JPS62239434A - Semiconductor laser beam source device - Google Patents

Semiconductor laser beam source device

Info

Publication number
JPS62239434A
JPS62239434A JP61082891A JP8289186A JPS62239434A JP S62239434 A JPS62239434 A JP S62239434A JP 61082891 A JP61082891 A JP 61082891A JP 8289186 A JP8289186 A JP 8289186A JP S62239434 A JPS62239434 A JP S62239434A
Authority
JP
Japan
Prior art keywords
light
optical element
semiconductor laser
wavelength
prism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61082891A
Other languages
Japanese (ja)
Inventor
Masaru Noguchi
勝 野口
Ichiro Miyagawa
一郎 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP61082891A priority Critical patent/JPS62239434A/en
Priority to DE3750483T priority patent/DE3750483T2/en
Priority to US07/032,698 priority patent/US4832469A/en
Priority to EP87104828A priority patent/EP0240005B1/en
Publication of JPS62239434A publication Critical patent/JPS62239434A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To reduce the influence of a naturally emitted light and to extend an optical output area where the influence of a laser oscillated beam is great, by cutting components other than the area, which has the same wavelength as the laser oscillated beam, of the naturally emitted light through a dispersive optical element and a space filter. CONSTITUTION:After being made incident on a collimator lens 2 provided on the optical path and being converted to parallel beams, the beam oscillated from a semiconductor laser 1 is made incident on a prism 3 as the dispersive optical element which changes the optical path of an emitted beam is accordance with the wavelength of the incident light. Though most of the laser oscillated beam passing the prism 3 goes to the same optical path, the naturally emitted light passing the prism 3 goes to various optical paths is accordance with is wavelength components. Light emitted from the prism 3 in various directions is converged in various positions in accordance with wavelengths by a converging lens 4 as a converging optical element. A slit-shaped mirror 5 as the space filter which selectively takes out only light having an wavelength in the vicinity of wavelength lambda1 is provided in these light convergence positions, and the laser oscillated beam and only a part of the naturally emitted light are taken out as a reflected light.

Description

【発明の詳細な説明】 (発明の分野) 本発明は半導体レーザを備えた半導体レーザ光源装置に
関し、特に詳細には発振された光を広い出力範囲に亘っ
て小ざなスポット径に集束させることの可能な半導体レ
ーザ光源装置に関するものであるっ (発明の技術的背景および先行技術) 従来より半導体チップを有してなる半導体レーザは、各
種走査記録装置および走査読取装置における走査光発生
手段等として用いられている。この半導体レーザは、ガ
スレーザ等に比べて小型。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a semiconductor laser light source device equipped with a semiconductor laser, and more particularly to a semiconductor laser light source device that focuses oscillated light into a small spot diameter over a wide output range. (Technical Background and Prior Art of the Invention) Conventionally, semiconductor lasers having semiconductor chips have been used as scanning light generating means in various scanning recording devices and scanning reading devices. It is being This semiconductor laser is smaller than gas lasers etc.

安価で消費電力も少なく、また駆動電流をコントロール
することによって出力を変化させる、いわゆるアナログ
直接変調が可能でめる等、種々の長所を有している。特
にこの半導体レーザを前記走査記録装置において用いた
場合には画像情報に応じて発せられる信号により上記直
接変調を行なえばよいので、慢めで便利である。
It has various advantages such as being inexpensive, consuming little power, and being able to perform so-called analog direct modulation, which changes the output by controlling the drive current. Particularly when this semiconductor laser is used in the scanning recording apparatus, the above-mentioned direct modulation can be performed by a signal emitted in accordance with image information, which is slow and convenient.

ところで、上記半導体レーザから発せられる光(二Gさ
、レーザ発振光と自?!!、発光光の2つかめることか
知られている。以下第5図を参照して半導体レーザに印
加される電流とレーザ発振光および自然発光光の出力の
関係について説明する。
By the way, it is known that there are two types of light emitted from the semiconductor laser (2G), laser oscillation light and self-emission light. Below, with reference to Figure 5, the current applied to the semiconductor laser The relationship between the output of the laser oscillation light and the spontaneous luminescence light will be explained.

