JPS62238047A - Production of alloy for hydrogen storage - Google Patents

Production of alloy for hydrogen storage

Info

Publication number
JPS62238047A
JPS62238047A JP8035486A JP8035486A JPS62238047A JP S62238047 A JPS62238047 A JP S62238047A JP 8035486 A JP8035486 A JP 8035486A JP 8035486 A JP8035486 A JP 8035486A JP S62238047 A JPS62238047 A JP S62238047A
Authority
JP
Japan
Prior art keywords
mold
ingot
casting
hydrogen
hydrogen storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8035486A
Other languages
Japanese (ja)
Inventor
Kenzo Miura
三浦 健藏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP8035486A priority Critical patent/JPS62238047A/en
Publication of JPS62238047A publication Critical patent/JPS62238047A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve the spreading property and the fatigue strength and also to improve the durability at high temp. by keeping temp. of the inner wall of a mold for continuous casting higher than solidified temp. of molten alloy metal and executing the solidification of the surface of a casting billet at just out of the mold. CONSTITUTION:The molten metal is supplied into the mold 1 through a trough or a molten metal supplying tube 4. The casting billet 8 is cast continuously in successing the end top of dummy casting block, as cooling by a cooling device 6, which cools the dummy casting block 5 by water or mist, gas, etc., and as descending by pinch rolls for drawing the casting billet. At the time of casting, the temp. of the inner wall 1a of the mold 1 is kept to more than solidified temp. of the molten metal 2, to become to solidify the surface 8a of the casting billet 8 at just below the mold 1. In this way, the quality of the product is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は水素貯蔵用合金の製造方法に係り、特に優れた
展延性を有することから水素の吸蔵φ放出の繰返しによ
る体積変化の繰返しによる亀裂の発生等が殆どない、極
めて耐疲労性に優れた水素貯蔵用合金の製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a hydrogen storage alloy, which has particularly excellent malleability and is therefore susceptible to cracking due to repeated changes in volume due to repeated absorption and release of hydrogen. The present invention relates to a method for manufacturing a hydrogen storage alloy that has extremely excellent fatigue resistance and hardly causes any of the following.

[従来の技術] 近年、水素はクリーンエネルギーとしての利用価値が再
認識され、数気圧で容易に水素を吸・脱蔵する水素貯蔵
用金属材料が注目されている。
[Prior Art] In recent years, the utility value of hydrogen as a clean energy has been reaffirmed, and metal materials for hydrogen storage that can easily absorb and desorb hydrogen at several atmospheres of pressure have been attracting attention.

従来、水素貯蔵用金属又は合金(以下、本明細書におい
ては金属及び合金をあわせて「合金」と総称する。)と
しては、LaNi5.Mg。
Conventionally, as metals or alloys for hydrogen storage (hereinafter, metals and alloys are collectively referred to as "alloys" in this specification), LaNi5. Mg.

Mg2Ni 、Ti 、FeTi 、V、Nb等が知ら
れている。LaNi5は室温近傍において数気圧(2〜
3X10’Pa)で水素の出し入れが可能で、形成され
る水素化物(hydride)はLaNt5Hs〜7で
ある。MgはM g H2を形成するが、Mgに5〜6
%のNt、Cuなどを合金化したものでは、水素化物の
形成が若干容易になる。Ti単体では約105Pa (
1気圧)の水素雰囲気中700’に程度の加熱でT t
 H+4の水素化物を形成するが、解離温度が1100
’に以上と極めて高い、しかしながら、FeTiにする
と、室温付近の数気圧で容易に水素を吸・脱蔵するよう
になる。その水素吸蔵量は合金の純度で異なるが、水素
化物はF e T i H+、s〜ゆである。
Mg2Ni, Ti, FeTi, V, Nb, etc. are known. LaNi5 has a pressure of several atmospheres (2~
3×10'Pa), and the hydride formed is LaNt5Hs~7. Mg forms Mg H2, but 5-6
% of Nt, Cu, etc., the formation of hydrides becomes slightly easier. Approximately 105 Pa for Ti alone (
T t by heating to about 700' in a hydrogen atmosphere (1 atm)
H+4 hydride is formed, but the dissociation temperature is 1100
However, when FeTi is used, it easily absorbs and devolatilizes hydrogen at several atmospheres near room temperature. The amount of hydrogen storage varies depending on the purity of the alloy, but the hydride is F e T i H+, s~boiled.

