JPS62238348A - Manufacture of wear-resisting sintered composite material - Google Patents

Manufacture of wear-resisting sintered composite material

Info

Publication number
JPS62238348A
JPS62238348A JP8127386A JP8127386A JPS62238348A JP S62238348 A JPS62238348 A JP S62238348A JP 8127386 A JP8127386 A JP 8127386A JP 8127386 A JP8127386 A JP 8127386A JP S62238348 A JPS62238348 A JP S62238348A
Authority
JP
Japan
Prior art keywords
powder
sintering
heat
wear
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8127386A
Other languages
Japanese (ja)
Other versions
JPH0456101B2 (en
Inventor
Keitaro Suzuki
啓太郎 鈴木
Hiroyuki Endo
弘之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP8127386A priority Critical patent/JPS62238348A/en
Publication of JPS62238348A publication Critical patent/JPS62238348A/en
Publication of JPH0456101B2 publication Critical patent/JPH0456101B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To develop a metal-ceramics composite sintered compact excellent in heat resistance and wear resistance and suitable for valve seats for internal combustion engine, by sintering, at high temp., green compacts of a powder mixture which is composed principally of a powder of high-speed steel or heat- resisting steel and into which powders of alumina, graphite, etc., are mixed. CONSTITUTION:Alumina powder (3-7wt%) of 20mu average grain size, 1-6% Fe-P alloy powder of 15-25% P content, 1.5-3% graphite powder, and 0.8% zinc stearate as a compacting lubricant are mixed with pulverized powder of <=80 mesh of high-speed steel or martensitic heat-resisting steel. The resulting powder mixture is compacted into the desired shape at a pressure of 6tons/cm<2> and the green compact is heated to 1,000-1,200 deg.C in a heating furnace with a cracked ammonia gas atmosphere to undergo sintering, so that metal-ceramics sintering material of 7.0g/cm<3> sintered density (5% porosity) can be manufactured.

Description

【発明の詳細な説明】 この発明は自動車その他の内燃機関の弁座用に好適な、
耐熱性および耐摩耗性の優れた焼結複合材料に関するも
のである。
[Detailed Description of the Invention] This invention is suitable for valve seats of automobiles and other internal combustion engines.
This invention relates to a sintered composite material with excellent heat resistance and wear resistance.

従来、内燃機関の弁座には焼結鋼の空孔内に鉛などを溶
浸してその固体潤滑作用を利用する材料や、靭性に富む
基地中に金属炭化物または金属間化合物などの硬質相を
分散させた焼結材料が用いられている。
Conventionally, valve seats for internal combustion engines have been made using materials that utilize the solid lubricating effect of infiltrating lead into the pores of sintered steel, or materials that utilize hard phases such as metal carbides or intermetallic compounds in a tough matrix. A dispersed sintered material is used.

ところで、後者の分散硬化型材料の場合、その@!質相
にセラミックスを用いることは特に高温における耐摩耗
性の向上に極めて有用ではあるが、この複合材料はこれ
を製造する上で若干の問題があった。即ち、一般に分散
硬化型材料では基地と硬質相との結合強度が重要で、こ
れが弱い場合は相手部材との贋動時に基地から脱落して
しまい、所期の特性を保てない。
By the way, in the case of the latter dispersion hardening material, that @! Although the use of ceramics as a composite material is extremely useful for improving wear resistance, especially at high temperatures, there are some problems in manufacturing this composite material. That is, in general, the bonding strength between the matrix and the hard phase is important for dispersion-curing materials, and if this is weak, the material will fall off from the matrix during misalignment with a mating member, and the desired properties will not be maintained.