図示のグラフのうち、線aは駆動電流と自然発光光の出
力の関係を示し、線すは駆動電流とレーザ発1辰先の出
力の関係を示すものである。グラフに示されるように、
半導体レーザに電流を印加した場合に、電流か閾値電流
■0を越えるまではレーザ発]辰光は出力されず、自然
発光光のみが出力する。自然発光光は駆動電流が増加す
るにつれて少しずつその出力を増していくが、il流が
閾値IOを越えてレーザ発振光が出力され、その出力が
大きくなると発光光全体に占める割合はわずかとなり、
実質的にレーザ発(吸光のみが出力されるようになる。
In the illustrated graph, line a represents the relationship between the drive current and the output of spontaneously emitted light, and line a represents the relationship between the drive current and the output of the laser beam at one end. As shown in the graph,
When a current is applied to a semiconductor laser, no laser light is emitted until the current exceeds a threshold current of 0, and only spontaneous light is emitted. The output of naturally emitted light increases little by little as the drive current increases, but when the IL current exceeds the threshold IO and the laser oscillation light is output, and the output increases, the proportion of the total emitted light becomes small.
In effect, laser emission (only light absorption is output).

自然発光光とレーザ発振光を合わせた、半導体レーザか
ら発せられる総光量と電流の量の関係は曲線Cで表わさ
れる。
The relationship between the total amount of light emitted from the semiconductor laser, which is a combination of naturally emitted light and laser oscillation light, and the amount of current is represented by a curve C.

ところで、本出願人により既に提案されている、蓄積性
蛍光体シートを利用して放射線画像情報の記録、読取り
、再生を行なう枚射線画像情報記録再生システム(特開
昭55−12429号、同55−116340号、同5
5−163472号、同56−11395号、同56−
104645号など)においては、再生すべき画像情報
の濃度の高低の幅が広いため、この画像情報を記録材料
に再生する記録光は1 :  100〜1000という
広いダイナミックレンジで変調される必要がある。この
ため、上記放射線画像を再生する記録装置の上記記録光
の光源等として半導体レーザをアナログ画像変調して用
いる場合には、自然発光光の影響の大きい低出力領域の
光も使用する必要が生じる。
Incidentally, a radiation image information recording and reproducing system for recording, reading, and reproducing radiation image information using a stimulable phosphor sheet has already been proposed by the present applicant (Japanese Patent Laid-Open No. 55-12429, No. 55). -116340, same 5
No. 5-163472, No. 56-11395, No. 56-
104645, etc.), the density of the image information to be reproduced varies widely, so the recording light for reproducing this image information onto the recording material needs to be modulated in a wide dynamic range of 1:100 to 1000. . For this reason, when analog image modulated semiconductor lasers are used as the light source of the recording light of the recording device that reproduces the radiographic images, it is necessary to also use light in a low output range that is largely affected by natural light emission. .

しかしなから、上記自然発光光はレーザ光に比べ種々の
角度成分が混在している、また、例えば縦マルチモード
の半導体レーザの場合ではレーザ光がそのスペクトル成
分が約2nmの範囲であるのに対し、約40nmに亘る
スペクトル成分を有していることにより、集束レンズに
より集束した際に、レーザ発振光はど小さなスポット径
に集束させることができないという不都合がある。この
ためレーザ発振光が支配的な高出力領域の光とともに、
自然発光光が支配的な低出力領域の光も用いた場合には
、走査の分解能が損われてしまうといった問題が生じる
However, compared to laser light, the spontaneously emitted light has various angular components mixed together, and for example, in the case of a longitudinal multi-mode semiconductor laser, laser light has spectral components within a range of approximately 2 nm. On the other hand, since the laser oscillation light has a spectral component extending over about 40 nm, there is a disadvantage that the laser oscillation light cannot be focused to a very small spot diameter when focused by a focusing lens. Therefore, along with light in the high power region where laser oscillation light is dominant,
If light in a low-power region dominated by naturally emitted light is also used, a problem arises in that the scanning resolution is impaired.