V、NbはVH,NbHの水素化物を、あるいは更に水
素を吸蔵してV H2、N b H2に近い水素化物を
形成する。その他T1Co・1M  n  us  、
  T  i   CO@s  F  e  as  
、  M  m  N  i  u  M  n  u
  +MmN i ajA l @s 、 MmN i
2.r Cox、6 (Mmは希土類金属の混合物)等
の優れた水素吸蔵能をもつ新合金も開発されている。
V and Nb absorb hydrides of VH and NbH, or further absorb hydrogen to form hydrides similar to V H2 and N b H2. Others T1Co・1M nus,
T i CO@s F e as
, M m N i u M n u
+MmN i ajA l @s , MmN i
2. New alloys with excellent hydrogen storage capacity, such as rCox, 6 (Mm is a mixture of rare earth metals), have also been developed.

このような水素貯蔵用合金が水素を吸蔵して得られる金
属水素化物の水素密度は、気体水素の約1000倍であ
り、一般にその水素分解圧は低いので、金属水素化物と
して水素を貯蔵する場合には、tooo気圧というよう
な耐圧ボンベを必要とせず、また、金属水素化物の熱分
解では、高純度の水素ガスが得られるという利点を有す
る。
The hydrogen density of the metal hydride obtained by storing hydrogen in such a hydrogen storage alloy is about 1000 times that of gaseous hydrogen, and the hydrogen decomposition pressure is generally low, so when hydrogen is stored as a metal hydride, This method does not require a pressure-resistant cylinder of too much pressure, and has the advantage that high-purity hydrogen gas can be obtained by thermal decomposition of metal hydrides.

このようなことから、水素貯蔵用合金は、火力発電用燃
料や動力用又は家庭用燃料のみならず、水素系燃料電池
用燃料ガスとしての水素供給源として、幅広い分野で使
用することができ、その重・ 要件は極めて高い。
For this reason, hydrogen storage alloys can be used in a wide range of fields, not only as fuel for thermal power generation, power, or household fuel, but also as a hydrogen supply source as fuel gas for hydrogen-based fuel cells. The weight and requirements are extremely high.

[発明が解決しようとする問題点] ところで、水素貯蔵用合金は、その水素吸蔵にあたり、
水素分子ガスの強制固溶のための加温。
[Problems to be solved by the invention] By the way, hydrogen storage alloys have the following problems when storing hydrogen:
Heating for forced solid solution of hydrogen molecular gas.

水素ガス加圧や、水素放出のための加温、加圧等を繰返
し受けるものであり、水素の吸・脱蔵に伴い1体積変化
の繰返しに起因する内部応力による疲労で、亀裂が発生
したり、機械的強度が低下したりする。
It is repeatedly subjected to hydrogen gas pressurization, heating and pressurization for hydrogen release, and cracks may occur due to fatigue due to internal stress caused by repeated changes in volume due to absorption and desorption of hydrogen. or mechanical strength may decrease.

このため長期間水素の吸・脱蔵を行わしめることにより
、合金が微粒子化してしまい、微粒子化した水素貯蔵用
合金では、水素との反応速度は大きくなる反面、熱伝導
性が低下し、熱効率の低下により水素吸・脱蔵効率が悪
化するという問題がある。
For this reason, by absorbing and desorbing hydrogen for a long period of time, the alloy becomes fine particles, and while the reaction rate with hydrogen increases in fine particle hydrogen storage alloys, the thermal conductivity decreases, resulting in thermal efficiency. There is a problem in that the hydrogen absorption and devolatilization efficiency deteriorates due to a decrease in the hydrogen absorption and devolatilization efficiency.

