JPS62237680A - Non-hydrant organic electrolyte for battery with light metalcathode - Google Patents

Non-hydrant organic electrolyte for battery with light metalcathode

Info

Publication number
JPS62237680A
JPS62237680A JP62076549A JP7654987A JPS62237680A JP S62237680 A JPS62237680 A JP S62237680A JP 62076549 A JP62076549 A JP 62076549A JP 7654987 A JP7654987 A JP 7654987A JP S62237680 A JPS62237680 A JP S62237680A
Authority
JP
Japan
Prior art keywords
phenol
electrolytic solution
butyl
bis
solution according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62076549A
Other languages
Japanese (ja)
Inventor
ウルリヒ・フオン・アルペン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VARTA Batterie AG
Original Assignee
VARTA Batterie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VARTA Batterie AG filed Critical VARTA Batterie AG
Publication of JPS62237680A publication Critical patent/JPS62237680A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/164Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は隣接基−0−1== COまたは二N−に工り
活性化されたC−H−結合を有する有機溶剤少なくとも
1種を含有する、軽金属陰極を有する電池用無水有機電
解液に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of Application The present invention contains at least one organic solvent having a C-H-bond activated by an adjacent group -0-1==CO or diN-. , relates to an anhydrous organic electrolyte for batteries having a light metal cathode.

従来の技術 類概念で与えられた定義による溶剤はリチウムを主体と
する高エネルギー電池中で特に電解液成分として非常に
しばしば存在する。その際その選択は、一方では強反応
性電極材料に関する最も著しい不感性の酸点下に、他方
では無機塩に対する良好な溶媒和力を顧慮して行う。エ
ーテルの群はこの要求を高い程度で満たす。プロトンを
発生する能力がなくおよび従って困難にのみアルカリ金
属と反応できるので、エーテルはまた非極性溶剤とも呼
ばれる。その挙動はルイス塩基に相当する。
Solvents according to the definition given in the prior art concept are very often present in high-energy lithium-based batteries, especially as electrolyte components. The selection is made taking into account, on the one hand, the most pronounced insensitivity to subacid points for strongly reactive electrode materials, and, on the other hand, good solvation power for inorganic salts. The ether group fulfills this requirement to a high degree. Ethers are also called nonpolar solvents, since they have no ability to generate protons and can therefore only react with alkali metals with difficulty. Its behavior corresponds to a Lewis base.

リチウム電池で使用されるエーテルの例をここで挙げる
:脂肪族モノエーテル ジメチルエーテル、ジエチルエ
ーテル、ジイソプロぎルエーテルまたはn−ブチルエー
テルおよび脂彷族ポリエーテルからジエチレングリコー
ルジメチルエーテル(DMK) 、エチレンクリコール
ソエチルエーテルまたはテトラエチレングリコールツメ
チルエーテルおよび績局、テトラヒドロフラン、1.4
−ジオキサンおよびテトラヒドロピランのような環状エ
ーテル。
Examples of ethers used in lithium batteries are listed here: aliphatic monoethers dimethyl ether, diethyl ether, diisoprogyl ether or n-butyl ether and fatty polyethers to diethylene glycol dimethyl ether (DMK), ethylene glycol soethyl ether or Tetraethylene glycol methyl ether and results, tetrahydrofuran, 1.4
- cyclic ethers such as dioxane and tetrahydropyran.

本発明の適用が及ぶ、他の鑞解液溶剤は、たとえばブチ
ロラクトンおよびアセトニトリルである。
Other waxing solution solvents to which the present invention applies are, for example, butyrolactone and acetonitrile.

実際、特に、導塩の電解液の吸収力、b−よび蒸気圧挙
動の間で最適の皮部が行われろか、有利な粘度が設定さ
れ、それゆえ、たとえばPC/Li(JO4−電解液を
DMEで希釈することが強要される場合、たいていは種
々の溶剤から成る混合物が使用される。
In fact, in particular, whether an optimum skin is carried out between the absorption capacity, b- and vapor pressure behavior of the electrolyte of the conducting salt, an advantageous viscosity is set and therefore, for example, PC/Li (JO4-electrolyte If it is necessary to dilute the solvent with DME, a mixture of various solvents is usually used.