(発明の目的) 本発明は上記のような問題点に鑑みてなされたもので弱
り、半導体レーザを備えてなる光源装置において、自然
発光光の影響を低減させて、レーザ発(吸光の影響の大
きい光出力領域を広げ、低出力領域においても集束され
た光のスポット径を小ざくすることのできる半導体レー
ザ光源装置を提供することを目的とするものである。
(Object of the Invention) The present invention has been made in view of the above-mentioned problems, and is intended to reduce the influence of naturally emitted light in a light source device equipped with a semiconductor laser, and to reduce the influence of laser emission (the influence of light absorption). It is an object of the present invention to provide a semiconductor laser light source device that can expand a large optical output region and reduce the spot diameter of focused light even in a low output region.

(発明の構成) 本発明の半導体レーザ光源装置は、半導体レーザ、該半
導体レーザから射出された光の光路上に設けられたコリ
メータレンズ、該コリメータレンズを通過した光の光路
上に設けられ、入射する光の波長に応じて光の射出後の
光路を変化させる分散性光学素子、該分散性光学素子か
ら射出した光の光路上に設けられた集束光学素子、該集
束光学素子により集束せしめられた光のうち、所望の波
長の光のみを選択的に透過または反射させる空間フィル
タ、該空間フィルタを経た前記所望の波長の光の光路上
に設けられ、入射する光を平行光にするコリメータ素子
、および該コリメータ素子を通過した光の光路上に設け
られ、入射する光を前記分散性光学素子と逆に分散させ
る逆分散性光学素子からなることを特徴とするものであ
る。
(Structure of the Invention) A semiconductor laser light source device of the present invention includes a semiconductor laser, a collimator lens provided on the optical path of light emitted from the semiconductor laser, a collimator lens provided on the optical path of light passing through the collimator lens, and a dispersive optical element that changes the optical path of the emitted light according to the wavelength of the light; a focusing optical element provided on the optical path of the light emitted from the dispersive optical element; and a focusing optical element that is focused by the focusing optical element. A spatial filter that selectively transmits or reflects only light of a desired wavelength among the light; a collimator element that is provided on the optical path of the light of the desired wavelength that has passed through the spatial filter and converts the incident light into parallel light; and a reverse dispersion optical element that is provided on the optical path of the light that has passed through the collimator element and that disperses the incident light in the opposite direction to that of the dispersion optical element.

前述のように半導体レーザから発せられるレーザ発振光
の発光スペクトルはマルチ縦モードの半導体レーザでも
高々20mの範囲であるのに対し、自然発光光は40n
mに亘る発光スペクトルを有しており、前記分散性光学
素子により、レーザ発振光と同じ波長領域の光(すなわ
ち、レーザ発振光と、自然発光光の一部の光)の光路を
弛の波長の光の光路と異なるものとし、前記空間フィル
タによりレーザ発振光と同じ波長領域の光を取り出して
用いれば、分散性光学素子および空間フィルタを経たこ
とにより、自然発光光のレーザ発振光と同じ波長領域以
外の成分がカットされるので、待にレーザ発振光の立ち
上がり時に、レーザ発振光の自然発光光に対する相対的
な割合を増jJ口させることかでざる。従って従来に比
べ、より低い光出力領域までレーザ梵(吸光か支配的と
なり、また、レーザ発振光の波長領域の成分の光のみに
なるので、低出力領域の光を用いてもスポット径を十分
に小ざくすることができるようになる。
As mentioned above, the emission spectrum of the laser oscillation light emitted from a semiconductor laser is in the range of 20 m at most even with a multi-longitudinal mode semiconductor laser, whereas the range of spontaneous luminescence is 40 nm.
The dispersive optical element allows the optical path of light in the same wavelength region as the laser oscillation light (i.e., the laser oscillation light and a part of the natural light emission light) to be changed to a wavelength of If the optical path of the light is different from that of the laser oscillation light, and if the spatial filter extracts and uses light in the same wavelength range as the laser oscillation light, it will pass through the dispersive optical element and the spatial filter, and the light will have the same wavelength as the laser oscillation light of the naturally emitted light. Since components outside the area are cut, the only thing to do is to increase the relative ratio of the laser oscillation light to the naturally emitted light at the time of the rise of the laser oscillation light. Therefore, compared to the conventional method, the laser beam (light absorption) becomes dominant even in the lower optical output region, and only the light in the wavelength region of the laser oscillation light is produced, so even if the light in the low output region is used, the spot diameter can be maintained sufficiently. You will be able to make it smaller.

