JPS547978A (en) * 1977-06-20 1979-01-20 Torio Kk Audio wattmeter

Also Published As

Publication number Publication date
JPS5663622A (en) 1981-05-30
JPS6321207B2 (en) 1988-05-06
JPH0621968B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP2871681B2 (en) How to attenuate electrical overtones
EP0372109B1 (en) Reactive power controller
US7778053B2 (en) Power system having a voltage regulator with a notch filter
JP2714195B2 (en) Voltage fluctuation and harmonic suppression device
US5065304A (en) Controller for AC power converter
CN112103970B (en) Method and device for suppressing inter-harmonic oscillation of grid-connected converter
Karimi et al. High performances reference current generation for shunt active filter under distorted and unbalanced conditions
JPS62241015A (en) Control circuit for reactive power compensating device
US7233081B2 (en) Power-supply device
JPH0432621B2 (en)
JP2701663B2 (en) Limiter device
Zaveri et al. Analysis of different real time reference generation techniques used for harmonic mitigation in three phase shunt active filters
JPH0382338A (en) Higher harmonic voltage suppressing apparatus
JPH03103031A (en) Power supply active filter
JP3125354B2 (en) Active filter control device
JPH01186119A (en) Control system for active filter in reactive power compensation system
JPH02276475A (en) Power conversion device
JPH0731301Y2 (en) Controller for reactive power compensator
JPS6111533B2 (en)
JPH02287808A (en) Control system for reactive power compensating device
JP3321248B2 (en) Fault current suppression device
JPH0324607A (en) Device for compensating reactive power
JPH07222362A (en) Reactive current detection circuit
JPH0246174A (en) Controller for inverter
JPH10323048A (en) Power conversion device