JPS6223832B2 - - Google Patents

Info

Publication number
JPS6223832B2
JPS6223832B2 JP18412080A JP18412080A JPS6223832B2 JP S6223832 B2 JPS6223832 B2 JP S6223832B2 JP 18412080 A JP18412080 A JP 18412080A JP 18412080 A JP18412080 A JP 18412080A JP S6223832 B2 JPS6223832 B2 JP S6223832B2
Authority
JP
Japan
Prior art keywords
semi
sight
transparent mirror
reticle
aiming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18412080A
Other languages
Japanese (ja)
Other versions
JPS57108613A (en
Inventor
Tadashi Ishimaru
Takao Naganami
Kenjiro Okamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP18412080A priority Critical patent/JPS57108613A/en
Publication of JPS57108613A publication Critical patent/JPS57108613A/en
Publication of JPS6223832B2 publication Critical patent/JPS6223832B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/06Aiming or laying means with rangefinder
    • F41G3/065Structural association of sighting-devices with laser telemeters

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 砲による射撃の命中精度に関する主要因として
は、射距離、パララツクス、弾種、弾丸の初速、
目標の運動等があり、射撃の精度を高めるために
は、前記命中精度に関する主要因を含んだ砲身の
方向修正が必要となつてくる。近年小型コンピユ
ータ、レーザー測遠機等の著しい進歩に伴つて、
射距離はレーザー測遠機を用いて測距精度が上
り、この射距離、パララツクス、弾種、弾丸の初
速、目標の運動等命中精度に関する要因をコンピ
ユーターに入れ、未来修正量を計算し砲身の方向
修正を行なう試みがなされている。射撃統制装置
の一環である照準眼鏡も、この様な試みの中で眼
鏡内に射撃照準用の移動レチクルを設け、前記コ
ンピユーターによつて計算された未来修正量だけ
移動レチクルを自動的に移動させ、方向修正に相
当する射撃照準視線が容易に得られるような工夫
がいろいろなされている。
[Detailed Description of the Invention] The main factors related to the accuracy of gunfire are shooting distance, parallax, bullet type, initial velocity of bullet,
In order to improve shooting accuracy due to the movement of the target, it is necessary to correct the direction of the gun barrel, which takes into account the main factors related to hit accuracy. In recent years, with the remarkable progress of small computers and laser distance measuring devices,
The accuracy of firing distance is improved by using a laser rangefinder, and factors related to accuracy such as firing distance, parallax, bullet type, initial velocity of the bullet, target movement, etc. are entered into a computer, and future correction amounts are calculated and the gun barrel is adjusted. Attempts are being made to make direction corrections. The aiming glasses, which are a part of the fire control system, were also developed in this way by installing a movable reticle for aiming the gun inside the glasses, and automatically moving the movable reticle by the amount of future correction calculated by the computer. Various measures have been taken to make it easier to obtain a line of sight for shooting, which corresponds to direction correction.

この様な場合レーザー測遠機系の測遠照準点
は、照準眼鏡の視野内のレチクル上に射撃照準指
標と共に測遠照準指標として表示されていること
が照準動作として望ましい。しかし一般にはレー
ザー測遠機系の測遠視準線は固定されているた
め、前記移動レチクルが動くことによつて射撃照
準視線が変わると、照準眼鏡の視野内には射撃照
準指標と測遠照準指標が異つた場所に表示される
ことになる。このため射撃の照準動作は、まず測
遠照準指標で目標を備え、測距を行なつた後、射
撃照準指標で目標を捕え射撃するという2重の動
作が必要となつていた。
In such a case, it is desirable for the aiming operation that the distance measuring aiming point of the laser distance measuring device system is displayed as a distance measuring aiming indicator together with the shooting aiming indicator on the reticle within the field of view of the aiming glasses. However, in general, the distance measurement line of sight of a laser rangefinder system is fixed, so when the shooting sight line of sight changes due to the movement of the movable reticle, the shooting sight index and distance measurement sight line will appear within the field of view of the sight glasses. The indicators will be displayed in different places. For this reason, the aiming operation for shooting required a double operation: first setting the target with the distance measuring sight index, measuring the distance, and then capturing the target with the shooting sight index and firing.

