JPS62237784A - Semiconductor laser exciting solid-state laser - Google Patents

Semiconductor laser exciting solid-state laser

Info

Publication number
JPS62237784A
JPS62237784A JP8034386A JP8034386A JPS62237784A JP S62237784 A JPS62237784 A JP S62237784A JP 8034386 A JP8034386 A JP 8034386A JP 8034386 A JP8034386 A JP 8034386A JP S62237784 A JPS62237784 A JP S62237784A
Authority
JP
Japan
Prior art keywords
light
layer
laser
excitation
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8034386A
Other languages
Japanese (ja)
Other versions
JPH0654819B2 (en
Inventor
Akira Mita
三田 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP8034386A priority Critical patent/JPH0654819B2/en
Publication of JPS62237784A publication Critical patent/JPS62237784A/en
Publication of JPH0654819B2 publication Critical patent/JPH0654819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser

Abstract

PURPOSE:To efficiently obtain a small-sized semiconductor laser exciting solid state laser which can be readily adjusted by providing an active layer of a quantum well structure having one or more specific oscillating wavelength, containing 1 mol-% or more of Nd in a separate wall region for separating the well and having films which include complete reflectivity for specific light and part permeability for other specific light on both end faces of an oscillator. CONSTITUTION:A buffer layer 2, a lower clad layer 3, a partition wall layer 4, a quantum well layer 5 and an upper clad layer 6 are composed on a GaAs substrate crystal 1, and all formed by sequentially growing an AlGaInP layer having a relation of lattice match with the crystal 1. In order to further enclose a light of 0.81mum and effectively oscillate a light of 1.06mum, a structure that a completely reflective film 7 is bonded to one end face and a film 8 having a reflectivity for the light of 0.81mum and a partial permeability for a light of 1.06mum is bonded to the other end face is formed. The essential portion having Nd ion energy level is made of a bottom state 14 and first to third excitation states and excitation 18 is performed by absorbing the light of 0.81mum and light of 1.06mum is emitted by transition 19 from the second excitation state to the first excitation state.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ加工や各種のレーザ計測に利用される
半導体レーザ励起固体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser-excited solid-state laser used for laser processing and various laser measurements.

(従来の技術とその問題点) 近年、レーザ加工あるいは各種のレーザ計測への応用上
から、N(1:YAG結晶をはじめとする固体レーザに
対する需要が増大の機運にある。かかる固体レーザは超
短パルス発生など光パルス波形の制御が容易であるなど
他種のレーザに見られない特色を有しているが、通常可
視または紫外光発光ランプを励起用光源に使用する必要
があるなど取り扱いの上で難点を有していた。最近にお
いては、半導体レーザあるいは発光ダイオードによる励
起法が採用されているが、依然光結合の効率・調整の複
雑さ・レーザの大きさなどの点で問題出が残されていて
、かかる目的への広範な応用を阻んでいた。
(Conventional technology and its problems) In recent years, the demand for solid-state lasers such as N(1:YAG crystal) has been increasing for applications in laser processing and various laser measurements. Although it has features not found in other types of lasers, such as short pulse generation and easy control of the optical pulse waveform, it is difficult to handle, such as the need to use a visible or ultraviolet light emitting lamp as the excitation light source. Recently, excitation methods using semiconductor lasers or light emitting diodes have been adopted, but problems still arise in terms of optical coupling efficiency, complexity of adjustment, and laser size. This has prevented its widespread application for such purposes.

本発明は、かかる状況にかんがみ効率よく、小型でかつ
調整容易な半導体励起固体レーザを実現することを目的
とする。
In view of this situation, it is an object of the present invention to realize an efficient, compact, and easily adjustable semiconductor-excited solid-state laser.

(問題点を解決するための手段) 前述の問題点を解決するために本発明が提供する半導体
レーザ励起固体レーザは、電流励起により発振する半導
体レーザを励起源とし、Ndイオンを含有する固体を発
振源とする固体レーザであって、該半導体レーザが1個
以上の0.81μmの発振波長を有する量子井戸構造の
活性層を有し、該量子井戸を隔てる隔壁領域に1モル%
以上のNdを含有し、前記量子井戸領域および隔壁領域
ならびにクラッド層が基板結晶と同一の格子常数を有し
、発振部の両端面に0.81μm光に対して完全に反射
性であり1.06μmに対して部分的に透過性である被
膜を有してなる。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the semiconductor laser-excited solid-state laser provided by the present invention uses a semiconductor laser that oscillates by current excitation as an excitation source, and uses a solid state containing Nd ions as an excitation source. A solid-state laser used as an oscillation source, the semiconductor laser having an active layer of one or more quantum well structures having an oscillation wavelength of 0.81 μm, and a partition wall region separating the quantum wells having a concentration of 1 mol %.
The quantum well region, the partition wall region, and the cladding layer have the same lattice constant as the substrate crystal, and both end faces of the oscillation part are completely reflective for 0.81 μm light; It has a coating that is partially transparent to 0.6 μm.

