JPS6223884B2 - - Google Patents

Info

Publication number
JPS6223884B2
JPS6223884B2 JP13419579A JP13419579A JPS6223884B2 JP S6223884 B2 JPS6223884 B2 JP S6223884B2 JP 13419579 A JP13419579 A JP 13419579A JP 13419579 A JP13419579 A JP 13419579A JP S6223884 B2 JPS6223884 B2 JP S6223884B2
Authority
JP
Japan
Prior art keywords
water
waterway
overflow
cable
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13419579A
Other languages
Japanese (ja)
Other versions
JPS5659079A (en
Inventor
Masuo Ozaki
Tooru Moriwaki
Kazuhiro Ikezaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Iron Works Ltd
Original Assignee
Kurimoto Iron Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Iron Works Ltd filed Critical Kurimoto Iron Works Ltd
Priority to JP13419579A priority Critical patent/JPS5659079A/en
Publication of JPS5659079A publication Critical patent/JPS5659079A/en
Publication of JPS6223884B2 publication Critical patent/JPS6223884B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Float Valves (AREA)
  • Flow Control (AREA)

Description

【発明の詳細な説明】 この発明は幹線水路から支線水路に水位差を利
用して水を供給する定量分水装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a quantitative water distribution device that supplies water from a main waterway to a branch waterway by utilizing a water level difference.

従来のこの種のものには、幹線水路にフロート
を浮かべてこのフロートに、上部開口から流れ込
む水を下部開口から支線水路に向けて流すように
なつた取水器を取付け、それにより幹線水路の水
位の変動にかかわらずその水面から取水器の上縁
までの深さを安定に維持して取水量すなわち分水
量を一定に保つように企図したものがある。
Conventional models of this type have a float floating in the main waterway, and a water intake device is attached to this float to allow water flowing from the upper opening to flow toward the branch waterway from the lower opening, thereby reducing the water level in the main waterway. Some systems are designed to maintain a stable depth from the water surface to the upper edge of the water intake, regardless of fluctuations in the water intake, thereby keeping the amount of water intake, that is, the amount of water diverted, constant.

しかしながら、取水器内の水位は幹線水路の水
位よりも低くしかも支線水路の水位にしたがう
(一般には支線水路の水位よりやや高い)もので
あるから、支線水路の水位がほぼ一定に保たれた
安定状態において幹線水路の水位がたとえば上昇
すると、取水器はフロートとともに上昇するが取
水器内の水位は上昇しないから取水器から失なわ
れた水の重量に見合つた量だけ取水器の浮力が増
加することとなり、また逆に幹線水路の水位が下
降するとそれだけ取水器の浮力が減少することと
なり、さらに支線水路の水位が変動する場合には
幹線水路の水位の変動いかんにかかわらず取水器
の浮力が変動することとなり、このように取水器
の浮力が変動することにより、幹線水路の水面か
ら取水器の上縁までの深さが変動し取水器に流れ
込む水量が変動して実際上精度の高い定量分水を
行うことは不可能である等の欠点があつた。
However, the water level in the water intake is lower than the water level in the main canal and follows the water level in the branch canal (generally slightly higher than the water level in the branch canal), so the water level in the branch canal remains almost constant. When the water level in the main waterway rises, for example, the water intake rises with the float, but the water level inside the water intake does not rise, so the buoyancy of the water intake increases by an amount commensurate with the weight of water lost from the water intake. Conversely, if the water level of the main waterway falls, the buoyancy of the water intake will decrease accordingly, and if the water level of the branch waterway fluctuates, the buoyancy of the water intake will decrease regardless of changes in the water level of the main waterway. As the buoyancy of the water intake fluctuates in this way, the depth from the water surface of the main waterway to the upper edge of the water intake fluctuates, and the amount of water flowing into the water intake fluctuates, making it difficult to quantify the water with high precision in practice. There were drawbacks such as the impossibility of water diversion.