セラミックスはその種類と基地の材質との組み合せにも
よるが基地との結合強疫が概して弱く、この点の改良が
望まれていた。なお、結合強度の向上には液相焼結を行
なうのが有効な手段であるが、比較的低温で液相を生じ
る材料では基材自体または硬質相の特性が劣るし、一方
、弁座などの過酷な用途に耐える高融点材料では著しく
高温の焼結を要し、工業的には実用困難である。
Although it depends on the combination of the type of ceramic and the material of the base, the bond strength of ceramics with the base is generally weak, and improvements in this point have been desired. Liquid phase sintering is an effective means of improving bond strength, but materials that form a liquid phase at relatively low temperatures have inferior properties of the base material itself or the hard phase. High melting point materials that can withstand harsh applications require extremely high temperature sintering, making them difficult to put into practical use industrially.

発明者らはこのような事情を勘案して種々研究の結果、
硬質相とするセラミックスにはアルミナを、これと組み
合わせる基地には高速度鋼およびマルテンサイト系耐熱
鋼を選択すると共に、その混合粉中に過積のリンおよび
炭素を配合してその作用によって焼結時に部分的な液相
を生じさせ、それにより基地と硬質相の結合を強化して
所期の目的を達成することができた。
The inventors took these circumstances into account and as a result of various studies,
Alumina is selected as the hard phase ceramic, and high-speed steel and martensitic heat-resistant steel are selected as the base to be combined with this, and an excessive amount of phosphorus and carbon are added to the mixed powder and sintered by their action. At times, a partial liquid phase was created, which strengthened the bond between the matrix and the hard phase to achieve the desired purpose.

即らこの発明に係る製造法は、高速度鋼またはマルテン
サイト系耐熱鋼の粉末に重量比で3〜7%のアルミナ粉
末、02〜1.5%のリン、および1.5〜3%の黒鉛
粉末を配合して所要の形状に圧縮成形した後、温度10
00〜1200℃で焼結することを骨子とするものであ
る。
That is, the manufacturing method according to the present invention includes adding 3 to 7% alumina powder, 02 to 1.5% phosphorus, and 1.5 to 3% phosphorus to powder of high speed steel or martensitic heat-resistant steel. After blending graphite powder and compression molding into the desired shape, the temperature is 10°C.
The main idea is to sinter at a temperature of 00 to 1200°C.

ここに硬質相としてアルミナを選んだ理由は、アルミナ
は基地との反応性が低く確実に硬質相として残せること
と、アルミナの熱膨張係数と選択したM地のそれとの差
が小さく、従って焼結時や弁座として稼動中に受ける熱
履歴に対する抵抗力が高いためである。
The reason why alumina was selected as the hard phase is that alumina has low reactivity with the base and can be left as a hard phase without fail, and the difference between the coefficient of thermal expansion of alumina and that of the selected M base is small, so it is easy to sinter. This is because it has high resistance to heat history during operation as a valve seat.

また基地の材質については、部材の主体を形成する重要
な材料であり、高温硬さが高く且つ特殊な焼結方法を必
要としないことと、アルミナとの相性がよい点で高速度
鋼およびマルテンサイト系耐熱鋼が晟も適している。高
速度鋼はJ[S規格にS K H材どして、またマルテ
ンサイ]・系耐熱鋼はS U H材としで規定されでい
るが、曲名の中て゛は靭性のあるS K N51種が、
また後右の中ではN1を含イ1し比較的硬さの高いS 
U H4種が持に好ましい。これらの規格組成を第1表
に示づ。
Regarding the material of the base, it is an important material that forms the main part of the component, and it has high high-temperature hardness, does not require a special sintering method, and is compatible with alumina. Site-based heat-resistant steel is also suitable. High-speed steel is specified as J [S K H material in the S standard, and martensitic steel] and heat-resistant steel is specified as S U H material, but in the song title, ``'' indicates the tough S K N51 type.
Also, among the rear right ones, S has a relatively high hardness, including N1.
The UH4 type is particularly preferred. These standard compositions are shown in Table 1.

以下この発明を、その一実施例に基づいて説明す゛る。The present invention will be explained below based on one embodiment thereof.