ここで重要な有機液でのゆるめられたC−H−結合は酸
素の吸収のためてこれを感性にする。
The loosened C--H bonds in the organic liquid that are important here render it sensitive to the absorption of oxygen.

エーテルで、非揮発注過改化物に酸化する順向を特には
っきりと表わす。これと結びついた爆発危険は最近エー
テル含有高エネルギー電池との関連で、大きな妨害とし
て示される。
With ethers, the propensity to oxidize to non-volatile overmodified products is particularly clear. The explosion hazard associated with this has recently been shown to be a major nuisance in connection with ether-containing high-energy batteries.

エーテル過酸化物は通常、第一工程で、エーテル分子の
酸素僑と同時の、C−H−結合の分離および02貯蔵に
より生じ、引続きわずかに安定なアルキルペルオキシド
−ラジカルおよびアルコール中へ分解する、ヒPロペル
オキシドから形成する。ラジカル鎖メカニズムを介して
、その後アルキルペルオキシド−ラジカル(喧相当する
ペルオキシド−ポリマーにまとまる。ペルオキシドき有
エーテルから、従ってヒドロペル十キシドモノマーも、
アルキリデンペルオキシド−1〆リマーも同時に単離で
きる。
Ether peroxides are usually formed in a first step by the separation of the C--H-bond and storage of the ether molecule, with simultaneous deoxygenation and subsequent decomposition into slightly stable alkyl peroxide radicals and alcohols. Formed from hyperperoxide. Via a radical chain mechanism, the alkyl peroxide radicals then assemble into corresponding peroxide polymers.
Alkylidene peroxide-1 limer can also be isolated at the same time.

爆発されたリチウム電池での関連する経験は、試衷状態
でも、使用の間も、記載された種類の燻化工程が電池中
でも、外気に対する密封にもかかわらず、進行すること
を教示した。
Relevant experience with exploded lithium batteries has taught that a fumigation process of the type described takes place in the battery, both in the trial state and during use, despite its sealing against the outside air.

酸素の少量が、電池中でLiCJO4、CrO:x、M
nO2のような酸素含有化合物の分解により、または完
全には脱水されていない溶剤のH2O−基から寛解によ
り形成する。既に蒸留によるエーテル精製の際に生じる
、ペルオキシrの導入も電池中で可能である。ペルオキ
シドの爆発の解除のために、その後、なおたとえば電池
の引続く過熱を伴うショートまたは光作用により生じる
、意図されなかったエネルギー供給を必要とする。
A small amount of oxygen is present in LiCJO4, CrO:x, M
It is formed by decomposition of oxygen-containing compounds such as nO2 or by amelioration from H2O- groups of solvents that are not completely dehydrated. It is also possible to introduce peroxyr into the cell, which already occurs during ether purification by distillation. For detonation of the peroxide, an unintended energy supply is then required, for example caused by a short circuit or a light effect with subsequent overheating of the battery.

爆発保護のこれまで公知の方法は、本成気化学系に特別
な関係なしに、電池のさし迫った爆発を、たとえば溶融
しやすい導体を用いる予めの電流遮断により完全に避け
るか、愼械的手段を用いて爆発の爆発カシよびそれによ
り破壊力を緩和することで達成された。後者はたとえば
、′電池覆いの範囲に、変形可能な球が適合された開口
で密に保持されている、弁溝造により達成され、最も高
い許容範囲の内部圧力の超過の際しかし逆にできずに変
形し、および開口へき開を解放する。
The hitherto known methods of explosion protection, which have no special relation to the present aerochemical system, are either to completely avoid the impending explosion of the battery by, for example, prior interruption of the current using a conductor that is susceptible to melting, or to prevent This was achieved by using practical means to reduce the detonation of the explosion and thereby reduce its destructive force. The latter can be achieved, for example, by means of a valving, in which a deformable ball is held tightly in the area of the cell cover with an adapted opening, which can be reversed however, upon exceeding the highest permissible internal pressure. deform without deformation and release the opening cleavage.