例えば第1図はレーザー測遠機系20と照準眼
鏡系10とをもつ従来装置の基本的な概略構成を
示すもので、これにより従来技術を説明する。第
1図において照準眼鏡系10は対物レンズ11、
正立プリズム12、接眼レンズ13、移動レチク
ル14、固定レチクル15より構成されている。
レーザー測遠機系20は、対物レンズ21と接眼
レンズ22で構成される逆ガリレオ型ビームエキ
スパンダーとレーザー23によるレーザー送信系
と対物レンズ21、穴明ミラー24、全反射ミラ
ー25、ピンホールマスク26、リレーレンズ2
7、受光センサー28によるレーザー受信系より
構成されている。ここで穴明ミラー24はレーザ
ー送信時にはミラーに設けられた穴の部分をレー
ザー光が通過し、レーザー受信系にのみ全反射作
用をもつものである。通常この様な光学装置で
は、原理的には照準眼鏡系10の光軸16とレー
ザー測遠機系20の光軸29が、光学装置を砲に
取りつけた時、砲軸線と一致すればよいわけで、
この場合照準眼鏡系10の視野内には第2図に示
す様に射撃照準指標40の中心と測遠照準指標4
1を同一中心位置に設定することが可能である。
For example, FIG. 1 shows a basic schematic configuration of a conventional device having a laser rangefinder system 20 and a sighting glasses system 10, and the conventional technique will be explained using this diagram. In FIG. 1, the sighting glasses system 10 includes an objective lens 11,
It is composed of an erecting prism 12, an eyepiece 13, a movable reticle 14, and a fixed reticle 15.
The laser distance measuring system 20 includes an inverted Galilean beam expander consisting of an objective lens 21 and an eyepiece 22, a laser transmission system using a laser 23, an objective lens 21, a perforated mirror 24, a total reflection mirror 25, and a pinhole mask 26. , relay lens 2
7. Consists of a laser receiving system using a light receiving sensor 28. Here, the perforated mirror 24 allows the laser beam to pass through a hole provided in the mirror during laser transmission, and has a total reflection effect only on the laser receiving system. Normally, with such an optical device, in principle, the optical axis 16 of the sighting glasses system 10 and the optical axis 29 of the laser rangefinder system 20 only need to coincide with the gun axis when the optical device is attached to the gun. in,
In this case, as shown in FIG.
1 can be set at the same central position.

ところで、前述のように、射撃の命中精度を高
めようとすると砲身の方向修正を行なう必要があ
り、このため照準眼鏡系10内にその案内となる
ような射撃照準指標を得なければならない。従つ
て通常は第2図に示したような射撃照準指標40
の刻まれているレチクル14(第1図)を移動レ
チクルとし、前述した命中精度を上げるための要
因を考慮した計算結果に基づきこの移動レチクル
を移動させ、その移動後の射撃照準指標40をも
とに砲身の方向修正を行なつている。
By the way, as mentioned above, in order to improve the accuracy of shooting, it is necessary to correct the direction of the gun barrel, and for this purpose, it is necessary to provide a shooting aiming index in the sighting glasses system 10 to serve as a guide. Therefore, normally a shooting sight indicator 40 as shown in FIG.
The reticle 14 (Fig. 1) engraved with is used as a moving reticle, and this moving reticle is moved based on the calculation results that take into account the factors for increasing the accuracy mentioned above, and the shooting aiming index 40 after the movement is also determined. The direction of the gun barrel is being corrected.

第3図はこのようすを示す原理図であり、対物
レンズ50、接眼レンズ51、レチクル52から
成る照準眼鏡系を表わしている。同図において、
最初の射撃照準視線が光軸53と合致していたと
すると、砲身の方向修正量に応じた照準眼鏡の未
来修正量θ(修正された射撃照準視線53′)が
決まれば、対物レンズ50の焦点距離をfとして
f.tanθ=hだけ射撃照準指標をもつたレチクル
52をP点からP′点へと移動させればよい。その
うえで、移動させた射撃照準指標が目標と合致す
るように照準眼鏡系を移動をさせれば(同時にこ
れと一体の砲身が方向修正される。)、未来修正量
を考慮した照準動作が完了することになる。な
お、ここでは説明を簡略化するため一平面内での
修正について示したが、一般にはθは立体的(第
3図で紙面に対して垂直な方向での成分も含
む。)になるので、射撃照準指標は第4図の如く
P点からP′点へとx軸方向成分hx、y軸方向成
分hyだけ移動することになる。
FIG. 3 is a principle diagram illustrating this process, and shows a sighting glasses system consisting of an objective lens 50, an eyepiece lens 51, and a reticle 52. In the same figure,
Assuming that the initial shooting sight line of sight coincides with the optical axis 53, once the future correction amount θ (corrected shooting sight line of sight 53') of the sight glasses corresponding to the amount of direction correction of the gun barrel is determined, the focus of the objective lens 50 can be determined. Let the distance be f
It is sufficient to move the reticle 52 having the shooting aiming index by f.tanθ=h from point P to point P'. Then, if the aiming glasses system is moved so that the moved shooting aiming index matches the target (and at the same time, the direction of the gun barrel that is integrated with this is corrected), the aiming operation that takes into account the amount of future correction is completed. It turns out. In order to simplify the explanation, here we have shown the correction within one plane, but in general, θ is three-dimensional (including the component in the direction perpendicular to the plane of the paper in Fig. 3), so As shown in FIG. 4, the shooting aiming index moves from point P to point P' by an x-axis component hx and a y-axis component hy.