先ず、第1表に示した耐熱鋼S U H4の1粒度80
メツシユ以下の合金粉末に平均粒子径20μのアルミナ
粉末を重量比で5%、黒鉛粉末を2%おにびリン含有1
120%のFe −P合金粉を3%配合し、成形潤滑剤
としてステアリン酸亜鉛0.8%を添加して充分に混合
したのら、所要の試験片および台上試験用エンジンの弁
座の形状に成形圧力6t/cmで成形して圧粉密度5.
811J/c!iiの成形体を19、次いでこの成形体
を分解アンモニアガス炉中温度1100℃で30分間焼
結して焼結密度7、 OQ/ cpA (空孔率5%)
の焼結体を作製した。
First, the grain size of heat-resistant steel S U H4 shown in Table 1 is 80.
Contains 5% by weight of alumina powder with an average particle size of 20μ and 2% of graphite powder in alloy powder of mesh size or less.
After blending 3% of 120% Fe-P alloy powder and adding 0.8% of zinc stearate as a forming lubricant and thoroughly mixing, the required test pieces and the valve seat of the bench test engine were prepared. It is molded into a shape with a molding pressure of 6t/cm and the green density is 5.
811J/c! 19, and then sintered this compact in a decomposed ammonia gas furnace at a temperature of 1100°C for 30 minutes to obtain a sintered density of 7, OQ/cpA (porosity 5%).
A sintered body was produced.

これをこの発明に係る試料1とする。This is referred to as Sample 1 according to the present invention.

次に比較のため、試料1の原料粉からアルミナのみ省き
、成形および焼結は試料1の場合と同様にした焼結体を
作製しこれを比較試料2とした。
Next, for comparison, a sintered body was prepared in which only alumina was omitted from the raw material powder of Sample 1, and the molding and sintering were performed in the same manner as in Sample 1, and this was used as Comparative Sample 2.

この試料の焼結密度は7.3  (1/ ca (空孔
率5%)である。
The sintered density of this sample is 7.3 (1/ca (5% porosity)).

同じく比較のため、試料1の配合から液相促進用のリン
と黒鉛を省き、成形および焼結は試料1の場合と同様に
した焼結体を作製してこれを比較試料3とした。この試
料の焼結密度は6.IQ/ci(空孔率21%)である
Similarly, for comparison, a sintered body was prepared as Comparative Sample 3, except that phosphorus and graphite for promoting the liquid phase were omitted from the formulation of Sample 1, and the molding and sintering were performed in the same manner as in Sample 1. The sintered density of this sample is 6. IQ/ci (porosity 21%).

次に、これらの各試料について圧点強さ、摩擦摩耗、お
よび叩き摩耗の試験を行なった。
Next, pressure point strength, friction wear, and hammer wear tests were conducted on each of these samples.

摩擦摩耗は大越式摩耗試siにより、表面硬さ1」RC
33、材質5UH3のローターに6.3kgの加重を負
荷して試験片に摺接させ、その摺動速度21011/s
ec、摺動距11t100mの条件で試験後の各試料の
摩耗量を測定し、これを硬質相無添加の試料2の場合を
100とする指数で表わした。
Frictional wear was determined by Okoshi type wear test SI, and the surface hardness was 1" RC.
33. A rotor made of material 5UH3 was loaded with a load of 6.3 kg and was brought into sliding contact with the test piece, and its sliding speed was 21011/s.
The wear amount of each sample after the test was measured under the conditions of ec, sliding distance of 11t, and 100m, and was expressed as an index, with sample 2 containing no hard phase added as 100.

また、叩き摩耗は4気筒2000ccエンジンを用いた
台上簡易試験機により、弁の弁座との接触部にはスプラ
イトの盛金を圧し、弁の開閉速度を毎分5200回とし
、ブOパン燃焼ガスで雰囲気温度を250〜400℃に
保った状態で30時間連続運転後、弁座の摩耗量を測定
し、これを試料2の場合を100とする指数で表わした
In addition, tapping wear was measured using a benchtop simple test machine using a 4-cylinder 2000cc engine. Sprite metal was pressed onto the contact area of the valve with the valve seat, the valve opening and closing speed was set to 5200 times per minute, and the valve was opened and closed at a rate of 5200 times per minute. After continuous operation for 30 hours while maintaining the ambient temperature at 250 to 400° C. with combustion gas, the amount of wear on the valve seat was measured and expressed as an index, with sample 2 being 100.