発明が解決しようとする問題点 本発明の課題は、直接、冒頭で定義された類概念による
電解液から出発する、リチウム電池の爆発危険を抑制す
る手段を示すことである。
Problem to be Solved by the Invention The object of the invention is to indicate a means for suppressing the explosion hazard of lithium batteries starting from an electrolyte according to the concept directly defined in the introduction.

問題点を解決するための手段 課題は本発明により、電解液に、ポリマーのペルオキシ
ドの形成を妨げるか、存在するペルオキシドを分解する
、安定化剤物質を添加することにより解決する。
Means for Solving the Problem The problem is solved according to the invention by adding to the electrolyte a stabilizer substance which prevents the formation of peroxides of the polymer or decomposes the peroxides present.

問題となる溶剤の化学変化に対して特に作用性の剤は、
次の群からの置換フェノール、有利にアルキル置換フェ
ノールである: 2.6ジーt、−ブチル−4−メチル−フェノール、2
.4.6)リーt、ブチルーフェノール、2.2′−メ
チレン−ビス−(4−メチル−6−t、ブチル−フェノ
ール)、2.2’−イソブチリデン−ビス−(4,6−
シメチルーフエノール入4.4′−ブチリデン−ビス−
(2−t、−ブチル−5−メチル−フェノール)、4,
4′−チオ−、。
Agents that are particularly active against chemical changes in the solvent in question are:
Substituted phenols, preferably alkyl-substituted phenols, from the following group: 2.6-dit,-butyl-4-methyl-phenol, 2
.. 4.6) Lit, butyl-phenol, 2,2'-methylene-bis-(4-methyl-6-t, butyl-phenol), 2,2'-isobutylidene-bis-(4,6-
4.4'-Butylidene-bis- with dimethyl-phenol
(2-t,-butyl-5-methyl-phenol), 4,
4'-thio-.

ビス−(2−t、ブチル−5−メチルーフ二刀し)。、
;’、にこれてはさらに、立体+4害されている多浅フ
ェノールならびに立体障菩されたスチロール化されたフ
ェノールからの混合物も数えられる。
Bis-(2-t, butyl-5-methyl doublet). ,
;', this also includes mixtures of sterically +4-hindered phenols as well as sterically hindered styrolated phenols.

挙げられたフェノール誘導体と同時に、キノリン誘導体
、2,2.4−)ジメチル−t、2−ジヒげロキノリン
も、重合された形で爆発延期つ意味で有利な作用を示す
Along with the phenol derivatives mentioned, the quinoline derivative 2,2,4-)dimethyl-tert,2-dihydroquinoline also exhibits an advantageous effect in the polymerized form on explosion deferral.

たいていのこの生成物は、一括してメチルフェノール−
誘導体としても把握される。他の置換基により、しかし
全てのこれらのフェノールは多かれ少なかれ立体障害さ
れており、これは、このフェノールが非置換フェノール
よりもより安定であり、わずかに容易Km化できること
を表わす。またその結果、本発明の枠内でもl要である
、リチウム電極に対するわずかな反応準備が生じる。
Most of the products are methylphenol-
It is also understood as a derivative. Due to other substituents, however, all these phenols are more or less sterically hindered, indicating that they are more stable and slightly easier to Km than unsubstituted phenols. This also results in a slight reaction preparation for the lithium electrode, which is also necessary within the framework of the invention.

ひっくるめて、挙げられた置換フェノールはまた名称”
フェノール酸化防止剤”下にまとめられる。その際いず
れにせよ、何によりこれが電池の反応生起に介入し、お
よびどの場合にエテルペルオキシド爆発の危険を避ける
かという特別なメカニズムについてはなお述べられない
Collectively, the substituted phenols listed are also called "
They are summarized under ``Phenol antioxidants'', without mentioning in any case the specific mechanism by which they intervene in the reaction taking place in the cell and in which cases the risk of ether peroxide explosion is avoided.