こうして第4図のように射撃照準指標をP点か
らP′点へと移動させた後、このP′点で目標を捕え
て射撃することになるが、レーザー測遠機系では
その測遠視準線が照準眼鏡系の光軸に対し変化す
ることがないため(砲準線と一致しているの
で)、測遠視準線の指標41は第2図と同様第4
図でも同じ41の位置にある。従つて射撃の照準
動作はまず第2図の測遠視準指標41を目標に合
わせて測距し、またその他の要因をも加味して移
動させた第4図P′点の射撃照準指標で目標を捕え
て射撃を行なうという2動作が必要となる。この
ような照準動作では目標が静止している状態なら
ばともかく、目標が移動し、これを追尾しながら
照準を行なおうとする際には極めて不都合であ
る。すなわち、一旦測遠機系で目標を捕え、修正
された射撃照準指標で再度目標を捕えた時にすで
に測遠機系の測遠視準線は目標と合致しておら
ず、そのまま測距をすることができない。従つて
距離を変えながら移動してゆく目標に対しては命
中精度の低下が避けられない欠点であつた。
After moving the shooting aiming index from point P to point P' as shown in Figure 4, the target is captured and shot at this point P', but with a laser rangefinder system, the rangefinder sight indicator is moved from point P to point P'. Since the line does not change with respect to the optical axis of the sighting glasses system (because it coincides with the gun sight line), the indicator 41 of the distance measurement sight line is set at the 4th point as in Fig. 2.
It is at the same position 41 in the figure. Therefore, in the aiming operation for shooting, first measure the distance using the distance measuring sighting indicator 41 shown in Figure 2 to match the target, and then use the shooting aiming indicator at point P' in Figure 4, which has been moved taking other factors into consideration. Two actions are required: catching the object and shooting. This type of aiming operation is extremely inconvenient if the target is stationary, but if the target is moving and you are attempting to aim while tracking it. In other words, once you have captured the target with the rangefinder system, and then captured the target again with the corrected shooting aiming index, the rangefinder system's line of sight no longer matches the target, and you can continue measuring the distance as is. I can't. Therefore, a drop in accuracy was an unavoidable drawback for targets that moved while changing distance.

本発明は以上の事情に鑑み、射撃の照準動作が
2動作となることを改善し、目標に対して射撃照
準指標を合致させることで、例えば目標が移動し
ているものであつても上記の照準動作のみで測距
しながら未来修正量を考慮した照準状態を継続さ
せることが可能となるものである。
In view of the above circumstances, the present invention improves the fact that the aiming action for shooting requires two movements, and by matching the shooting aiming index with the target, the above-mentioned method can be achieved even when the target is moving. This makes it possible to continue aiming while taking future correction amounts into consideration while measuring distance using only aiming operations.