[問題点を解決するための手段] 本発明は、上記従来の問題点を解決し、水素の吸蔵・放
出の繰返しによる体積変化の繰返しによる亀裂の発生等
が殆どない、極めて耐疲労性に優れた水素貯蔵用合金を
得ることができる方法を提供するものであって、 連続鋳造用鋳型の一端から合金溶湯を供給し、他端から
鋳塊を引き出す連続鋳造方法により水素貯蔵用合金を製
造するにあたり、該連続鋳造用鋳型の内壁を合金溶湯の
凝固温度以上に保持し、鋳塊表面の凝固を鋳型の直外で
行わしめることを特徴とする水素貯蔵用合金の製造方法
、 を要旨とするものである。
[Means for Solving the Problems] The present invention solves the above-mentioned conventional problems, and has extremely excellent fatigue resistance, with almost no cracks occurring due to repeated changes in volume due to repeated absorption and desorption of hydrogen. The present invention provides a method for producing a hydrogen storage alloy by a continuous casting method in which molten alloy is supplied from one end of a continuous casting mold and an ingot is drawn from the other end. The gist of the present invention is a method for producing a hydrogen storage alloy, characterized in that the inner wall of the continuous casting mold is maintained at a temperature higher than the solidification temperature of the molten alloy, and the surface of the ingot is solidified directly outside the mold. It is something.

[作用] 従来、一般的な合金の鋳造には、各種のタイプのものが
存在するが、それらはいずれも、中空の冷却鋳型に溶湯
を供給し、鋳型上に凝固殻を形成させ外周から中心に向
って凝固が進行するようになっていた。
[Operation] Conventionally, there are various types of general alloy casting, but in all of them, molten metal is supplied to a hollow cooling mold, a solidified shell is formed on the mold, and the process is carried out from the outer periphery to the center. Coagulation was progressing towards the end.

これに対し、本発明の方法は、一端から溶湯を供給し、
他端から鋳塊をうるための、連続鋳造用の鋳型の内壁を
、溶湯の凝固温度以上に保ち、即ち、従来の冷却鋳型の
代わりに加熱鋳型を用い、鋳型面での結晶の核生成を阻
止し、鋳型内における溶湯の凝固は、鋳型を避けて鋳型
直外の鋳塊の先端でのみ進行させるものでる。このよう
に、鋳塊の表層の凝固を鋳型出口端直外で行わしめるた
め、鋳壁面での結晶の生成がなく、凝固は鋳塊先端の成
長によってのみ進行することから、鋳造方向に長い長尺
の結晶からなる一方向凝固組織の、鏡面を有する鋳塊を
連続的に得ることが可能である。特に、径や厚さの小さ
い鋳塊、即ち、薄肉のスラブや細い線状の鋳塊において
は、単結晶を得ることもできる。
In contrast, the method of the present invention supplies molten metal from one end,
The inner wall of the continuous casting mold for obtaining the ingot from the other end is kept above the solidification temperature of the molten metal, that is, a heated mold is used instead of the conventional cooling mold to prevent crystal nucleation on the mold surface. This prevents the solidification of the molten metal within the mold and allows it to proceed only at the tip of the ingot directly outside the mold, avoiding the mold. In this way, since the surface layer of the ingot is solidified just outside the mold outlet end, there is no crystal formation on the ingot wall surface, and solidification proceeds only by the growth of the ingot tip. It is possible to continuously obtain an ingot with a mirror surface and a unidirectionally solidified structure consisting of large-sized crystals. In particular, a single crystal can be obtained from an ingot with a small diameter or thickness, that is, a thin slab or a thin linear ingot.

しかも1本発明の方法により得られる鋳塊は、中心偏析
や巣もなく、表面は極めて美麗である。
Moreover, the ingot obtained by the method of the present invention has an extremely beautiful surface without center segregation or voids.

このように、本発明の方法で得られる鋳塊は巣や偏析の
ない一方向凝固組織からなる、表面美麗な任意の断面形
状の鋳塊であるため、展延性に極めて優れ、粒界腐食の
恐れもない。
As described above, the ingot obtained by the method of the present invention has a unidirectionally solidified structure without voids or segregation, has a beautiful surface, and has an arbitrary cross-sectional shape, so it has excellent malleability and is resistant to intergranular corrosion. There's no fear.