他の、電解液の安定化のために非常(好適な物質基は、
より容易に酸化可能であり、お工びそうであるかぎりは
置換フェノールよりもわずかに安定である、価遺の低い
硫黄−またはリン有機化合物を包含する。酸化防止剤と
してのその作用方法は、それゆえしかしいっそうはつき
りする。この群からの本発明による代表物は4゜4′−
チオ−ビス−(2−t、ブチル−5−メチル−フェノー
ル)、トリメチルホスファイト、トリフェニルホスファ
イトおよびトリーノニルフェニル−ホスファイトである
Other very suitable material groups for stabilizing the electrolyte are:
Includes lower value sulfur- or phosphorus organic compounds that are more easily oxidizable and, as long as they are processed, slightly more stable than substituted phenols. Its mode of action as an antioxidant is therefore even more revealing. Representatives according to the invention from this group are 4°4'-
Thio-bis-(2-t, butyl-5-methyl-phenol), trimethylphosphite, triphenylphosphite and trinonylphenyl-phosphite.

リン含有代表物は、゛亜すン酸塩酸化防止剤″と題され
る、群のもとに意味上同じように形成される。チオ化合
物4.4′−チオ−ビス−(2−t、−ブチル−5−メ
チル−フェノール)は、置換されたフェノールの冒頭に
挙げられた群のためにも、S−およびP−化合物の上述
の群のためにも本発明による例である。
The phosphorus-containing representatives are formed in a semantically similar manner under the group entitled ``sulfite antioxidants''.Thiocompounds 4.4'-thio-bis-(2-t , -butyl-5-methyl-phenol) are examples according to the invention both for the group mentioned at the beginning of substituted phenols and for the above-mentioned groups of S- and P-compounds.

他の本発明による安定化剤物質は、結局テトラシアノエ
チレンである。
Another stabilizer material according to the invention is ultimately tetracyanoethylene.

本発明による安定化剤の適用濃度は1Q−y〜10g/
i<g溶剤、特に1004/Kg溶剤(= 100 p
pm )であるべきである。
The applied concentration of the stabilizer according to the invention is from 1Q-y to 10g/
i<g solvent, especially 1004/Kg solvent (= 100 p
pm).

種々の一連の試験で、電解液系ジエチレングリコールジ
メチルエーテル/プロピレンカーボネート/ LiCI
O4および減極剤材料としてCruxを有する、公称容
量1Ahの新しいリチウム電池を、100.・1!7/
1000.9溶剤の量での、電解液への2.6−ゾーt
、ブチル−4−メチルフェノールの添加後、100mA
の電流で(約10分間)過充電した。その際40ボルト
の充電電圧で、18時間にわたる過充電が文句7よしに
実施でき、一方この添加物なしの同じ電池は既に60分
後、爆発のために試験から収り去らねばならなかった。
In various series of tests, the electrolyte system diethylene glycol dimethyl ether/propylene carbonate/LiCI
A new lithium battery with a nominal capacity of 1 Ah, having O4 and Crux as depolarizer material, was charged at 100.・1!7/
2.6-zot into the electrolyte in an amount of 1000.9 solvent
, 100 mA after addition of butyl-4-methylphenol
The battery was overcharged at a current of (about 10 minutes). At a charging voltage of 40 volts, overcharging for 18 hours could be successfully carried out, whereas the same cell without this additive had to be removed from the test already after 60 minutes due to explosion.