(作用) 周知のように、量子井戸型半導体レーザにおいては、発
振波長は井戸部分のバンド幅によって決定され隔壁部分
は直接発振に関係しない。隔壁部分に3価のNt1イオ
ンを含有せしめると、発撮光の一部が吸収され負温度状
態になる。しかるに本発明におけるレーザにおいては光
導波路構造と共振器構造を有しているから、0.81μ
mと1.06μm光の発振が行われるが、前者は端面に
よって完全に反射されるので、後者のみが外部に取り出
される。かかる3価の希土類イオンを含有するGaAθ
をけじめとする■−■化合物半導体結晶の成長について
は、たとえばW、H,Knnsn らによる文献(アプ
ライド・フィジックス警しターズ誌46巻9号870ペ
ージより)に記載があり、適当な条件下で成長を行うこ
とにより、かなり良好な発光特性を有する結晶が得られ
ることが明らかにされている。
(Function) As is well known, in a quantum well type semiconductor laser, the oscillation wavelength is determined by the bandwidth of the well portion, and the partition wall portion is not directly related to oscillation. When the partition wall portion contains trivalent Nt1 ions, a part of the emitted light is absorbed, resulting in a negative temperature state. However, since the laser according to the present invention has an optical waveguide structure and a resonator structure,
Light of m and 1.06 μm is oscillated, but since the former is completely reflected by the end face, only the latter is extracted to the outside. GaAθ containing such trivalent rare earth ions
The growth of compound semiconductor crystals under suitable conditions is described, for example, in the literature by W. H. Knnsn et al. It has been shown that the growth results in crystals with fairly good luminescent properties.

(実施例) 本発明の主要な特徴ならびに利点を一層明らかにするた
め、以下に本発明の一実施例について説明を行う。
(Example) In order to further clarify the main features and advantages of the present invention, an example of the present invention will be described below.

第1図に示すように、この実施例はGaAs基板結晶1
上KMBK、MOCVD、LPFiなど周知の方法によ
って、バッファ層2、下部クラッド層3、隔壁層4、量
子井戸層5、上部クラッド層6を構成してあり、いずれ
も基板結晶1と格子整合の関係にある1GaInP層を
逐次成長せしめてなる。さらに0481μm光の閉じ込
めと1.06μm光の有効な発振を可能ならしめるため
に、端面の一方に完全反射性の被膜7を、他方の端面に
0.81μm光に対して反射性であり1.06μm光に
対して部分的に透過性である被膜8を付着した構造にし
である。各層のエネルギーバンド幅の関係は第2図に示
した如く、GaAθからなるクラッド層3゜6において
もつとも大であり、A4Ga工npからなる隔壁層4、
量子井戸層5の順に低くなる。量子井戸層5のバンド幅
は、励起子による0、81μmのレーザ発振を可能なら
しめるため、これより若干小さめであることが必要であ
る。クラッド層はNdを含有せしめる必要がある反面基
板結晶lと格子整合条件を満たしている必要があるから
、結晶製作条件を試行錯誤的に繰り返し決定する必要が
ある。Nclイオンのエネルギー準位の主要部は第2図
に示すごとく、基底状態14と第1乃至第3励起状態(
それぞれ15乃至17)からなり、0.81μm光の吸
収によって励起18が行われ、周知のように、第2励起
状態から第1励起状態への遷移19によって1.06μ
mの発光が行われる。
As shown in FIG. 1, this embodiment has a GaAs substrate crystal 1
A buffer layer 2, a lower cladding layer 3, a partition layer 4, a quantum well layer 5, and an upper cladding layer 6 are formed by well-known methods such as upper KMBK, MOCVD, and LPFi, all of which have a lattice matching relationship with the substrate crystal 1. The 1GaInP layer is grown sequentially. Furthermore, in order to enable confinement of 0481 μm light and effective oscillation of 1.06 μm light, a completely reflective coating 7 is provided on one end face, and a coating 7 that is reflective for 0.81 μm light is provided on the other end face. The structure is coated with a coating 8 that is partially transparent to 0.6 μm light. As shown in FIG. 2, the relationship between the energy band widths of each layer is the highest for the 3°6 cladding layer made of GaAθ, and for the partition layer 4 made of A4GaNp,
The quantum well layer 5 becomes lower in order. The bandwidth of the quantum well layer 5 needs to be slightly smaller than this in order to enable laser oscillation of 0.81 μm due to excitons. Since the cladding layer needs to contain Nd and satisfy lattice matching conditions with the substrate crystal l, it is necessary to repeatedly determine the crystal manufacturing conditions by trial and error. As shown in Figure 2, the main energy levels of Ncl ions are the ground state 14 and the first to third excited states (
15 to 17), and excitation 18 is performed by absorption of 0.81 μm light, and as is well known, 1.06 μm is caused by transition 19 from the second excited state to the first excited state.
m light emission is performed.