従って1本発明で得られる水素貯蔵用合金は、水素の吸
蔵・放出に伴う体積変化等による内部応力にも耐久性が
高く、亀裂が発生したり、微粒子化することもなく、長
期間安定に繰返し使用することができる。しかも、その
水素吸蔵φ放出性能は著しく優れている。
Therefore, the hydrogen storage alloy obtained by the present invention has high durability against internal stress caused by changes in volume due to absorption and release of hydrogen, and is stable for a long period of time without cracking or becoming fine particles. Can be used repeatedly. Furthermore, its hydrogen storage and φ release performance is extremely excellent.

[実施例] 以下に本発明の実施例を図面を参照して詳細に説明する
[Examples] Examples of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の実施に好適な連続鋳造装置を示す断面
図である。
FIG. 1 is a sectional view showing a continuous casting apparatus suitable for carrying out the present invention.

第1図において、中空の加熱鋳型1は、溶湯2と反応し
ない耐火物からなり、抵抗発熱体3を内蔵している。溶
湯は樋又は給湯管4を通って鋳型゛lに供給される。鋳
塊8は、鋳型l下端にセットしたダミー鋳塊5を、冷却
装置6によって水又は霧、ガスなどで冷却しつつ鋳塊引
出用のピンチロール7によって降下せしめることにより
、ダミー5の先端に連続的に鋳造することができる。
In FIG. 1, a hollow heating mold 1 is made of a refractory that does not react with the molten metal 2, and has a resistance heating element 3 built therein. The molten metal is supplied to the mold 1 through a gutter or hot water supply pipe 4. The ingot 8 is produced at the tip of the dummy 5 by lowering the dummy ingot 5 set at the lower end of the mold l by means of pinch rolls 7 for drawing out the ingot while cooling it with water, mist, gas, etc. using a cooling device 6. Can be cast continuously.

本発明においては、鋳造にあたり、鋳型1内壁1aの温
度を溶湯2の凝固温度以上に保ち、鋳塊8の表面8aが
鋳型lの直下で凝固するようにする。このためには、鋳
型1の内壁1aの温度と鋳塊8の引出速度を適当に選定
することが重要である。
In the present invention, during casting, the temperature of the inner wall 1a of the mold 1 is maintained at a temperature higher than the solidification temperature of the molten metal 2, so that the surface 8a of the ingot 8 solidifies directly below the mold 1. For this purpose, it is important to appropriately select the temperature of the inner wall 1a of the mold 1 and the drawing speed of the ingot 8.

なお、本実施例の方法を実施するにあたっては、鋳型l
下端からの溶湯のブレイクアウトを防止するために、鋳
型1内の溶湯2aの湯面をできるだけ低く保ち、さらに
、ブレイクアウトの原因となり易い鋳型下端における鋳
塊8の振動、鋳型内溶湯の湯面のレベルや鋳型温度の急
激な変動を防止するための制gg機構を設けるのが好ま
しい。
In addition, when carrying out the method of this example, the mold l
In order to prevent breakout of the molten metal from the lower end, the level of the molten metal 2a in the mold 1 is kept as low as possible, and furthermore, the vibration of the ingot 8 at the lower end of the mold, which is likely to cause breakout, and the level of the molten metal in the mold are kept as low as possible. Preferably, a control mechanism is provided to prevent rapid fluctuations in the level of the mold and the temperature of the mold.

なお、本発明の方法は、第1図に示すような下向き式の
連続鋳造装置に限らず、発熱体を内蔵する中空加熱鋳型
を、湯面が一定になるように制御された溶湯中に、その
上端が湯面にほぼ同じレベルになるように浸漬し、鋳塊
ダミーを冷却装置によって冷却しつつ、ピンチロールに
よって上方に引き上げる、上向き武運bl鋳造装置、あ
るいは。
Note that the method of the present invention is not limited to the downward type continuous casting apparatus as shown in FIG. An upward casting machine, in which the ingot dummy is immersed so that its upper end is almost at the same level as the molten metal surface, and is pulled upward by pinch rolls while being cooled by a cooling device.