また従来のものの中には上記のような浮力の問
題をともなう取水器を使用しない形式のもの(た
とえば特開昭53−91777号公報)もあり、これ
は、分水槽(静水池)の水位を一定に保ち、その
分水槽の壁を越流堰となし、その越流水深を所要
の水深とすることによつて分水量を一定に保つよ
うに企図したものであるが、分水槽への浸入水量
を規正するフロートの上下動による水面波の影響
によつて、越流水深に多少の変化を生じその結果
として分水量に多少の誤差を避けることができな
い欠点があつた。
In addition, some conventional models do not use water intakes (for example, Japanese Patent Application Laid-open No. 53-91777), which have the problem of buoyancy as mentioned above. The plan was to keep the volume of water at a constant level by using the wall of the water tank as an overflow weir and making the overflow water depth the required depth. Due to the influence of water surface waves caused by the vertical movement of the float that regulates the water volume, the overflow water depth changes to some extent, and as a result, there is a drawback that some errors in the water diversion volume cannot be avoided.

この発明は上記従来のもののもつ欠点を排除
し、幹線水路から支線水路に供給する水量を幹線
水路および支線水路の水位の変動にかかわらずつ
ねに高精度に一定に保つようにした定量分水装置
を提供することを目的とするものである。
The present invention eliminates the drawbacks of the conventional devices described above, and provides a quantitative water diversion device that always keeps the amount of water supplied from the main waterway to the branch waterways constant with high precision regardless of fluctuations in the water levels of the main waterway and branch waterways. The purpose is to provide

この発明を図面に示す実施例を参照して説明す
る。
The present invention will be described with reference to embodiments shown in the drawings.

第1,2図において、1は幹線水路、2は支線
水路、3は幹線水路1から支線水路2への分岐部
に設けられた分水槽であつて、導水管4を通して
幹線水路1と連通し、分水槽3の水位H1は導水
管4のはたらきにより幹線水路1の水位H0とほ
ぼ等しく保たれるようになつている。
In Figures 1 and 2, 1 is a main waterway, 2 is a branch waterway, and 3 is a water diversion tank provided at the branch point from the main waterway 1 to the branch waterway 2, which communicates with the main waterway 1 through a water conduit 4. The water level H 1 of the water diversion tank 3 is maintained approximately equal to the water level H 0 of the main waterway 1 by the action of the water conduit 4 .

分水槽3と支線水路2との間には下部が支線水
路2と連通した区画室5が設けられ、区画室5内
には、基端が分水槽3に壁面を貫通して取付けら
れ、分水槽3から外方へ延出して先端が上向きに
開口したベンド管6が配管されている。ベンド管
6の上向き開口には蛇腹状の伸縮管7が連設さ
れ、伸縮管7の上端には上縁が溢流堰となつた環
状の溢流部材8が連設され、溢流部材8には三又
状の腕部材9が取付けられ、腕部材9の中心には
垂直に下方へ延びるロツド10が取付けられ、こ
のロツド10はベンド管6の上向き開口付近に設
けたステー11によつて支持された案内部材12
の垂直に向いた孔13内に摺動自在に貫通され、
それにより溢流部材8、伸縮管7およびベンド管
6の上向き開口は垂直線上に並び、また溢流部材
8の溢流堰は水平に保たれるようになつている。
A compartment 5 whose lower part communicates with the branch canal 2 is provided between the water diversion tank 3 and the branch waterway 2, and inside the compartment 5, the base end is attached to the water diversion tank 3 by penetrating the wall surface. A bend pipe 6 extending outward from the water tank 3 and having an upwardly opened tip is provided. A bellows-shaped telescopic pipe 7 is connected to the upward opening of the bend pipe 6, and an annular overflow member 8 whose upper edge serves as an overflow weir is connected to the upper end of the telescopic pipe 7. A three-pronged arm member 9 is attached to the arm member 9, and a rod 10 extending vertically downward is attached to the center of the arm member 9. Supported guide member 12
is slidably penetrated into a vertically oriented hole 13 of the
As a result, the upward openings of the overflow member 8, the telescopic pipe 7, and the bend pipe 6 are arranged on a vertical line, and the overflow weir of the overflow member 8 is kept horizontal.