かかるレーザの外部にQスイッチあるいはモード・ロッ
カなどの諸装置を付加することにより、超短パルス発生
などを有効に実現し得ることはいうまでもない。本実施
例においては、GaAs+結晶上にA40g工nP混晶
を成長させた場合について説明を行ったが、同様な効果
はGaAθ結晶上にAIGaAθ混晶を形成することに
よっても実現可能である。
It goes without saying that by adding various devices such as a Q switch or a mode rocker to the outside of such a laser, generation of ultrashort pulses can be effectively realized. In this embodiment, a case has been described in which an A40g-nP mixed crystal is grown on a GaAs+ crystal, but a similar effect can also be achieved by forming an AIGaAθ mixed crystal on a GaAθ crystal.

また量子井戸が1個の場合でも光閉じ込め層にN(1の
ドーピングを行うことにより同様な効果を得ることがで
きる。
Further, even when there is only one quantum well, the same effect can be obtained by doping the optical confinement layer with N (1).

(発明の効果) かかる構成をもつ本発明の半導体レーザ励起固体レーザ
は、従来にない、小型で結合効率が高く、かつ調整の容
易な固体レーザである。
(Effects of the Invention) The semiconductor laser-excited solid-state laser of the present invention having such a configuration is an unprecedented solid-state laser that is small, has high coupling efficiency, and is easy to adjust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかわる半導体レーザ励起固体レーザ
の構成の概念図、第2図は第1図実施例の半導体レーザ
励起固体レーザのエネルギー状態の説明図である。 1・・・GaA3基板結晶、2・・−GaAsバッファ
層、3 、、、 AIGaInP下部クラッド層、4−
iGa工nP隔壁層、5・・・AnGaInP量子井戸
層、6・・・AjGaInP上部クラッド層、7・・・
完全反射性被膜、8・・・部分反射性被膜、14・・・
Ndイオ/基底状態、15・・・Nd第1励起状態、1
6・・・Nd第2励起状態、17・・・Nd第3励起状
態、18・・・励起に対応する遷移、19・・・発光に
対応する遷移。 代理人  弁理士  本 庄 伸 介 を全反射橿辰 第1図 18j4Jz−ヤたイル走杼 194、t、Gλず叱む差峰 第2図
FIG. 1 is a conceptual diagram of the configuration of a semiconductor laser pumped solid-state laser according to the present invention, and FIG. 2 is an explanatory diagram of the energy state of the semiconductor laser pumped solid-state laser of the embodiment shown in FIG. 1...GaA3 substrate crystal, 2...-GaAs buffer layer, 3, ..., AIGaInP lower cladding layer, 4-
iGa-nP barrier layer, 5... AnGaInP quantum well layer, 6... AjGaInP upper cladding layer, 7...
Completely reflective coating, 8... Partially reflective coating, 14...
Nd io/ground state, 15...Nd first excited state, 1
6... Nd second excited state, 17... Nd third excited state, 18... Transition corresponding to excitation, 19... Transition corresponding to light emission. The agent, patent attorney Shinsuke Honjo, was totally reflected on the 1st figure 18j4Jz-Yatairu Shuttle 194, t, Gλ, scolding the difference peak 2nd figure

Claims (1)