第2表は以上の試験結果を示したもので、先ず圧点強さ
を見ると、試料1と2は同等であるが、試料3はかなり
劣っている。これはリンと黒鉛を省いたので前述の焼結
温度では液相を発生せず、焼結の進行が他の試料より不
充分なためと考えられる。
Table 2 shows the above test results. First, when looking at the pressure point strength, Samples 1 and 2 are equivalent, but Sample 3 is considerably inferior. This is thought to be because, since phosphorus and graphite were omitted, no liquid phase was generated at the above-mentioned sintering temperature, and the sintering progressed more slowly than in the other samples.

次に摩擦摩耗については、試料3は硬質相を含有するに
も拘らず摩耗が試料2より多い。これは上述の理由で硬
質相と基地との結合が弱く、且つ基地自体の強度も低い
ためと考えられる。これに対して、試料1の場合は液相
の作用で硬質相と基地とが強固に結合されているために
硬質相の効果が充分に発揮され、その結果、摩耗量が試
料2の僅か一割という優れた耐摩耗性を示している。
Next, regarding frictional wear, sample 3 has more wear than sample 2 despite containing a hard phase. This is considered to be because the bond between the hard phase and the base is weak for the reasons mentioned above, and the strength of the base itself is also low. On the other hand, in the case of sample 1, the hard phase and the base are firmly bonded by the action of the liquid phase, so the effect of the hard phase is fully exhibited, and as a result, the amount of wear is only slightly equal to that of sample 2. It shows excellent wear resistance.

次に摩擦摩耗はど極端ではないが、叩き摩耗も全く同様
の現象を示している。その理由もまた、1!!原摩耗の
場合と同様と考えられる。
Next, although frictional wear is not as extreme, hammering wear shows exactly the same phenomenon. The reason is also 1! ! This is considered to be the same as in the case of original wear.

なお、基材の原料に高速度鋼粉末を用いた場合は、耐熱
鋼粉末の場合より圧粉密度の高い成形体が得られるが、
この違いは粉末中に含まれる珪素の漬によるものと考え
られる。事実、珪素含有量を0.5〜1%に減じた耐熱
鋼粉を試作した結果、前述の試料1の場合において成形
体の圧粉密度を6.2まで高めることができ、しかも基
材の特性は同等であった。
Note that when high-speed steel powder is used as the raw material for the base material, a compact with a higher green density can be obtained than when heat-resistant steel powder is used.
This difference is thought to be due to the presence of silicon contained in the powder. In fact, as a result of trial production of heat-resistant steel powder with a silicon content reduced to 0.5-1%, it was possible to increase the green density of the compact to 6.2 in the case of sample 1 mentioned above, and moreover, it was possible to increase the green density of the compact to 6.2. The characteristics were equivalent.

以−トの結果に明らかなように、この発明によれば融点
の高い原料を比較的に低温で焼結するにも拘らず、基材
の強度および硬質相と基地との接合強度ともに高く、高
温における耐摩耗性が優れ、内燃機関の弁座に適する複
合材料を低いコストで製造することができる。
As is clear from the results below, according to the present invention, although raw materials with a high melting point are sintered at a relatively low temperature, both the strength of the base material and the bonding strength between the hard phase and the matrix are high. A composite material that has excellent wear resistance at high temperatures and is suitable for valve seats in internal combustion engines can be manufactured at low cost.

以下、各原料粉の配合割合その他の限定理由について説
明する。
The mixing ratio of each raw material powder and other reasons for limitation will be explained below.

アルミナ: アルミナを選択した理由については既に述
べた。その添加量は3%未満では基地中に分散する硬質
相の吊が不足し、耐摩耗性が所期のレベルに達しない。
Alumina: The reason for choosing alumina has already been mentioned. If the amount added is less than 3%, the suspension of the hard phase dispersed in the base will be insufficient, and the wear resistance will not reach the desired level.