分水槽3から区画室5にかけてそれらの上方に
フレーム14が横架され、フレーム14に設けた
軸受15に屈曲レバー16の中間部が枢着され、
レバー16の一側部先端にはフオークエンド17
を形成してこれをロツド10に設けた突起18に
滑動自在に係合させ、レバー16の他側部には雄
ねじ19を形成してこれにバランスウエイト20
を螺合し、ロツクナツト21によつて適所に固定
する。したがつて、ロツド10の昇降に応じてレ
バー16は軸受15を中心として揺動できるよう
になつていて、その揺動範囲は第1図において0
゜<θ<90゜の範囲である。
A frame 14 is horizontally suspended above the water diversion tank 3 and the compartment 5, and the middle part of the bending lever 16 is pivotally connected to a bearing 15 provided on the frame 14.
A fork end 17 is attached to the tip of one side of the lever 16.
A male thread 19 is formed on the other side of the lever 16, and a balance weight 20 is attached to it.
are screwed together and secured in place with lock nuts 21. Therefore, as the rod 10 moves up and down, the lever 16 can swing around the bearing 15, and its swing range is 0 in FIG.
The range is ゜<θ<90゜.

フレーム14にはプーリ22,23が軸支さ
れ、またプーリ24が分水槽3の水面下に、軸受
ブラケツト25に基端が枢着した揺動レバー26
の先端に軸支して設けられている。揺動レバー2
6の中間部には接手27を介して調節ボルト28
が回転自在に取付けられ、調節ボルト28は、接
手27のほぼ真上においてフレーム14に軸受2
9を介して枢着した雌ねじ30に螺合し、さらに
上端にハンドル31が取付けられ、ハンドル31
を回すことにより調節ボルト28の高さは調節可
能で、それによりプーリ24を任意の高さに設定
することができるようになつており、またロツク
ナツト32を締付けることにより設定した高さに
ロツクすることができるようになつている。
Pulleys 22 and 23 are pivotally supported on the frame 14, and the pulley 24 is below the water surface of the water diversion tank 3, and a swinging lever 26 whose base end is pivotally connected to a bearing bracket 25
It is pivotally supported at the tip of the Swing lever 2
An adjustment bolt 28 is attached to the middle part of 6 through a joint 27.
is rotatably attached, and the adjusting bolt 28 is attached to the bearing 2 on the frame 14 almost directly above the joint 27.
9, and a handle 31 is attached to the upper end of the handle 31.
The height of the adjustment bolt 28 can be adjusted by turning the bolt 28, thereby making it possible to set the pulley 24 to a desired height, and locking it at the set height by tightening the lock nut 32. It is now possible to do so.

プーリ22,23にはロープ33が懸架され、
ロープ33の一端にはロツド10の上端が連結さ
れ、またロープ33の他端はプーリ24を介して
上向きとなつてその上端にフロート34が取付け
られている。
A rope 33 is suspended between the pulleys 22 and 23,
The upper end of the rod 10 is connected to one end of the rope 33, and the other end of the rope 33 faces upward via a pulley 24, and a float 34 is attached to the upper end.

つぎに上記実施例のものの作用について説明す
る。
Next, the operation of the above embodiment will be explained.