加熱鋳型を溶湯保持炉の側壁に、湯面直下のレベルに位
置するように水平にセットし、鋳塊ダミーの先端を鋳型
開口端にセットし、溶湯を鋳型内に供給して、鋳塊ダミ
ー先端に接触させてから、鋳塊ダミーを水冷装置で冷却
しつつ、ピンチロールによって水平に引き出す水平式連
続鋳造装置によっても実施することができる。
Set the heating mold horizontally on the side wall of the molten metal holding furnace so that it is located at a level just below the molten metal surface, set the tip of the ingot dummy at the open end of the mold, supply the molten metal into the mold, and remove the ingot dummy. It can also be carried out using a horizontal continuous casting device in which the ingot dummy is brought into contact with the tip and then pulled out horizontally by pinch rolls while being cooled by a water cooling device.

上向き式のものであれば、溶湯のブレイクアウトの恐れ
が全くないが、直接、鋳塊を水で冷却することが難しい
ので、この方式では大きな鋳造速度は期待できない、ま
た、水平式のものでは、小径の棒状鋳塊や薄肉の板状鋳
塊を鋳型出口端でのブレイクアウトなしに連続的に鋳造
することができる。
If it is an upward type, there is no fear of breakout of the molten metal, but because it is difficult to directly cool the ingot with water, a high casting speed cannot be expected with this method, and with a horizontal type, it is difficult to cool the ingot directly with water. , small-diameter rod-shaped ingots and thin-walled plate-shaped ingots can be continuously cast without breakout at the mold outlet end.

なお、本発明の方法を適用することができる水素貯蔵用
合金には、特に制限はなく、本発明は公知の全ての水素
貯蔵用合金に適用可能である。
Note that there is no particular restriction on the hydrogen storage alloy to which the method of the present invention can be applied, and the present invention is applicable to all known hydrogen storage alloys.

これらの水素貯蔵用合金としては、LaNi5 。These hydrogen storage alloys include LaNi5.

Mg、Mg2Ni、Ti、FeTt、V、Nb。Mg, Mg2Ni, Ti, FeTt, V, Nb.

T i COajM n as 、 T i COox
 F e as 。
T i COaj M n as , T i COox
Feas.

M m N iajM n @s 、 M m N t
 43 A l as +M m N i2.HG O
>、5 (ただし、Mmは希土類金属の混合物である。
M m N iaj M n @s , M m N t
43 Al as +M m N i2. H.G.O.
>, 5 (However, Mm is a mixture of rare earth metals.

)等が挙げられる。) etc.

このような水素貯蔵用合金を1本発明の方法により、鋳
型の内壁を合金溶湯の凝固温度以上に保持し、鋳塊表面
の凝固を鋳型の直外で行わしめて製造することにより、
一方向凝固組織からなる任意の断面形状を有する、棒状
、管状、板状の鏡面の鋳塊を連続的に得ることができる
。得られた鋳塊は展延性が極めて高く、内部応力に対す
る耐疲労強度が高いことから、水素貯蔵用合金として長
期間安定に使用可能である。
Such a hydrogen storage alloy is manufactured by the method of the present invention by maintaining the inner wall of the mold at a temperature higher than the solidification temperature of the molten alloy and solidifying the surface of the ingot directly outside the mold.
It is possible to continuously obtain rod-shaped, tubular, or plate-shaped mirror-finished ingots having arbitrary cross-sectional shapes and having a unidirectionally solidified structure. The obtained ingot has extremely high malleability and high fatigue resistance against internal stress, so it can be stably used as a hydrogen storage alloy for a long period of time.

[発明の効果] 以上詳述した通り1本発明の方法により得られる水素貯
蔵用合金は、展延性が極めて高く、このため水素の吸蔵
・放出に伴う体積変化による内部応力に対する耐疲労強
度にも優れる。
[Effects of the Invention] As detailed above, the hydrogen storage alloy obtained by the method of the present invention has extremely high malleability, and therefore has excellent fatigue resistance against internal stress due to volume changes associated with hydrogen storage and release. Excellent.