一方、7%を超えると粉末の圧縮性が悪くなり、成形体
の密度低下やクラックなどの成形不良をもたらす。従っ
て、3へ・7%を適正範囲とする。
On the other hand, if it exceeds 7%, the compressibility of the powder deteriorates, resulting in molding defects such as decreased density and cracks in the molded body. Therefore, the appropriate range is 3.7%.

リン: その添加量が実質02〜1.5%と少ないので
、原料粉中に均一に分散させるためFe−P合金粉の形
で配合する。Fe −P合金の液相生成開始温度は約1
050℃であり、炭素が共存すると、約980℃まで低
下する。従って1000℃以上であれば、鉄系部品の通
常の焼結温度でも基地の強度および硬質相との接合強度
が高められるため、1200℃以上の高温焼結を行なう
必要はない。ただしリンが02%未満ではその効果がな
く、一方、1.5%を越えると部材が脆くなり好ましく
ない。なお、市場で通常入手できるFe −P合金粉の
P含有値は、その製造上の理由から15〜25%の範囲
にある。従ってFe −P合金粉の形での適正配合量は
1〜6%と算出される。
Phosphorus: Since the amount added is as small as 02 to 1.5%, it is blended in the form of Fe-P alloy powder in order to uniformly disperse it in the raw material powder. The liquid phase formation start temperature of Fe-P alloy is approximately 1
050°C, and when carbon coexists, it decreases to about 980°C. Therefore, if the temperature is 1000°C or higher, the strength of the matrix and the bonding strength with the hard phase can be increased even at the normal sintering temperature for iron-based parts, so there is no need to perform high-temperature sintering at 1200°C or higher. However, if the phosphorus content is less than 0.2%, this effect will not be achieved, while if it exceeds 1.5%, the member will become brittle, which is not preferable. Note that the P content value of Fe-P alloy powder commonly available on the market is in the range of 15 to 25% due to manufacturing reasons. Therefore, the appropriate blending amount in the form of Fe--P alloy powder is calculated to be 1 to 6%.

炭素:  Fe −Pと反応して液相生成を促進し、基
材成分金属との炭化物を形成し耐摩耗性を向上させる。
Carbon: Reacts with Fe-P to promote liquid phase formation, forming carbide with base material component metal and improving wear resistance.

また、基地中に残る適当量の遊離黒鉛は相手部材とのな
じみ性の改善に役立つ。ただし、その配合量が1.5%
未満では液相および炭化物の生成が少なく、所要の耐摩
耗性が得られない。一方、過剰の場合は遊離黒鉛として
し残る量が多くなり、強度および靭性靭性の低下を招く
。従って1.5〜3%を適正配合量とする。
In addition, an appropriate amount of free graphite remaining in the matrix helps improve compatibility with the mating member. However, the blending amount is 1.5%
If it is less than that, the formation of liquid phase and carbide will be small and the required wear resistance will not be obtained. On the other hand, if it is in excess, a large amount remains as free graphite, leading to a decrease in strength and toughness. Therefore, the appropriate blending amount is 1.5 to 3%.

Claims (1)

【特許請求の範囲】[Claims] 1 金属−セラミックス系複合材料の製造において高速
度鋼またはマルテンサイト系耐熱鋼の粉末に重量比でア
ルミナ粉末を3〜7%、リンの含有量が15〜25%の
Fe−P合金粉末を1〜6%および黒鉛粉末を1.5〜
3%配合し、この混合粉を所要の形状に圧縮成形したの
ち温度1000〜1200℃で焼結することを特徴とす
る、耐熱耐摩耗性の優れた焼結複合材料の製造方法。
1. In the production of metal-ceramic composite materials, 3 to 7% by weight of alumina powder and 15 to 25% of phosphorus content Fe-P alloy powder are added to high-speed steel or martensitic heat-resistant steel powder. ~6% and graphite powder ~1.5
A method for producing a sintered composite material with excellent heat and wear resistance, which comprises blending 3% of the mixed powder into a desired shape and then sintering it at a temperature of 1000 to 1200°C.
JP8127386A 1986-04-09 1986-04-09 Manufacture of wear-resisting sintered composite material Granted JPS62238348A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8127386A JPS62238348A (en) 1986-04-09 1986-04-09 Manufacture of wear-resisting sintered composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8127386A JPS62238348A (en) 1986-04-09 1986-04-09 Manufacture of wear-resisting sintered composite material