幹線水路1の水位H0が変動しないときは、分
水槽3の水位H1および溢流部材8の上縁高さH2
は変動しないで、溢流部材8からの溢流量すなわ
ち支線水路2への分水量は支線水路2の水位H3
の変動いかんにかかわらず一定に保たれることと
なる。
When the water level H 0 of the main waterway 1 does not change, the water level H 1 of the water diversion tank 3 and the upper edge height H 2 of the overflow member 8
does not change, and the amount of overflow from the overflow member 8, that is, the amount of water diverted to the branch waterway 2, is the water level of the branch waterway 2 H 3
will remain constant regardless of fluctuations in

幹線水路1の水位H0が上昇し、したがつて分
水槽3の水位H1が上昇すると、これにともなつ
てフロート34が上昇することにより溢流部材8
も同時にフロート34の上昇量と同量だけ上昇す
ることとなる。ここで、分水槽3の水位H1の上
昇により溢流部材8が上昇して伸縮管7が第3図
から第4図に示すように伸張することが分水量に
影響を及ぼすかどうかを考えてみる。いま、伸縮
管7の保有水量を第3,4図に示すように、蛇腹
に内接する円筒部分7a(粗い斜線で示す)と、
それ以外の部分7b(細かい斜線で示す)とに分
けて考えると、水位H1が上昇し、結果として伸
縮管7の円筒部分7aの高さがhからh+△hに
変化したとき、変化後も円筒状に保たれるので水
位H1の上昇いかんにかかわらずつねに伸縮管7
は水から縦方向の力を受けることはない。したが
つてこのためロープ33にかかる張力には影響を
及ぼさない。しかし、部分7bに含まれる水の重
量は伸縮管7のひだを介してロープ33に支えら
れるので、部分7bに含まれる水量が水位H1
上昇によつて増加すればロープ33の張力を増大
させ、また伸縮管7自体も伸張するほど抵抗が増
えるからロープ33の張力を増大させる。ところ
が伸縮管7の伸張にともなつてロツド10の突起
18も上昇するのでレバー16は揺動し、バラン
スウエイト20の位置が下り、その結果レバー1
6のフオークエンド17が突起18に及ぼす上向
きの力Fが変化する。
When the water level H 0 of the main waterway 1 rises, and therefore the water level H 1 of the water diversion tank 3 rises, the float 34 rises and the overflow member 8
At the same time, the float 34 also rises by the same amount as the rise amount of the float 34. Here, let us consider whether the overflow member 8 rises due to the rise in the water level H 1 of the water diversion tank 3 and the telescopic tube 7 expands as shown in Figs. 3 and 4, which will affect the water diversion amount. Try. Now, as shown in FIGS. 3 and 4, the amount of water held in the expandable pipe 7 is determined by the cylindrical portion 7a inscribed in the bellows (indicated by coarse diagonal lines),
If we consider it separately from the other part 7b (shown with thin diagonal lines), when the water level H1 rises and as a result the height of the cylindrical part 7a of the telescopic tube 7 changes from h to h+△h, after the change The expansion pipe 7 remains cylindrical, so regardless of the rise in the water level H1 , the expansion pipe 7
does not experience any vertical force from the water. Therefore, this does not affect the tension on the rope 33. However, since the weight of the water contained in the portion 7b is supported by the rope 33 through the folds of the elastic tube 7, if the amount of water contained in the portion 7b increases due to the rise in water level H1 , the tension of the rope 33 will increase. In addition, as the telescopic tube 7 itself is extended, the resistance increases, so the tension of the rope 33 is increased. However, as the telescopic tube 7 expands, the protrusion 18 of the rod 10 also rises, causing the lever 16 to swing, lowering the balance weight 20, and as a result, the lever 1
The upward force F exerted by the fork end 17 of No. 6 on the protrusion 18 changes.