また分散性光学素子および空間フィルタにより取り出さ
れ、集束光学素子により集束せしめられた上記光は空間
フィルタ上において、その波長の範囲内でざらに細かい
分散が生じている。そこでこの取り出された光をコリメ
ータ素子を通過させて平行光としだ後ざらに逆分散性光
学素子により逆分散させることにより、分散を補正して
1本の平行ビームとすることができる。
Further, the light extracted by the dispersive optical element and the spatial filter and focused by the focusing optical element has a roughly fine dispersion within its wavelength range on the spatial filter. Therefore, by passing this extracted light through a collimator element to make it into parallel light, and then roughly inversely dispersing it using an inverse dispersion optical element, the dispersion can be corrected and it can be made into one parallel beam.

(実施態様) 以下、図面を参照して本発明の実施態様について説明す
る。第1図は本発明の一実施態様による半導体レーザ光
源装置の概要を示す斜視図であり、第2図はその要部の
平面図である。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view showing an outline of a semiconductor laser light source device according to an embodiment of the present invention, and FIG. 2 is a plan view of the main parts thereof.

半導体レーザ1は、電流印加されることにより、このN
流口に応じた発光量の光を発し、半導体レーザ1から発
振された光は光路上に設けられたコリメータレンズ2に
入射して平行光とされた後、入射する光の波長に応じて
光の射出後の光路を変化させる分散性光学素子であるプ
リズム3に入射する。前記半導体レーザ1は、印す口さ
れる電流に応じて前述したレーザ発(吸光と自然発光光
の2種類の光を発し、レーザ発振光はその発光スペクト
ルが約2nmの範囲にあるが、前記自然発光光はその発
光スペクトルが約4Onlllの範囲に亘っている。
The semiconductor laser 1 receives this N by applying a current.
The light emitted from the semiconductor laser 1 emits light with an amount of light depending on the flow port, and the light oscillated from the semiconductor laser 1 enters the collimator lens 2 provided on the optical path and becomes parallel light. The light enters a prism 3, which is a dispersive optical element that changes the optical path after exiting. The semiconductor laser 1 emits two types of light (absorption light and natural light emission) as described above depending on the current applied to the semiconductor laser 1. The emission spectrum of naturally emitted light spans a range of about 4 Onlll.

このため、ブ1ノズム3を通過したレーザ発lie光は
すべてほぼ同一の光路をとるが、プリズム3を通過した
自然発光光はその波長成分に応じて種々の光路をとる。
For this reason, the laser-emitted light that has passed through the prism 3 takes almost the same optical path, but the spontaneously emitted light that has passed through the prism 3 takes various optical paths depending on its wavelength components.

すなわち、第2図に示すように、プリズム3に平行光と
して入射する、種々の波長成分を有する光のうち、レー
ザ発振光の波長λ1を有する光は図中実線で示す光路を
とるが、レーザ発振光の波長以外の波長の一例である波
長λ2の光は、図中破線で示す光路をとる。このように
プリズム3から種々の方向へ射出された光は、光路上に
設けられた集束光学素子である集束レンズ4により、波
長毎に異なった位置に集束せしめられる。これらの光の
集束位置には、波長がλ!の近傍の光のみを選択的に取
り出す空間フィルタで必るスリット状ミラー5が設けら
れている。このスリット状ミラー5は、図示のようにλ
lの近傍の波長の光の集束位置に対応する部分のみに反
射ミラー5aを有しており、他の部分に入射する光は透
過または吸収するようになっている。従ってこのスリッ
ト状ミラー5を経ることによって、半導体レーザ1から
発撮された光のうち、波長λ1の近傍の光、すなわちレ
ーザ発(吸光と、自然発光光の一部のみが反射光として
取り出される。
That is, as shown in FIG. 2, among the light having various wavelength components that enters the prism 3 as parallel light, the light having the wavelength λ1 of the laser oscillation light takes the optical path shown by the solid line in the figure. Light with a wavelength λ2, which is an example of a wavelength other than the wavelength of the oscillated light, takes an optical path indicated by a broken line in the figure. The light emitted from the prism 3 in various directions in this way is focused at different positions for each wavelength by the focusing lens 4, which is a focusing optical element provided on the optical path. At the focal point of these lights, the wavelength is λ! A slit-shaped mirror 5 is provided, which is necessary for a spatial filter that selectively extracts only light in the vicinity of . This slit-shaped mirror 5 has a λ
A reflecting mirror 5a is provided only in a portion corresponding to the focusing position of light having a wavelength near l, and light incident on other portions is transmitted or absorbed. Therefore, by passing through this slit mirror 5, only part of the light near the wavelength λ1 of the light emitted from the semiconductor laser 1, that is, the laser emitted (absorbed) and spontaneously emitted light, is extracted as reflected light. .