従って、本発明によれば、長期間の繰り返し使用によっ
ても亀裂の発生や微粒子化することが殆どない、極めて
高強度で耐久性に優れた高性能水素貯蔵用合金が提供さ
れる。
Therefore, according to the present invention, a high-performance hydrogen storage alloy with extremely high strength and excellent durability is provided that hardly cracks or becomes fine particles even after repeated use over a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に好適なi!!続鋳造装置を示す
断面図である。 ■・・・鋳型、       2・・・溶湯、3・・・
抵抗発熱体、   5・・・ダミー鋳塊、6・・・冷却
装置、    7・・・ピンチロール。 8・・・鋳塊。 代理人  弁理士  重 野  剛
FIG. 1 shows an i! suitable for implementing the present invention! ! It is a sectional view showing a continuous casting device. ■... Mold, 2... Molten metal, 3...
Resistance heating element, 5... Dummy ingot, 6... Cooling device, 7... Pinch roll. 8... Ingot. Agent Patent Attorney Tsuyoshi Shigeno

Claims (1)

【特許請求の範囲】[Claims] (1)連続鋳造用鋳型の一端から合金溶湯を供給し、他
端から鋳塊を引き出す連続鋳造方法により、水素貯蔵用
合金を製造するにあたり、該連続鋳造用鋳型の内壁を合
金溶湯の凝固温度以上に保持し、鋳塊表面の凝固を鋳型
の直外で行わしめることを特徴とする水素貯蔵用合金の
製造方法。
(1) When manufacturing a hydrogen storage alloy by a continuous casting method in which molten alloy is supplied from one end of a continuous casting mold and an ingot is pulled out from the other end, the inner wall of the continuous casting mold is heated at the solidification temperature of the molten alloy. A method for producing an alloy for hydrogen storage, characterized in that the ingot is held at the above temperature and the surface of the ingot is solidified immediately outside the mold.
JP8035486A 1986-04-08 1986-04-08 Production of alloy for hydrogen storage Pending JPS62238047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8035486A JPS62238047A (en) 1986-04-08 1986-04-08 Production of alloy for hydrogen storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8035486A JPS62238047A (en) 1986-04-08 1986-04-08 Production of alloy for hydrogen storage

Publications (1)

Publication Number Publication Date
JPS62238047A true JPS62238047A (en) 1987-10-19

Family

ID=13715915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8035486A Pending JPS62238047A (en) 1986-04-08 1986-04-08 Production of alloy for hydrogen storage

Country Status (1)

Country Link
JP (1) JPS62238047A (en)

Similar Documents

Publication Publication Date Title
Whittenberger et al. Origin of porosity in castings of magnesium-aluminum and other alloys
Hyun et al. Fabrication of porous iron by unidirectional solidification in nitrogen atmosphere
JP4235813B2 (en) Method for producing metal porous body
US20090317282A1 (en) Method for manufacturing porous body
Nakajima Porous metals with directional pores
Joly et al. Complex alloy powders produced by different atomization techniques: relationship between heat flow and structure
JP4217865B2 (en) Method for producing porous metal body
JP4924997B2 (en) Lotus shape porous metal manufacturing equipment
Liu et al. Metal-gas eutectic growth during unidirectional solidification
Olga et al. Pore structure and mechanical properties of directionally solidified porous aluminum alloys.
JPS61169149A (en) Continuous casting method
JPS62238047A (en) Production of alloy for hydrogen storage
Zhang et al. Microstructure of binary Mg-Al eutectic alloy wires produced by the Ohno continuous casting process
JPH08318349A (en) Production of casting metallic billet and producing apparatus thereof
JPH0123543B2 (en)
JPH0438682B2 (en)
Aoki et al. Fabrication of lotus-type porous brass by zinc diffusion into porous copper
Ide et al. Fabrication of porous copper with directional pores by continuous casting technique through thermal decomposition of hydride
Nakahata et al. Fabrication of lotus-type silver with directional pores by unidirectional solidification in oxygen atmosphere
CN110184472A (en) A method of gas and impurity in removal high temperature molten aluminum
JP4621938B2 (en) Method for producing porous metal body
Nakajima Fabrication of lotus-type porous metals, intermetallic compounds and semiconductors
TWI393787B (en) Method to produce high stoichiometric mg2ni hydrogen storage alloys and apparatus for the same
JP2000176606A (en) Production of high purity aluminum and alloy continuously cast material and cast material thereof and aluminum alloy single crystal target using it
Hyun et al. Fabrication of lotus-type porous magnesium by continuous casting process