ここでバランスウエイト20の重量をW、軸受
15とロツド10との間の水平距離をa、軸受1
5からバランスウエイト20の中心までの距離を
b、レバー16のねじ部19と水平線とのなす角
をθとすると、軸受15のまわりのモーメントに
より近似的にF≒W・bcosθ/aが成立するの
で、突起18が上昇すればするほどθは小さくな
つてFは大きくなる。したがつて、W、a、bの
数値を適宜に設定することにより、先に述べた伸
縮管7の伸張にともなうロープ33の張力の増大
はロープ33の張力を弱める力Fの増大によつて
相殺されることとなるから、水位H1の上昇下降
にかかわらずロープ33にかかる張力には実質的
に影響を及ぼさず、ロープ33の張力は一定に保
たれる。
Here, the weight of the balance weight 20 is W, the horizontal distance between the bearing 15 and the rod 10 is a, and the bearing 1
5 to the center of the balance weight 20, and the angle between the threaded portion 19 of the lever 16 and the horizontal line is θ, the moment around the bearing 15 approximately satisfies F≒W・bcosθ/a. Therefore, as the protrusion 18 rises, θ becomes smaller and F becomes larger. Therefore, by appropriately setting the values of W, a, and b, the aforementioned increase in the tension of the rope 33 due to the expansion of the telescopic tube 7 can be reduced by an increase in the force F that weakens the tension of the rope 33. Therefore, regardless of the rise and fall of the water level H1 , the tension applied to the rope 33 is not substantially affected, and the tension of the rope 33 is kept constant.

以上のことから、分水槽3の水位H1が上昇し
たときフロート34はH1の上昇量と同量だけ上
昇することとなり、溢流部材8もまたH1の上昇
量と同量だけ上昇することから、H1−H2は変動
せず、したがつてH1−H2によつて決定される溢
流部材8からの溢流水量すなわち分水量は、幹線
水路1の水位H0さらには支線水路2の水位H3
変動いかんにかかわらずつねに一定に保たれ、実
際上精度の高い定量分水が行われることとなる 幹線水路1の水位H0が下降した場合にも分水
量が一定に保たれることは上記の説明から明らか
であるので詳述するのを省略する。
From the above, when the water level H1 of the water diversion tank 3 rises, the float 34 will rise by the same amount as H1 , and the overflow member 8 will also rise by the same amount as H1 . Therefore, H 1 - H 2 does not change, and therefore, the overflow water amount from the overflow member 8, that is, the water diversion amount determined by H 1 - H 2 , is determined by the water level H 0 of the main waterway 1. Regardless of fluctuations in the water level H3 of the branch canal 2, it is always kept constant, resulting in highly accurate quantitative diversion in practice.Even if the water level H0 of the main canal 1 falls, the amount of water diverted remains constant. Since it is clear from the above explanation that the value is maintained, a detailed explanation will be omitted.

また、分水槽3の任意の水位H1に対してハン
ドル31を回して調節ボルト28の調節によりプ
ーリ24を下げると、ロープ33の作用により溢
流面H2は上昇し、H1−H2の値を小さく設定でき
る。またプーリ24を上げるとH1−H2の値は大
きくなる。したがつてH1−H2をあらかじめ適宜
に設定することにより、溢流部材8からの溢流水
量すなわち分水量を任意に設定することができる
こととなる。
Further, when the pulley 24 is lowered by turning the handle 31 and adjusting the adjustment bolt 28 for an arbitrary water level H 1 of the water diversion tank 3, the overflow surface H 2 rises due to the action of the rope 33, and H 1 - H 2 You can set a smaller value. Furthermore, when the pulley 24 is raised, the value of H 1 −H 2 increases. Therefore, by appropriately setting H 1 - H 2 in advance, the amount of overflowing water from the overflow member 8, that is, the amount of water diversion can be arbitrarily set.

なお、上記実施例では分水槽3を幹線水路1の
側方に導水管4を介して離隔して設けたが、幹線
水路1内にその一部を仕切つて分水槽3を形成し
たり、または幹線水路1の側部を一部拡大して分
水槽3を形成してもよい。また上記実施例では区
画室5を設けたが場合によつては設けずに支線水
路2の一部を代用してもよい。
In the above embodiment, the water diversion tank 3 is provided at a distance from the side of the main waterway 1 via the water conduit 4, but it is also possible to partition off a part of the main waterway 1 to form the water diversion tank 3, or The water diversion tank 3 may be formed by partially enlarging the side part of the main waterway 1. Further, in the above embodiment, the compartment 5 is provided, but in some cases, it may be omitted and a part of the branch waterway 2 may be used instead.