前記スリット状ミラー5により反射された光は、その波
長の範囲内でさらに細かい分散が生じている。そこでこ
の反射された光は再び前記集束レンズ4およびプリズム
3に入射して逆分散されるようになっている。すなわら
、スリット状ミラー5により反射された光は、まず、面
記集束レンズ4に再度大剣する。この場合この集束レン
ズ4は入射する光を平行光とするコリメータ素子として
用いられる。また、集束レンズ4を通過して平行光とな
った光は、ざらに前記プリズム3にスリット状ミラー5
に入射する前とは逆方向から入射することにより逆分散
され、入射した光はすべて同一光路をとる平行光として
プリズム3から射出される。すなわち、この場合プリズ
ム3は、光を逆分散させる逆分散性素子として用いられ
ている。なお、上記のようにスリット状ミラー5により
特定波長の光を反射させた際に、スリット状ミラー5に
入射する光と反射された光の光路を空間的に分離するた
め、スリット状ミラー5は、第1図に示すように入射す
る光と反射された光の光路が図中上下方向(矢印a方向
)にずれるように、ヤヤ傾けて配されている。上記のよ
うにプリズム3により逆分散せしめられて射出された光
は必要に応じてミラー6等により光路を変化せしめられ
た後、ざらに集束レンズ等により集束せしめられ、走査
光等として用いられる。
The light reflected by the slit mirror 5 has finer dispersion within its wavelength range. The reflected light then enters the converging lens 4 and prism 3 again and is inversely dispersed. That is, the light reflected by the slit-shaped mirror 5 first strikes the surface focusing lens 4 again. In this case, the focusing lens 4 is used as a collimator element that converts incident light into parallel light. Further, the light that has passed through the converging lens 4 and has become parallel light is roughly connected to the prism 3 by the slit-shaped mirror 5.
By entering from the direction opposite to that before entering the prism, the light is reversely dispersed, and all of the incident light is emitted from the prism 3 as parallel light taking the same optical path. That is, in this case, the prism 3 is used as a reverse dispersion element that reversely disperses light. In addition, when the light of a specific wavelength is reflected by the slit mirror 5 as described above, the slit mirror 5 spatially separates the optical path of the light incident on the slit mirror 5 and the reflected light. , as shown in FIG. 1, are arranged at a slant so that the optical paths of the incident light and the reflected light are shifted in the vertical direction (direction of arrow a) in the figure. The light that is inversely dispersed and emitted by the prism 3 as described above has its optical path changed by a mirror 6 or the like as necessary, and then is roughly focused by a condenser lens or the like and used as a scanning light or the like.

上記のように、本実yi態様の装置はレーザ発振光と同
じ波長領域の光のみを選択的に取り出すものであるから
、半導体レーザから梵せられた光のうちレーザ発振光に
ついてはほぼ100%取り出される。一方自然発光光は
その波長領域が400mと広いものでおるため、最終的
に取り出されるのはその一部となるユ従って半導体レー
ザ1から発せられた光の総光量POと、最終的に取り出
された光の光ff1Pとの関係はP。>Pとなる。半導
体レーザに印)Joされる電流量と光量POおよび光量
Pの関係は第3図のグラフに示すとおりである。
As mentioned above, since the device of this embodiment selectively extracts only light in the same wavelength range as the laser oscillation light, almost 100% of the laser oscillation light is extracted from the light emitted from the semiconductor laser. taken out. On the other hand, since the wavelength range of spontaneously emitted light is as wide as 400 m, what is ultimately extracted is a portion of the light emitted from the semiconductor laser 1. The relationship between the light and the light ff1P is P. >P. The relationship between the amount of current applied to the semiconductor laser, the amount of light PO, and the amount of light P is as shown in the graph of FIG.