24ボルトないしは12.ドルトに段階をつげられた充
填電圧で、新しいリチウム電池は過充′屯試験で144
時間にわたるまで爆発による中断を生じず、これに対し
て予め30%まで放電された電池はバラバラになる。相
当する試験電荷でのその配分は10チのみであった。実
際通常である、6ボルトの充電電圧でほとんど爆発の危
険がないことが確認された。この調査結果は、安定化さ
れていない電池に対し、はぼ因子10より多い充電時間
の延長が可能であることを意味する。
24 volts or 12. With stepped charging voltages, new lithium batteries will last up to 144 hours in an overcharge test.
There is no explosion interruption until over a period of time, whereas a battery previously discharged to 30% falls apart. Its distribution at the corresponding test charge was only 10 cm. In fact, it was confirmed that there is almost no risk of explosion at a charging voltage of 6 volts, which is normal. This finding means that it is possible to extend the charging time by more than a factor of 10 for unstabilized batteries.

さらに安定化剤を装えた電池は室温で電解液導電性の変
化および減少された容量使用を見出されなかった。
Additionally, cells loaded with stabilizers were not found to exhibit changes in electrolyte conductivity and reduced capacity usage at room temperature.

その作用方法の化学作用はこの際あまり重要でない。し
かし本発明による安定化剤物質の内に、導入が期待され
たエーテル−過酸化水素から生じるアルカリペルオキシ
ド−ラジカルよりもより安定な、ラジカルを形成するこ
とができるようなものが存在すると推測される。これは
置換フェノール、たとえば2.6−ゾーt、−ブチル−
4−メチル−フェノールの場合である。
The chemistry of its mode of action is of little importance here. However, it is assumed that among the stabilizer substances according to the invention there are those capable of forming radicals that are more stable than the alkali peroxide radicals resulting from the ether-hydrogen peroxide that were expected to be introduced. . This is a substituted phenol, such as 2,6-zot,-butyl-
This is the case for 4-methyl-phenol.

そのより安定なラジカルをエーテルペルオキシド重合の
ラジカル鎖中へ入れることにより、その安定性に基づ性
、即座の中断が生じる。爆発可能なペルオキシドポリマ
ーは存在しない。安定化剤物質はラジカル禁止剤または
”ラジカル捕捉剤”として作用する。
Insertion of the more stable radical into the radical chain of the ether peroxide polymerization results in an immediate interruption due to its stability. There are no explosive peroxide polymers. Stabilizer materials act as radical inhibitors or "radical scavengers."

安定化剤物質はその単なる存在により、第1に形成され
たヒPロペルオキシドまたはその他に存在するペルオキ
シドの分解を生じる。ペルオキシー−ポリマーへのさら
なる反応はそれにより始めから遮断され、爆発危険が除
去される。
The mere presence of the stabilizer substance results in the decomposition of the initially formed hyperperoxide or any other peroxide present. Further reactions to the peroxypolymer are thereby blocked from the beginning and the risk of explosion is eliminated.

安定化剤物質はそれ自体変化することなしに、分解触媒
として働く。この意味で主に五リン酸塩1・酸化防止剤
が作用し、一方4.4′−チオービス−(2−t、−ブ
チル−5−メチル−フェノール)はその二重特性に基づ
き一方ではメチルフェノール−誘導体としておよび他方
では装置の低いチオ化合物としてラジカル捕捉剤として
、またペルオキシド分解剤として二重の役割を果たす。
The stabilizer material acts as a decomposition catalyst without itself changing. In this sense, mainly the pentaphosphate 1 antioxidant acts, while 4,4'-thiobis-(2-t,-butyl-5-methyl-phenol), due to its dual properties, on the one hand methyl It plays a dual role as a phenol-derivative and on the other hand as a low thio compound of the system as a radical scavenger and as a peroxide decomposer.

Claims (1)