また第5図に示すごとく、連通管35によつて
直接に導水管4とベンド管6とを連結することに
より、導水管4の出口および、ベンド管6の入口
における流体のエネルギ損失を防ぎ、分水槽3に
対する水の出入は連通管35の上側適所に設けた
開口部36によつて行わしめてもよい。また伸縮
管7は、一般に非透水性の合成繊維またはゴム等
の布地で円筒形の提灯状のものを作り各ひだに芯
金フープを入れて補強した蛇腹状のものが好まし
いが、金属や合成樹脂製の多重スリーブ(テレス
コープ型)構造のものであつてもよい。さらにプ
ーリ22,23,24とロープ33とに代えてた
とえばスプロケツトとチエーンとを利用すること
もでき、その他この発明は上記実施例の種々の変
更、修正が可能であることはいうまでもない。
Furthermore, as shown in FIG. 5, by directly connecting the water conduit 4 and the bend pipe 6 through the communication pipe 35, energy loss of the fluid at the outlet of the water conduit 4 and the inlet of the bend pipe 6 is prevented. Water may enter and exit the water division tank 3 through an opening 36 provided at a suitable position above the communication pipe 35. In addition, the expandable tube 7 is preferably a bellows-shaped tube made of a cylindrical lantern-like piece made of non-water permeable synthetic fiber or rubber fabric and reinforced by inserting a metal core hoop in each fold, but It may be of a multi-sleeve (telescope type) structure made of resin. Further, in place of the pulleys 22, 23, 24 and the rope 33, for example, sprockets and chains may be used, and it goes without saying that the present invention can be modified in various ways to the above-described embodiments.

この発明は上記のように構成したので、幹線水
路から支線水路に供給する水量を幹線水路および
支線水路の水位の変動にかかわらずつねに高精度
に一定に保つことができ、しかも構造が比較的簡
単で大きさも比較的小型で充分である等のすぐれ
た効果を有するものである。
Since this invention is configured as described above, the amount of water supplied from the main waterway to the branch waterway can always be kept constant with high precision regardless of fluctuations in the water levels of the main waterway and the branch waterway, and the structure is relatively simple. It has excellent effects such as being relatively small and sufficient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示す縦断正面図、
第2図は横断平面図、第3,4図は要部の説明
図、第5図はこの発明の他の実施例を示す要部縦
断面図である。 1……幹線水路、2……支線水路、3……分水
槽、4……導水管、5……区画室、6……噴流
管、7……伸縮管、8……溢流部材、9……腕部
材、10……ロツド、12……案内部材、14…
…フレーム、16……レバー、20……バランス
ウエイト、22,23,24……プーリ、28…
…調節ボルト、33……ロープ、34……フロー
ト。
FIG. 1 is a longitudinal sectional front view showing an embodiment of the present invention;
FIG. 2 is a cross-sectional plan view, FIGS. 3 and 4 are explanatory views of the main parts, and FIG. 5 is a longitudinal cross-sectional view of the main parts showing another embodiment of the present invention. 1... Main waterway, 2... Branch waterway, 3... Diversion tank, 4... Conveyance pipe, 5... Compartment room, 6... Jet pipe, 7... Expandable pipe, 8... Overflow member, 9 ...Arm member, 10... Rod, 12... Guide member, 14...
...Frame, 16...Lever, 20...Balance weight, 22, 23, 24...Pulley, 28...
...adjustment bolt, 33...rope, 34...float.