以下、本発明の一実施例につき添付図面に従つ
て詳述する。第5図は本発明光学装置の一実施例
を示すものであり、第5図に示す様にレーザー測
遠機系60と照準眼鏡系70及照準眼鏡系の一部
を構成するレチクル投影光学系80より構成され
ている。レーザー測遠機系60は対物レンズ61
に接眼レンズ62で構成される逆ガリレオ型ビー
ムエキスパンダーとレーザー63によるレーザー
送信系と対物レンズ61、穴明ミラー64、全反
射ミラー65、ピンホールマスク66、リレーレ
ンズ67、受光センサー68より構成されてい
る。ここで穴明ミラー64はレーザー送信時には
ミラーに設けられた穴の部分をレーザー光が通追
し、レーザー受信系にのみ全反射ミラーの作用を
持つものである。一方照準眼鏡系70は対物レン
ズ71、正立プリズム72、接眼レンズ73、及
び投影レンズ81、光路変換用全反射ミラー8
3、レチクル82、照明ランプ84より構成され
るレチクル投影光学系80より構成されており、
レチクル投影光学系80よりの光線束は、前記対
物レンズ71の先端部に照準眼鏡系の光軸75に
対して斜め(45゜)に傾いておかれた半透鏡77
の一方の反射面79によつて反射され、前記対物
レンズ71に入射し、対物レンズ71の焦点面に
レチクル82の光像レチクルを形成している。こ
こで半透鏡77の照準眼鏡系70の光軸75に対
する傾角を変えると光像レチクル74は対物レン
ズ71の焦点面で移動し、照準のための移動レチ
クルとなる。一方レーザー測遠機系の光線69は
光路変換用全反射ミラー76で全反射され、更に
前述の半透鏡77のレチクル投影光学系80の光
線束を反射させた面79の裏面78によつて光線
85の方向に反射される。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the accompanying drawings. FIG. 5 shows an embodiment of the optical device of the present invention, and as shown in FIG. 5, a laser distance measuring system 60, a sighting glasses system 70, and a reticle projection optical system forming a part of the sighting glasses system are shown in FIG. It is composed of 80. The laser distance measuring device system 60 has an objective lens 61
It consists of an inverted Galilean beam expander consisting of an eyepiece 62, a laser transmission system using a laser 63, an objective lens 61, a perforated mirror 64, a total reflection mirror 65, a pinhole mask 66, a relay lens 67, and a light receiving sensor 68. ing. Here, the perforated mirror 64 has the effect of a total reflection mirror only in the laser receiving system, with the laser light passing through the hole provided in the mirror during laser transmission. On the other hand, the sighting glasses system 70 includes an objective lens 71, an erecting prism 72, an eyepiece lens 73, a projection lens 81, and a total reflection mirror 8 for changing the optical path.
3. It is composed of a reticle projection optical system 80 composed of a reticle 82 and an illumination lamp 84.
A beam of light from the reticle projection optical system 80 is transmitted through a semi-transparent mirror 77 which is tilted obliquely (45 degrees) with respect to the optical axis 75 of the sighting glasses system at the tip of the objective lens 71.
The light is reflected by one reflecting surface 79 and enters the objective lens 71, forming an optical image reticle of a reticle 82 on the focal plane of the objective lens 71. Here, when the inclination angle of the semi-transparent mirror 77 with respect to the optical axis 75 of the aiming glasses system 70 is changed, the optical image reticle 74 moves in the focal plane of the objective lens 71, and becomes a moving reticle for aiming. On the other hand, the light beam 69 from the laser rangefinder system is totally reflected by the total reflection mirror 76 for changing the optical path, and further reflected by the back surface 78 of the surface 79 of the semi-transparent mirror 77 that reflects the light beam from the reticle projection optical system 80. It is reflected in the direction of 85.

本発明による光学装置をこの様に構成すると、
前記半透鏡77の照準眼鏡系の光軸75に対する
傾角を変えることにより、レーザー測遠機の測遠
視準線が照準眼鏡系の射撃照準視線に連動して動
くようになり、照準動作が容易になるが、その様
子を第6図で詳しく説明する。
When the optical device according to the present invention is configured in this way,
By changing the inclination angle of the semi-transparent mirror 77 with respect to the optical axis 75 of the sighting glasses system, the distance measurement line of sight of the laser rangefinder moves in conjunction with the shooting sight line of the sighting glasses system, facilitating the aiming operation. However, this situation will be explained in detail with reference to FIG.