【特許請求の範囲】 1、隣接基−O−、=COまたは=N−により活性化さ
れたCH−結合を有する有機溶剤少なくとも1種を含有
する、軽金属陰極を有する電池用無水有機電解液におい
て、電解液にポリマーのペルオキシドの形成を妨げるか
、存在するペルオキシドを分解する、安定化剤物質が添
加されていることを特徴とする、軽金属陰極を有する電
池用無水有機電解液。 2、安定化剤物質が置換フェノールである、特許請求の
範囲第1項記載の電解液。 3、安定化剤物質が2、6−ジ−t.−ブチル−4−メ
チル−フェノール、2、4、6トリ−t.ブチル−フェ
ノール、2、2’−メチレン−ビス−(4−メチル−6
−t.ブチル−フェノール)、2、2’−イソブチリデ
ン−ビス−(4、6−ジメチルフェノール)、4、4’
−ブチリデン−ビス−(2−t.ブチル−5−メチル−
フェノール)、4、4’−チオ−ビス(2−t.ブチル
−5−メチル−フェノール)の群から選択されたアルキ
ル置換フェノール、さらに立体障害された多核フェノー
ルまたは立体障害され、スチロール化されたフェノール
の混合物である、特許請求の範囲第2項記載の電解液。 4、安定化剤物質が容易な酸化性の位置の低い硫黄−ま
たはリン有機化合物である、特許請求の範囲第1項記載
の電解液。 5、安定化剤物質が4、4’−チオ−ビス−(2−t、
ブチル−5−メチル−フェノール)、トリメチルホスフ
ァイト、トリフェニルホスファイト、トリ−ノニルフェ
ニル−ホスファイトの詳から選択される、特許請求の範
囲第4項記載の電解液。 6、安定化剤物質がテトラシアノエチレンである、特許
請求の範囲第1項記載の電解液。 7、使用される安定化剤物質の量が10mg〜1000
mg/kg溶剤である、特許請求の範囲第1項から第6
項までのいずれか1項記載の電解液。
[Claims] 1. An anhydrous organic electrolyte for a battery having a light metal cathode, which contains at least one organic solvent having a CH- bond activated by an adjacent group -O-, =CO or =N-. An anhydrous organic electrolyte for batteries with a light metal cathode, characterized in that a stabilizer substance is added to the electrolyte, which prevents the formation of polymer peroxides or decomposes the peroxides present. 2. The electrolytic solution according to claim 1, wherein the stabilizer substance is a substituted phenol. 3. The stabilizer substance is 2,6-di-t. -butyl-4-methyl-phenol, 2,4,6 tri-t. Butyl-phenol, 2,2'-methylene-bis-(4-methyl-6
-t. butyl-phenol), 2,2'-isobutylidene-bis-(4,6-dimethylphenol), 4,4'
-butylidene-bis-(2-t.butyl-5-methyl-
phenol), 4,4'-thio-bis(2-t.butyl-5-methyl-phenol), as well as sterically hindered polynuclear phenols or sterically hindered and styrolated phenols. The electrolytic solution according to claim 2, which is a mixture of phenols. 4. The electrolytic solution according to claim 1, wherein the stabilizer substance is an easily oxidizable, low-position sulfur- or phosphorus organic compound. 5. The stabilizer substance is 4,4'-thio-bis-(2-t,
5. The electrolytic solution according to claim 4, wherein the electrolytic solution is selected from the group consisting of trimethyl phosphite, triphenyl phosphite, and tri-nonylphenyl phosphite. 6. The electrolytic solution according to claim 1, wherein the stabilizer substance is tetracyanoethylene. 7. The amount of stabilizer substance used is from 10 mg to 1000
Claims 1 to 6, which are mg/kg solvent.
The electrolytic solution according to any one of the preceding items.
JP62076549A 1986-04-03 1987-03-31 Non-hydrant organic electrolyte for battery with light metalcathode Pending JPS62237680A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863611123 DE3611123A1 (en) 1986-04-03 1986-04-03 WATER-FREE ORGANIC ELECTROLYTE
DE3611123.6 1986-04-03

Publications (1)

Publication Number Publication Date
JPS62237680A true JPS62237680A (en) 1987-10-17

Family

ID=6297810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62076549A Pending JPS62237680A (en) 1986-04-03 1987-03-31 Non-hydrant organic electrolyte for battery with light metalcathode

Country Status (4)