【特許請求の範囲】[Claims] 電流励起により発振する半導体レーザを励起源とし、N
dイオンを含有する固体を発振源とする固体レーザにお
いて、該半導体レーザが1個以上の0.81μmの発振
波長を有する量子井戸構造の活性層を有し、該量子井戸
を隔てる隔壁領域に1モル%以上のNdを含有し、前記
量子井戸領域および隔壁領域ならびにクラッド層が基板
結晶と同一の格子常数を有し、発振部の両端面に0.8
1μm光に対して完全に反射性であり1.06μmに対
して部分的に透過性である被膜を有する半導体レーザ励
起固体レーザ。
The excitation source is a semiconductor laser that oscillates by current excitation, and the N
In a solid-state laser that uses a solid state containing d ions as an oscillation source, the semiconductor laser has one or more active layers with a quantum well structure having an oscillation wavelength of 0.81 μm, and a partition wall region separating the quantum wells has one or more active layers. Nd of mol % or more is contained, the quantum well region, the partition wall region, and the cladding layer have the same lattice constant as the substrate crystal, and 0.8
A semiconductor laser pumped solid state laser having a coating that is fully reflective to 1 μm light and partially transparent to 1.06 μm.
JP8034386A 1986-04-08 1986-04-08 Semiconductor laser pumped solid-state laser Expired - Lifetime JPH0654819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8034386A JPH0654819B2 (en) 1986-04-08 1986-04-08 Semiconductor laser pumped solid-state laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8034386A JPH0654819B2 (en) 1986-04-08 1986-04-08 Semiconductor laser pumped solid-state laser

Publications (2)

Publication Number Publication Date
JPS62237784A true JPS62237784A (en) 1987-10-17
JPH0654819B2 JPH0654819B2 (en) 1994-07-20

Family

ID=13715609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8034386A Expired - Lifetime JPH0654819B2 (en) 1986-04-08 1986-04-08 Semiconductor laser pumped solid-state laser

Country Status (1)

Country Link
JP (1) JPH0654819B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282488A (en) * 1988-05-10 1989-11-14 Asahi Glass Co Ltd Optical fiber sensor
JPH03227092A (en) * 1990-01-31 1991-10-08 Nec Corp Semiconductor laser
US5369661A (en) * 1991-02-07 1994-11-29 Nippon Steel Corporation Semiconductor laser-pumped solid state laser system and optical coupling system coupling semiconductor laser with optical fiber
JP2002208730A (en) * 2001-01-09 2002-07-26 Toyoda Gosei Co Ltd Iii nitride based compound semiconductor light emitting element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282488A (en) * 1988-05-10 1989-11-14 Asahi Glass Co Ltd Optical fiber sensor
JPH03227092A (en) * 1990-01-31 1991-10-08 Nec Corp Semiconductor laser
US5369661A (en) * 1991-02-07 1994-11-29 Nippon Steel Corporation Semiconductor laser-pumped solid state laser system and optical coupling system coupling semiconductor laser with optical fiber
JP2002208730A (en) * 2001-01-09 2002-07-26 Toyoda Gosei Co Ltd Iii nitride based compound semiconductor light emitting element

Also Published As

Publication number Publication date
JPH0654819B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
US6239901B1 (en) Light source utilizing a light emitting device constructed on the surface of a substrate and light conversion device that includes a portion of the substrate
US20050259700A1 (en) Optically pumpable surface-emitting semiconductor laser device
JP2001085793A (en) Semiconductor laser device
JPS62237784A (en) Semiconductor laser exciting solid-state laser
JPS5939083A (en) Light emitting surface type semiconductor laser
JPS6288386A (en) Semiconductor-laser exciting solid-state laser
JP2007103938A (en) Optically-pumped surface emitting semiconductor laser having mode selection device and optical projection device
JP2002141611A (en) Semiconductor light emitting element and its fabricating method
US5384801A (en) Power lasers with semiconductor filter
JPH0812498A (en) Substitution type garnet crystal material for solid laser
US5119389A (en) Laser device capable of a plurality of laser beams of different levels
JPH04229690A (en) Method and device for pumping weakly absorptive laser material
JP3412714B2 (en) Crystal materials for solid-state lasers
JP2001237488A (en) Semiconductor laser device
JP3091342B2 (en) Glass light emitting device
JP2002043662A (en) High-efficiency and high-output visible wavelength solid- state laser
JP2000261101A (en) Wavelength converting device
JP2834757B2 (en) Light emitting device and method of manufacturing the same
JP2003008145A (en) Semiconductor laser and its manufacturing method
JP3958868B2 (en) light source
JP2001223423A (en) Laser device
JPH0745892A (en) Solid-state laser equipment
JP3424698B2 (en) Garnet crystal waveguide with amplifying action
JPH04312990A (en) Laser oscillator
JPS6390878A (en) Laser device