Publications (2)

Publication Number Publication Date
JPS62238348A true JPS62238348A (en) 1987-10-19
JPH0456101B2 JPH0456101B2 (en) 1992-09-07

Family

ID=13741758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8127386A Granted JPS62238348A (en) 1986-04-09 1986-04-09 Manufacture of wear-resisting sintered composite material

Country Status (1)

Country Link
JP (1) JPS62238348A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007095957A1 (en) * 2006-02-20 2007-08-30 Fj Sintermetal A powder and a process for the production of a sintered body, and a sintered body
CN105039842A (en) * 2015-07-01 2015-11-11 内蒙古科技大学 Metallic iron and aluminum oxide ceramic composite material with high temperature resistance and wear resistance and preparation method of metallic iron and aluminum oxide ceramic composite material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007095957A1 (en) * 2006-02-20 2007-08-30 Fj Sintermetal A powder and a process for the production of a sintered body, and a sintered body
CN105039842A (en) * 2015-07-01 2015-11-11 内蒙古科技大学 Metallic iron and aluminum oxide ceramic composite material with high temperature resistance and wear resistance and preparation method of metallic iron and aluminum oxide ceramic composite material
CN105039842B (en) * 2015-07-01 2017-06-27 内蒙古科技大学 A kind of heat resistant and wear resistant metallic iron and alumina ceramic composite material and preparation method thereof

Also Published As

Publication number Publication date
JPH0456101B2 (en) 1992-09-07

Similar Documents

Publication Publication Date Title
JP4368245B2 (en) Hard particle dispersion type iron-based sintered alloy
JP2003268414A (en) Sintered alloy for valve seat, valve seat and its manufacturing method
JPH1171651A (en) Ferrous sintered alloy for valve seat
US4332616A (en) Hard-particle dispersion type sintered-alloy for valve seat use
JP2634103B2 (en) High temperature bearing alloy and method for producing the same
JP6077499B2 (en) Sintered alloy molded body, wear-resistant iron-based sintered alloy, and method for producing the same
JPS62238348A (en) Manufacture of wear-resisting sintered composite material
JPS5820906B2 (en) Carbide heat-resistant material
JP2002523689A (en) Piston made of ultrafine carbon and method of manufacturing the same
JPS6210244A (en) Sintered alloy excellent in wear resistance at high temperature
JP2001158934A (en) Method for producing wear resistant ferrous sintered alloy
JP4240761B2 (en) Al-based oxide-dispersed Fe-based sintered alloy with excellent wear resistance and method for producing the same
JPS58224154A (en) Sintered fe alloy for valve seat of internal combustion engine
JPS5810460B2 (en) Engine cylinder head manufacturing method
JPH11323512A (en) Valve guide made of ferrous sintered alloy and its production
JPS5828342B2 (en) Valve seat for internal combustion engines with excellent heat and wear resistance and machinability
JP3331963B2 (en) Sintered valve seat and method for manufacturing the same
JPS62127454A (en) Wear-resistant composite sintered material
JP2553664B2 (en) High temperature wear resistant iron-based sintered alloy
JPH07109024B2 (en) Sintered alloy for valve seat of internal combustion engine
JPH0354175B2 (en)
JPS6164858A (en) Iron compound sintered alloy for valve seat
JPS62202058A (en) Iron-base sintered alloy for valve seat
JP2000192185A (en) Aluminum alloy sintered body and its production
JP2629941B2 (en) Co-reduced composite Mo alloy powder and Fe-based sintered alloy sliding member manufactured using the same