第6図においてレーザー測遠機系の光軸は光線
69で表わされているものとし、レーザー測遠機
系の測遠視準線は光軸の向く方向と同一とすれ
ば、最初に半透鏡77が照準眼鏡系の光軸75に
対して45゜に傾いて置かれている時には、測遠視
軸線85は照準眼鏡系の光軸75と同一方向とな
る。一方、レチクル投影光学系のレチクル中心が
レチクル投影光学系の光軸上にあるとすれば、こ
の像は照準眼鏡系の光軸上P点に結像されるの
で、照準眼鏡系の射撃照準視線は照準眼鏡系の光
軸75と同一となりレーザー測遠機系の測遠視準
線85と合致する。
In Fig. 6, the optical axis of the laser distance meter system is represented by the ray 69, and if the distance measurement line of sight of the laser distance meter system is the same as the direction in which the optical axis faces, then first When the lens 77 is placed at an angle of 45 degrees with respect to the optical axis 75 of the sighting goggle system, the distance measurement axis 85 is in the same direction as the optical axis 75 of the sighting goggle system. On the other hand, if the reticle center of the reticle projection optical system is on the optical axis of the reticle projection optical system, this image is formed at point P on the optical axis of the sighting glasses system, so the shooting sight line of the sight glasses system is is the same as the optical axis 75 of the aiming glasses system, and coincides with the distance measuring line of sight 85 of the laser distance measuring device system.

次に半透鏡77がθ/2だけ傾きを変えて7
7′の位置に動いたとすると、レーザー測遠機系
の測遠視軸線85はθ傾き85′となる。
Next, the semi-transparent mirror 77 changes its tilt by θ/2 and
If it moves to the position 7', the distance measuring axis 85 of the laser distance measuring device system has an inclination θ of 85'.

一方レチクル投影光学系の光軸は86で示され
る様に照準眼鏡系の光軸75よりθだけ傾きレチ
クルの中心の像は対物レンズ71によつてP′点に
結ばれる。この時P点からP′点への移動量は対物
レンズの焦点距離をf′とすれば′=f′tanθで表
わされる。従つて照準眼鏡系の射撃照準視線は
P′点とレンズ71の中心を結ぶ線87で表わさ
れ、′=f′tanθであるので、射撃照準視線87
はレーザー測遠機系の測遠視準線85′と平行に
なるので、半透鏡77の傾角を変えることにより
砲身の方向修正量に応じた照準眼鏡の未来修正量
だけ光像レチクルを移動し、同時にレーザー測遠
機系の測遠視準線を照準眼鏡系の射撃照準視線と
常に合致させることが出来る。
On the other hand, as shown at 86, the optical axis of the reticle projection optical system is inclined by θ from the optical axis 75 of the sighting glasses system, and the image of the center of the reticle is focused by the objective lens 71 at point P'. At this time, the amount of movement from point P to point P' is expressed as '=f' tan θ, where f' is the focal length of the objective lens. Therefore, the sight line of sight for sight glasses is
It is represented by a line 87 connecting the point P′ and the center of the lens 71, and since ′=f′tanθ, the shooting sight line 87
is parallel to the distance measurement line of sight 85' of the laser distance measurement system, so by changing the inclination of the semi-transparent mirror 77, the optical image reticle is moved by the amount of future correction of the aiming glasses corresponding to the amount of direction correction of the gun barrel. At the same time, the distance measuring line of sight of the laser rangefinder system can always be aligned with the shooting sight line of the sighting glasses system.

第6図では説明の煩雑になるのを避けるために
正立プリズム等は省略して基本的構成だけを示し
てあり、また一平面内での説明にとどめてある
が、一般にはθは立体的な量で表されていること
は第4図に示した場合と同様である。
In Figure 6, to avoid complicating the explanation, only the basic configuration is shown, omitting the erecting prism, etc., and the explanation is limited to one plane, but in general, θ is three-dimensional. The fact that it is expressed as a quantity is the same as in the case shown in FIG.

また、最近はレーザー測遠機系のレーザーとし
てYAGレーザーを用いることが多いが、この様
な場合には第5図に示す半透鏡の片面78は第7
図に示す如くYAGレーザーの波長を反射し、可
視光を透過するダイクロイツク膜を形成し、その
裏面79には可視光に対して半透鏡となる半透膜
を形成することにより、レーザーのパワーを有効
に利用することが出来る。またこの半透鏡は50%
反射、50%透過のみを意味するわけではなく、レ
チクル投影光学系の明るさ等に応じて、適当に反
射と透過の割合を変えてもよいことは云うまでも
ない。
In addition, recently, YAG lasers are often used as lasers in laser distance measuring systems, but in such cases, one side 78 of the semi-transparent mirror shown in FIG.
As shown in the figure, a dichroic film that reflects the wavelength of the YAG laser and transmits visible light is formed, and a semi-transparent film that acts as a semi-transparent mirror for visible light is formed on the back surface 79, thereby increasing the laser power. can be used effectively. Also, this semi-transparent mirror is 50%
It goes without saying that this does not mean only reflection and 50% transmission, and the ratio of reflection and transmission may be changed as appropriate depending on the brightness of the reticle projection optical system.