Country Link
US (1) US4713305A (en)
EP (1) EP0241644A3 (en)
JP (1) JPS62237680A (en)
DE (1) DE3611123A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167965A (en) * 1987-12-23 1989-07-03 Toray Ind Inc Electric element
JPH01272053A (en) * 1988-04-22 1989-10-31 Hitachi Maxell Ltd Organic electrolyte cell
JP2009123499A (en) * 2007-11-14 2009-06-04 Sony Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte composition
WO2011081113A1 (en) 2009-12-29 2011-07-07 ソニー株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868020A (en) * 1987-02-02 1989-09-19 Grosslight Jane S Rub and show graphics
DE3884572T2 (en) * 1987-11-30 1994-02-03 Eic Lab Inc Overcharge protection for non-aqueous secondary batteries.
US5154992A (en) * 1990-08-10 1992-10-13 Medtronic, Inc. Electrolyte for lithium-manganese oxide cells and the like
AU644475B2 (en) * 1990-08-10 1993-12-09 Medtronic, Inc. Improved electrolyte for lithium-manganese oxide cells and the like
US5810741A (en) * 1992-11-05 1998-09-22 Synectics Medical Ab Method of measuring respiration and respiratory effort using plural catheters
US5477860A (en) * 1992-11-05 1995-12-26 Synectics Medical, Inc. Catheter for measuring respiration and respiratory effort
US5438985A (en) * 1993-01-25 1995-08-08 Synectics Medical, Incorporated Ambulatory recording of the presence and activity of substances in gastro-intestinal compartments
EP0614239A3 (en) * 1993-03-01 1996-10-16 Tadiran Ltd Non-aqueous safe secondary cell.
US5551425A (en) * 1993-05-13 1996-09-03 Synectics Medical, Inc. Potential difference and perfusion pressure catheter
US5657759A (en) * 1993-05-13 1997-08-19 Synectics Medical, Incorporated Measurement of gastric emptying and gastrointestinal output
US5477854A (en) * 1993-09-16 1995-12-26 Synectics Medical, Inc. System and method to monitor gastrointestinal Helicobacter pylori infection
US5507289A (en) * 1993-09-16 1996-04-16 Synectics Medical, Inc. System and method to diagnose bacterial growth
US5833625A (en) * 1993-10-21 1998-11-10 Synectics Medical Ab Ambulatory reflux monitoring system
DE19507610A1 (en) 1995-03-04 1996-09-05 Patrick Altmeier Electrically conductive liquid in the temperature range from <-40 ° C to> 100 ° C
FR2767969B1 (en) * 1997-08-29 1999-10-15 Alsthom Cge Alcatel LITHIUM RECHARGEABLE GENERATOR WITH ORGANIC ELECTROLYTE AND CARBON ANODE
TW589760B (en) * 2001-08-09 2004-06-01 Sumitomo Chemical Co Polymer electrolyte composition and fuel cell
US6844115B2 (en) * 2001-11-05 2005-01-18 Wilson Greatbatch Technologies, Inc. Highly conductive and stable nonaqueous electrolyte for lithium electrochemical cells
US7638243B2 (en) * 2006-03-22 2009-12-29 Novolyte Technologies Inc. Stabilized nonaqueous electrolytes for rechargeable batteries