図中実線は光1PO1図中一点鎖線は光量Pの電流値に
応じた変化を示す。本実施態様の装置は、前述のように
自然発光光を選択的にカットするものであるため、駆動
電流がレーザ光発振の閾値電流1oを下回る間はPの値
はPoを大きく下回る。
The solid line in the figure shows the light 1PO1.The dashed line in the figure shows the change in the amount of light P depending on the current value. Since the device of this embodiment selectively cuts naturally emitted light as described above, the value of P is significantly lower than Po while the drive current is lower than the threshold current 1o for laser beam oscillation.

また、電流値が■oS−越えてレーザ発振光が出力を開
始してから自然発光光の影響がほとんどなくなる発光量
に至る間(第3図中円で囲む範囲内)はレーザ光の自然
発光光に対する相対的な割合が増加する。従って、本実
施態様の装置によれば、従来の光源装置に比べ、レーザ
発振光が支配的な発光領域がより低発光領域にまで及ぶ
ことになり、また、レーザ発振光と同じ波長領域成分の
光のみが取り出される。このため、上記のように取り出
された光を用いれば、光を集束させる際に、従来は十分
に集束したビームスポットを得られなかった低発光領域
の光についても十分に集束させることができる。
In addition, after the current value exceeds ■oS- and the laser oscillation light starts outputting, the spontaneous emission of the laser light will continue until the light emission amount reaches a point where the influence of the spontaneous emission is almost eliminated (within the range surrounded by the circle in the center of Figure 3). The relative proportion to light increases. Therefore, according to the device of this embodiment, compared to the conventional light source device, the light emitting region in which laser oscillation light is dominant extends to a lower light emitting region. Only light is extracted. Therefore, by using the light extracted as described above, when converging the light, it is possible to sufficiently converge light in a low luminescence region where it was not possible to obtain a sufficiently focused beam spot in the past.

なあ、上述した実施態様においては、空間フィルタとし
て所望の波長の光を選択的に反射するスリット状ミラー
が用いられているが、空間フィルタは所望の波長の光を
選択的に透過させるものであってもよい。その場合には
選択的に取り出された光を再び集束レンズとプリズムに
入射ざぜることができなくなるので、空間フィルタを透
過した光の光路上にレンズ等のコリメータ素子を設けて
入射する光を平行光とし、ざらにその平行光の光路上に
、入射した光を前述したプリズムと逆に分散ざぜる、プ
リズム等の逆分散性光学素子を設ければよい。また分散
性光学素子としては、前述したプリズムの他に回折格子
を用いることもできる。
Incidentally, in the embodiment described above, a slit-shaped mirror that selectively reflects light of a desired wavelength is used as a spatial filter, but the spatial filter does not selectively transmit light of a desired wavelength. It's okay. In that case, the selectively extracted light cannot be redirected into the focusing lens and prism, so a collimator element such as a lens is installed on the optical path of the light that has passed through the spatial filter to collimate the incident light. A reverse dispersion optical element such as a prism, which disperses the incident light in the opposite manner to the prism described above, may be provided on the optical path of the parallel light. In addition to the above-mentioned prism, a diffraction grating can also be used as the dispersive optical element.

また第4図に示ずように回折格子13が集束性回折格子
であれば、1次光として取り出された、波長λ!、λ2
等の光を集束させることができるので、前記集束レンズ
等の集束光学素子の機能を併せ持たせることができる。
Further, if the diffraction grating 13 is a focusing diffraction grating as shown in FIG. 4, the wavelength λ! , λ2
Since it is possible to focus light such as, it can also have the function of a focusing optical element such as the above-mentioned focusing lens.