Claims (1)

【特許請求の範囲】 1 幹線水路から支線水路に水位差を利用して水
を供給する分水装置において、前記幹線水路から
前記支線水路への分岐部に、幹線水路と連通して
おり、また支線水路に向けて外方へ延出しその先
端が上向きに開口したベンド管を具えた分水槽を
設け、前記ベンド管の上方に、軸線が縦向きに延
びる伸縮管および上縁の溢流堰がほぼ水平に保た
れる溢流部材を順次連設し、前記分水槽の上方に
ホイール部材を回転可能に支持したフレームを設
けてこのホイール部材に索条を懸架し、また前記
分水槽の水面下に案内ホイール部材を回転可能に
設け、前記索条の一端を前記溢流部材に取付ける
とともに、索条の他端を前記案内ホイール部材を
介して上向きに導いてその上端にフロートを取付
けたことを特徴とする定量分水装置。 2 前記案内ホイール部材は前記分水槽内におけ
る高さが変更可能となつている特許請求の範囲第
1項に記載の定量分水装置。 3 乾線水路から支線水路に水位差を利用して水
を供給する分水装置において、前記幹線水路から
前記支線水路への分岐部に、幹線水路と連通して
おり、また支線水路に向けて外方へ延出しその先
端が上向きに開口したベンド管を具えた分水槽を
設け、前記ベンド管の上方に、軸線が縦向きに延
びる蛇腹状の伸縮管および上縁の溢流堰がほぼ水
平に保たれる溢流部材を順次連設し、前記分水槽
の上方にホイール部材を回転可能に支持したフレ
ームを設けてこのホイール部材に索条を懸架し、
また前記分水槽の水面下に案内ホイール部材を回
転可能に設け、前記索条の一端を前記溢流部材に
取付けるとともに、索条の他端を前記案内ホイー
ル部材を介して上向きに導いてその上端にフロー
トを取付け、前記フレームに揺動部材の中間部を
枢着し、この振動部材の一側部を前記溢流部材
に、溢流部材の上下動にともなつて揺動部材が揺
動するようにして連繋するとともに、揺動部材の
他側部にバランスウエイトを取付けたことを特徴
とする定量分水装置。 4 前記揺動部材の他側部はねじ状に形成され、
前記バランスウエイトは揺動部材の前記ねじ部に
螺合され、それにより揺動部材の枢支点からバラ
ンスウエイトの取付位置までの距離が変更可能と
なつている特許請求の範囲第3項に記載の定量分
水装置。 5 前記案内ホイール部材は前記分水槽内におけ
る高さが変更可能となつている特許請求の範囲第
3項に記載の定量分水装置。
[Scope of Claims] 1. A water diversion device that supplies water from a main waterway to a branch waterway using a water level difference, wherein a branch part from the main waterway to the branch waterway is in communication with the main waterway, and A water diversion tank is provided with a bend pipe that extends outward toward the branch waterway and has its tip opened upward, and above the bend pipe is a telescopic pipe whose axis extends vertically and an overflow weir at the upper edge. Overflow members kept approximately horizontal are successively arranged, a frame rotatably supporting a wheel member is provided above the water diversion tank, a cable is suspended from the wheel member, and A guide wheel member is rotatably provided in the cable, one end of the cable is attached to the overflow member, the other end of the cable is guided upward through the guide wheel member, and a float is attached to the upper end of the cable. Characteristic quantitative water separation device. 2. The quantitative water distribution device according to claim 1, wherein the height of the guide wheel member within the water distribution tank can be changed. 3. In a water diversion device that supplies water from a dry line waterway to a branch waterway using a water level difference, there is a water diversion device that communicates with the main waterway at the branching point from the main waterway to the branch waterway, and also has an external waterway connected to the branch waterway. A water diversion tank is provided with a bent pipe that extends toward the direction and its tip opens upward, and above the bent pipe there is a bellows-shaped telescopic pipe whose axis extends vertically and an overflow weir on the upper edge that is approximately horizontal. Overflow members to be maintained are sequentially arranged, a frame rotatably supporting a wheel member is provided above the water diversion tank, and a cable is suspended on the wheel member,
Further, a guide wheel member is rotatably provided under the water surface of the water diversion tank, one end of the cable is attached to the overflow member, and the other end of the cable is guided upward through the guide wheel member so that the upper end thereof A float is attached to the frame, an intermediate portion of a swinging member is pivotally connected to the frame, and one side of the swinging member is connected to the overflow member, and the swinging member swings as the overflow member moves up and down. 1. A quantitative water distribution device characterized in that a balance weight is attached to the other side of the swinging member. 4. The other side of the swinging member is formed into a screw shape,
Claim 3, wherein the balance weight is screwed into the threaded portion of the swinging member, so that the distance from the pivot point of the swinging member to the mounting position of the balance weight can be changed. Quantitative water separation device. 5. The quantitative water distribution device according to claim 3, wherein the height of the guide wheel member within the water distribution tank can be changed.
JP13419579A 1979-10-19 1979-10-19 Apparatus for diverging specific amount of water Granted JPS5659079A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13419579A JPS5659079A (en) 1979-10-19 1979-10-19 Apparatus for diverging specific amount of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13419579A JPS5659079A (en) 1979-10-19 1979-10-19 Apparatus for diverging specific amount of water