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3185590A (en) * 1961-01-06 1965-05-25 North American Aviation Inc Lightweight secondary battery
FR2102561A5 (en) * 1970-08-07 1972-04-07 Accumulateurs Fixes
JPS5293924A (en) * 1976-02-02 1977-08-08 Matsushita Electric Ind Co Ltd Organic electrolyte battery
DE2834485C2 (en) * 1978-08-07 1982-01-21 Rheinisch-Westfälisches Elektrizitätswerk AG, 4300 Essen Rechargeable galvanic element
US4579795A (en) * 1980-10-06 1986-04-01 Rohm And Haas Company High drain battery
US4345010A (en) * 1980-12-22 1982-08-17 General Electric Company Electrolyte for secondary electrochemical cell
SE445000B (en) * 1981-10-08 1986-05-20 Inst Fiz Khim Pisarzhev An ELECTROCHEMICAL BATTERY
JPS6017872A (en) * 1983-07-11 1985-01-29 Nippon Denso Co Ltd Organic battery
JPS6065478A (en) * 1983-09-21 1985-04-15 Hitachi Ltd Polymer secondary battery
JPS61264682A (en) * 1985-05-20 1986-11-22 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JPS61284061A (en) * 1985-06-07 1986-12-15 Matsushita Electric Ind Co Ltd Organic electrolyte battery
US4643958A (en) * 1985-09-12 1987-02-17 Amoco Corporation Electrolyte additive for lithium-sulfur dioxide electrochemical cells
US4612265A (en) * 1985-09-16 1986-09-16 Amoco Corporation Stabilization of sulfur dioxide solutions containing lithium perchlorate and a tetraalkylammonium perchlorate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01167965A (en) * 1987-12-23 1989-07-03 Toray Ind Inc Electric element
JPH01272053A (en) * 1988-04-22 1989-10-31 Hitachi Maxell Ltd Organic electrolyte cell
JP2009123499A (en) * 2007-11-14 2009-06-04 Sony Corp Nonaqueous electrolyte secondary battery and nonaqueous electrolyte composition
WO2011081113A1 (en) 2009-12-29 2011-07-07 ソニー株式会社 Non-aqueous electrolyte and non-aqueous electrolyte battery

Also Published As

Publication number Publication date
DE3611123A1 (en) 1987-10-08
EP0241644A3 (en) 1988-10-05
EP0241644A2 (en) 1987-10-21
US4713305A (en) 1987-12-15

Similar Documents

Publication Publication Date Title
JPS62237680A (en) Non-hydrant organic electrolyte for battery with light metalcathode
US6746794B2 (en) Thermal runaway inhibitors
US6045952A (en) Electrochemical storage cell containing a substituted anisole or di-anisole redox shuttle additive for overcharge protection and suitable for use in liquid organic and solid polymer electrolytes
US20090029250A1 (en) Polymer Electrolyte The Use Thereof And An Electrochemical Device Containing Said Polymer Electrolyte
KR20070044361A (en) Inhibitor of reduction of life cycle of redox shuttle additive and non-aqueous electrolyte and secondary battery comprising the same
KR100472513B1 (en) Organic electrolytic solution for Lithium sulfur battery and Lithium sulfur battery appling the same
JP2017526108A (en) Controlled discharge of energy storage using redox shuttle additives.
KR20010067251A (en) Fluorinated sulfonamides as low-flammability solvents for use in electrochemical cells
JP3055536B2 (en) Non-aqueous electrolyte battery
KR20170030544A (en) Rechargeable lithium-ion cell comprising a redox shuttle additive
CN107026284A (en) A kind of electrolyte and the lithium ion battery containing the electrolyte and/or positive pole
KR100717161B1 (en) Electrolytic compositions for lithium batteries, the use thereof and method for enhancing the safety of lithium batteries
CN112010894B (en) Phosphorothioate compound, nonaqueous lithium ion battery electrolyte containing phosphorothioate compound and lithium ion battery
US20020042003A1 (en) Electrolyte system for lithium batteries, the use thereof, and method for enhancing the safety of lithium batteries
EP1042838A4 (en) Fire-resistant gas generating battery electrolytes
US10763547B1 (en) Electrolyte and a battery with said electrolyte
CN1328819C (en) Nonaqueous electrolyte with inproved safety property and lithium cell used the same
CN101471459A (en) Non-aqueous electrolyte secondary cell
JPH10302836A (en) Battery having adjusted electrode interface
EP3373379B1 (en) Additive for nonaqueous electrolyte solutions, nonaqueous electrolyte solution and electricity storage device
US3726716A (en) Organic electrolytes for batteries
GB2580553A (en) An electrolyte and a battery with said electrolyte
US20230021456A1 (en) Method of restoring capacity of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
CN104037453B (en) Functional electrolyte for preventing overcharge of lithium battery and production method of functional electrolyte
JPH11273729A (en) Lithium salt and sulfidic secondary battery