(発明の効果) 以上説明したように、本発明の半導体レーザ光源装置に
よれば、半導体レーザから発せられる光のうち、レーザ
発振光と同様の波長領域以外の成分の光をカットするよ
うにしたことにより、自然発光光の影響を減少させ、レ
ーザ発(吸光の影響の大きい出力領域を低発光領域内に
広げることができ、また、レーザ発振光の波長領域成分
の光のみが取り出される。従って本発明の半導体レーザ
光源装置によれば、従来よりも広い出力範囲に亘って発
]辰された光を十分に小ざいスポットに集束させること
ができ、広いダイナミックレンジで光を変調し、かつ高
精度な走査を行なう必要がおる走査記録装置においても
走査先発]辰手段として好適に用いることかできる。
(Effects of the Invention) As explained above, according to the semiconductor laser light source device of the present invention, out of the light emitted from the semiconductor laser, light of components other than the same wavelength range as the laser oscillation light is cut. By doing so, it is possible to reduce the influence of naturally emitted light, expand the output region where the influence of laser emission (absorption) is large into the low emission region, and only the light in the wavelength range component of the laser oscillation light is extracted. According to the semiconductor laser light source device of the present invention, it is possible to focus the emitted light over a wider output range than conventional ones into a sufficiently small spot, modulate the light in a wide dynamic range, and It can also be suitably used as a scanning means in a scanning recording apparatus that requires accurate scanning.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は不発明の一実施態様による半導体レーザ光源装
置のIR要を示す斜視図、 第2図は上記装置の要部の平面図、 第3図は上記装置における駆動電流と選択的に取り出さ
れた光の出力の関係を、従来の半導体レーザの出力と駆
動電流の関係と比較して示すグラフ、 第4図は本発明の他の実施態様において用いられる集束
性回折格子を示す概略図、 第5図は半導体レーザの駆動電流と、自然発光光および
レーザ発振光の出力の関係を示すグラフである。 1・・・半導体レーザ   2・・・コリメータレンズ
3・・・プリズム     4・・・集束レンズ5・・
・スリット状ミラー 13・・・集束性回析格子第1図
FIG. 1 is a perspective view showing the IR essentials of a semiconductor laser light source device according to an embodiment of the invention, FIG. 2 is a plan view of the main parts of the device, and FIG. 3 is a diagram showing the drive current and selective extraction in the device. 4 is a graph showing the relationship between the output of light emitted and the relationship between the output and driving current of a conventional semiconductor laser; FIG. 4 is a schematic diagram showing a focusing diffraction grating used in another embodiment of the present invention; FIG. 5 is a graph showing the relationship between the drive current of the semiconductor laser and the output of spontaneously emitted light and laser oscillation light. 1... Semiconductor laser 2... Collimator lens 3... Prism 4... Focusing lens 5...
・Slit-shaped mirror 13...Focusing diffraction grating Figure 1

Claims (1)