以上に詳述してきたように、本発明光学装置に
よれば測遠機の測遠視準線を、未来修正量に応じ
て移動する光像式レチクルによる射撃照準指標の
移動と連動し、これと合致するように変化させる
ための常に測距を継続させながら未来修正を伴つ
た照準を行なつてゆくことができる。従つて移動
中の目標あるいはその移動過程で射撃距離が刻々
と変化しているような物体であつてもその目標に
対して測遠照準指標を合致させて追尾してゆけ
ば、いつでも命中精度の高い射撃を実行できるも
のである。
As described in detail above, according to the optical device of the present invention, the distance measuring line of sight of the distance measuring device is linked with the movement of the shooting aiming index by the optical image reticle, which moves according to the amount of future correction, and It is possible to carry out aiming with future correction while constantly measuring the distance in order to change it so that it matches. Therefore, even if you are shooting a moving target or an object whose shooting distance is changing moment by moment during the movement process, you can always improve your accuracy by aligning the distance measurement aiming index with the target and tracking it. It is capable of high-level shooting.

なお、本発明思想の範囲内で他の種々の変形実
施例も考え得るもので、本発明が単に図示した実
施例にのみ限定されるものではないことは言うま
でもない。
It should be noted that various other modified embodiments can be considered within the scope of the idea of the present invention, and it goes without saying that the present invention is not limited to the merely illustrated embodiments.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置の概略構成図である。第2図
は一般の照準眼鏡系でみられるレチクル像ならび
に測遠視準表示を示す図である。第3図は移動レ
チクルを含む照準眼鏡系の説明図である。第4図
は移動レチクルを含む照準眼鏡系におけるレチク
ル像ならびに測遠視準表示を示す図である。第5
図は本発明の一実施例を示す概略構成図である。
第6図は第5図における半透鏡の作用を説明する
ための説明図である。第7図は第5図あるいは第
6図における半透鏡の測遠機側反射面の分光特性
を示す図である。 10……照準眼鏡系、11……対物レンズ、1
2……正立プリズム、13……接眼レンズ、14
……移動レチクル、20……測遠機系、23……
レーザー光源、24……穴明ミラー、28……受
光センサー、40……射撃照準指標、41……測
遠視準指標、50……対物レンズ、51……接眼
レンズ、60……測遠機系、70……照準眼鏡
系、80……レチクル投影光学系、81……投影
レンズ、82……レチクル、83……全反射ミラ
ー、84……照明ランプ、74……光像レチク
ル。
FIG. 1 is a schematic configuration diagram of a conventional device. FIG. 2 is a diagram showing a reticle image and distance measuring collimation display seen in a general sighting glasses system. FIG. 3 is an explanatory diagram of a sighting glasses system including a moving reticle. FIG. 4 is a diagram showing a reticle image and distance measuring collimation display in an aiming glasses system including a moving reticle. Fifth
The figure is a schematic configuration diagram showing one embodiment of the present invention.
FIG. 6 is an explanatory diagram for explaining the action of the semi-transparent mirror in FIG. 5. FIG. 7 is a diagram showing the spectral characteristics of the reflecting surface of the semi-transparent mirror on the distance measuring device side in FIG. 5 or 6. FIG. 10... Sighting glasses system, 11... Objective lens, 1
2... Erecting prism, 13... Eyepiece, 14
...Moving reticle, 20... Distance meter system, 23...
Laser light source, 24... Hole mirror, 28... Light receiving sensor, 40... Shooting aiming indicator, 41... Distance measuring collimation indicator, 50... Objective lens, 51... Eyepiece lens, 60... Distance meter system , 70... Aiming glasses system, 80... Reticle projection optical system, 81... Projection lens, 82... Reticle, 83... Total reflection mirror, 84... Illumination lamp, 74... Optical image reticle.