Publications (2)

Publication Number Publication Date
JPS5659079A JPS5659079A (en) 1981-05-22
JPS6223884B2 true JPS6223884B2 (en) 1987-05-26

Family

ID=15122648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13419579A Granted JPS5659079A (en) 1979-10-19 1979-10-19 Apparatus for diverging specific amount of water

Country Status (1)

Country Link
JP (1) JPS5659079A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148591U (en) * 1986-03-12 1987-09-19

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890406U (en) * 1981-12-09 1983-06-18 株式会社西原環境衛生研究所 Constant flow regulator
JPS58189711A (en) * 1982-04-28 1983-11-05 Kurimoto Iron Works Ltd Quantitative water diverting device
JPS59178717U (en) * 1983-05-16 1984-11-29 同和鉱業株式会社 Simple variable quantitative liquid supply device
KR200454187Y1 (en) 2007-01-13 2011-06-23 김용택 Water supply machine from control
KR101305921B1 (en) * 2011-12-02 2013-09-11 에이치씨테크 주식회사 Automatic throw-down apparatus for rise gate
RU2582882C1 (en) * 2015-04-13 2016-04-27 Михаил Иванович Голубенко Device for controlling flow rate in closed water conduit
CN105908827A (en) * 2016-06-14 2016-08-31 汪传发 Liquid level adjusting device
CN111322418B (en) * 2020-03-12 2022-05-13 深圳市鑫鸿顺科技有限公司 Chemical production is with sealed mechanism of maring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148591U (en) * 1986-03-12 1987-09-19

Also Published As

Publication number Publication date
JPS5659079A (en) 1981-05-22

Similar Documents

Publication Publication Date Title
US8043026B2 (en) Flow control system for a detention pond with tapered plunger
US7985035B2 (en) Flow control system for a detention pond
US7762741B1 (en) Flow control system for a detention pond
JPS6223884B2 (en)
US4406024A (en) Flushing controller for toilet
US8591148B2 (en) Multi-rate flow control system for a detention pond
US8585321B2 (en) Flow control system for a detention pond
JP2002014089A (en) Water-sampling device
US9051702B2 (en) Flow control system for a detention pond
US3341863A (en) Flush valve device
SU1021706A1 (en) Apparatus for maintaining water level in hydrotechnical structure
SU932469A1 (en) Device for regulating water level in pools
CA2757363C (en) Multi-rate flow control system for a detention pond
JPS6214847B2 (en)
JPS627324B2 (en)
US2723030A (en) Classifying apparatus for sand commonly called sand cones
SU875350A1 (en) Device for regulating water rate of flow in hydraulic structure
JPS6211124B2 (en)
SU1226421A1 (en) Regulator of water level in pools of water-development works
SU1062657A1 (en) Apparatus for level control in pools in water-development works
AU600119B2 (en) A flow control device for reservoirs
JPH11200350A (en) Automatic fish way gate
JP2008265492A (en) Mooring device
CN113653147A (en) Row's mouth monitoring devices with anti silt function
JP3593889B2 (en) Water level adjustment device between two communicating reservoirs