【特許請求の範囲】 1)半導体レーザ、該半導体レーザから射出された光の
光路上に設けられたコリメータレンズ、該コリメータレ
ンズを通過した光の光路上に設けられ、入射する光の波
長に応じて光の射出後の光路を変化させる分散性光学素
子、該分散性光学素子から射出した光の光路上に設けら
れた集束光学素子、該集束光学素子により集束せしめら
れた光のうち、所望の波長の光のみを選択的に透過また
は反射させる空間フィルタ、該空間フィルタを経た前記
所望の波長の光の光路上に設けられ、入射する光を平行
光にするコリメータ素子、および該コリメータ素子を通
過した光の光路上に設けられ、入射する光を前記分散性
光学素子と逆に分散させる逆分散性光学素子からなる半
導体レーザ光源装置。 2)前記分散性光学素子かプリズムであり、前記空間フ
ィルタが前記所望の波長の光を選択的に反射するスリッ
ト状ミラーであり、該スリット状ミラーにより反射され
た光が前記集束光学素子およびプリズムを通過し、該集
束光学素子が前記コリメータ素子として用いられ、前記
プリズムが前記逆分散性光学素子として用いられること
を特徴とする特許請求の範囲第1項記載の半導体レーザ
光源装置。 3)前記分散性光学素子および前記集束光学素子が、両
素子の機能を併せ持つ集束性回折格子であることを特徴
とする特許請求の範囲第1項記載の半導体レーザ光源装
置。
[Claims] 1) A semiconductor laser, a collimator lens provided on the optical path of the light emitted from the semiconductor laser, and a collimator lens provided on the optical path of the light that passed through the collimator lens, depending on the wavelength of the incident light. A dispersive optical element that changes the optical path of light after exiting the dispersive optical element, a converging optical element provided on the optical path of the light emitted from the dispersive optical element, and a dispersive optical element that changes the optical path of the light emitted from the dispersive optical element; a spatial filter that selectively transmits or reflects only the light of the desired wavelength; a collimator element that is provided on the optical path of the light of the desired wavelength that has passed through the spatial filter and converts the incident light into parallel light; and a collimator element that passes through the collimator element. A semiconductor laser light source device comprising an inversely dispersive optical element that is provided on an optical path of the dispersive optical element and that disperses incident light in the opposite direction to that of the dispersive optical element. 2) The dispersive optical element is a prism, the spatial filter is a slit-like mirror that selectively reflects the light of the desired wavelength, and the light reflected by the slit-like mirror is transmitted to the focusing optical element and the prism. 2. The semiconductor laser light source device according to claim 1, wherein the focusing optical element is used as the collimator element, and the prism is used as the inverse dispersion optical element. 3) The semiconductor laser light source device according to claim 1, wherein the dispersive optical element and the focusing optical element are focusing diffraction gratings having the functions of both elements.
JP61082891A 1986-04-01 1986-04-10 Semiconductor laser beam source device Pending JPS62239434A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61082891A JPS62239434A (en) 1986-04-10 1986-04-10 Semiconductor laser beam source device
DE3750483T DE3750483T2 (en) 1986-04-01 1987-04-01 Optical system for a semiconductor laser beam.
US07/032,698 US4832469A (en) 1986-04-01 1987-04-01 Optical system for semiconductor laser beam
EP87104828A EP0240005B1 (en) 1986-04-01 1987-04-01 Optical system for semiconductor laser beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61082891A JPS62239434A (en) 1986-04-10 1986-04-10 Semiconductor laser beam source device

Publications (1)

Publication Number Publication Date
JPS62239434A true JPS62239434A (en) 1987-10-20

Family

ID=13786896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61082891A Pending JPS62239434A (en) 1986-04-01 1986-04-10 Semiconductor laser beam source device

Country Status (1)

Country Link
JP (1) JPS62239434A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533822B2 (en) 2000-10-26 2009-05-19 Datalogic S.P.A. Laser scanner for reading optical codes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533822B2 (en) 2000-10-26 2009-05-19 Datalogic S.P.A. Laser scanner for reading optical codes
US7823786B2 (en) 2000-10-26 2010-11-02 Datalogic S.P.A. Laser scanner for reading optical codes

Similar Documents

Publication Publication Date Title
JP3407893B2 (en) Semiconductor laser controller
US4832469A (en) Optical system for semiconductor laser beam
JPH06309685A (en) Laser output control device for optical information recording/reproducing device
CA2068060A1 (en) Method for spot position control in an optical output device employing a variable wavelength light source
JPS62239434A (en) Semiconductor laser beam source device
JPH04332185A (en) Forward outgoing light detection mechanism for semiconductor laser and light quantity adjusting method
JPS636890A (en) Semiconductor laser optical system
JP3645319B2 (en) Information processing device
JPH0758821B2 (en) Semiconductor laser optical system
JPS62232185A (en) Semiconductor laser optical system
JPH0588026B2 (en)
JPH0159751B2 (en)
JP3908002B2 (en) Optical pickup and optical disk apparatus
JPH01276440A (en) Semiconductor laser controller
JPS63103206A (en) Semiconductor laser optical system
US5596445A (en) Light scanning system
JP3229756B2 (en) Semiconductor laser device for optical pickup
JPS6136298B2 (en)
JPS6366527A (en) Laser optical system
KR100497380B1 (en) Light emitting module and optical pickup apparatus adopting the same
JPH05136513A (en) Output light stabilizer for semiconductor laser
JPH0951137A (en) Semiconductor-laser driving apparatus
JPS63155433A (en) Optical pickup device
JPH0687100B2 (en) Semiconductor laser beam dividing device
JPS63127442A (en) Control method for optical head exiting power