Claims (1)

【特許請求の範囲】 1 レーザー測遠機系と照準眼鏡系を持つた光学
装置において、照準眼鏡系の対物レンズの先端部
に照準眼鏡系の光軸に対して半透鏡を傾けて配置
し、照準眼鏡系の一部を構成するレチクル投影光
学系の光線束を前記半透鏡を介して照準眼鏡系の
対物レンズに入射させ、前記半透鏡の照準眼鏡系
の光軸に対する傾角を変えることにより照準眼鏡
系の視野内に光像式の照準のための移動レチクル
を形成させると共に、レーザー測遠機系の光線束
を、前記半透鏡のレチクル投影系の光線束を反射
させる面の裏面を用いて反射させるように構成
し、前記半透鏡の照準眼鏡系の光軸に対する傾角
を変えることによりレーザー測遠機系の測遠視準
線が照準眼鏡系の射撃照準視線に連動して動くよ
うにしたことを特徴とする光学装置。 2 前記半透鏡の一面にはYAGレーザーの波長
を反射し、可視光を透過するダイクロイツク膜を
形成し、その裏面には可視光に対して半透鏡とな
る半透膜を形成した特許請求の範囲第1項に記載
の光学装置。
[Scope of Claims] 1. In an optical device having a laser rangefinder system and a sighting glasses system, a semi-transparent mirror is arranged at the tip of the objective lens of the sighting glasses system so as to be inclined with respect to the optical axis of the sighting glasses system, A beam of light from a reticle projection optical system forming a part of the sighting glasses system is made incident on the objective lens of the sighting glasses system through the semi-transparent mirror, and aiming is performed by changing the inclination angle of the semi-transparent mirror with respect to the optical axis of the sight glasses system. A movable reticle for optical aiming is formed within the field of view of the eyeglass system, and the beam from the laser rangefinder system is reflected by using the back surface of the surface of the semi-transparent mirror that reflects the beam from the reticle projection system. By changing the inclination angle of the semi-transparent mirror with respect to the optical axis of the sighting glasses system, the distance measuring line of sight of the laser rangefinder system moves in conjunction with the shooting sight line of sight of the sight glasses system. An optical device featuring: 2. A dichroic film that reflects the wavelength of the YAG laser and transmits visible light is formed on one side of the semi-transparent mirror, and a semi-transparent film that becomes a semi-transparent mirror for visible light is formed on the back side of the semi-transparent mirror. The optical device according to scope 1.
JP18412080A 1980-12-26 1980-12-26 Optical device Granted JPS57108613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18412080A JPS57108613A (en) 1980-12-26 1980-12-26 Optical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18412080A JPS57108613A (en) 1980-12-26 1980-12-26 Optical device

Publications (2)

Publication Number Publication Date
JPS57108613A JPS57108613A (en) 1982-07-06
JPS6223832B2 true JPS6223832B2 (en) 1987-05-25

Family

ID=16147719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18412080A Granted JPS57108613A (en) 1980-12-26 1980-12-26 Optical device

Country Status (1)

Country Link
JP (1) JPS57108613A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212548U (en) * 1988-07-07 1990-01-25
BE1024403B1 (en) * 2016-07-15 2018-02-14 Fn Herstal S.A. Aiming system

Also Published As

Publication number Publication date
JPS57108613A (en) 1982-07-06

Similar Documents

Publication Publication Date Title
US3749494A (en) Gun sighting and ranging mechanism
US9372051B2 (en) System for automatically aligning a rifle scope to a rifle
JP4932519B2 (en) Improved "movable red dot" aiming device
US9303952B2 (en) Combination sight
KR100210309B1 (en) Night vision weapon sight
JP7394135B2 (en) Direct extended view optics
US7516571B2 (en) Infrared range-finding and compensating scope for use with a projectile firing device
US4168429A (en) Infrared borescope device and method of boresight alignment of a weapon
CA2432720C (en) Two aligning devices and an alignment method for a firing simulator
JP2019523387A (en) Finder with movable red dots and illuminator
JP2001050742A (en) Optical distance measuring device
US4213700A (en) Fire control device
US5410398A (en) Automatic boresight compensation device
AU2017297739B2 (en) Telescopic sight
JPWO2020106340A5 (en)
JPS6223832B2 (en)
JPH08633Y2 (en) Optical device
US5264913A (en) Reduced combiner helicopter sight system
CN208334775U (en) A kind of reflex sight
CN2606337Y (en) Gyrotheodolites with laser calibrators
CN108388010A (en) A kind of reflex sight
JPS5834420A (en) Optical device
RU200120U1 (en) OPTICAL DEVICE FOR CONTROL OF THE SIGHTING LINE OF THE SIGHT WITH THE AXIS OF THE GUN BARREL
JPS6223831B2 (en)
JPH023969B2 (en)