JPS62237349A - Instrument for measuring distribution of hydrogen ion concentration - Google Patents

Instrument for measuring distribution of hydrogen ion concentration

Info

Publication number
JPS62237349A
JPS62237349A JP61081720A JP8172086A JPS62237349A JP S62237349 A JPS62237349 A JP S62237349A JP 61081720 A JP61081720 A JP 61081720A JP 8172086 A JP8172086 A JP 8172086A JP S62237349 A JPS62237349 A JP S62237349A
Authority
JP
Japan
Prior art keywords
agar
substrate
hydrogen ion
distribution
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61081720A
Other languages
Japanese (ja)
Other versions
JPH0533745B2 (en
Inventor
Masaaki Tsuzaki
真彰 津崎
Jun Kimura
純 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61081720A priority Critical patent/JPS62237349A/en
Publication of JPS62237349A publication Critical patent/JPS62237349A/en
Publication of JPH0533745B2 publication Critical patent/JPH0533745B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To easily and quickly measure the distribution of pH by providing a substrate formed with plural hydrogen ion sensitive semiconductor field effect type ion sensors and a reference electrode common with the ion sensors, etc. CONSTITUTION:The substrate 12 formed with the plural pH-ISFETs is brought into tight contact with the surface of agar-agar 11 which is an object to be inspected. The signals from the pH-ISFETs of the substrate 12 enter a switch matrix 14 via a lead wire 13. The signal from the optional pH-ISFET is selected and is connected to a voltage measuring instrument 15. The reference electrode 16 inserted into the agar-agar 11 is also connected to the measuring instrument 15. The value of the pH measured by the measuring instrument 15 is fed to a computer, etc., by which the analysis of the data is executed. The distribution of the pH is easily and quickly measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体電界効果型イオンセンサを用いた、寒天
等の表面の水素イオン濃度分布の測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for measuring hydrogen ion concentration distribution on the surface of agar or the like using a semiconductor field effect ion sensor.

(従来の技術) 寒天は、発光・微生物の分野で培地の固体化の目的で使
用される。液体培地に通常1〜2%程度の寒天を添加処
理することで寒天培地は調整される。このようにしてで
きあがった寒天培地や微生物を培養した後の寒天培地は
固体状であるため水素イオン濃度(以後pHと呼ぶ)を
測定することは困難である。通常、寒天培地のpH測定
はpH指示薬を培地に添加し、pH指示薬の発色の変化
を観察することにより行なわれる。また近年は、特殊な
ガラス電極を使用したpH測定も行なわれるようになっ
てきたが、個々の微生物コロニーのpHや、コロニー周
辺のpH分布を測定することは、前記従来の装置では不
可能である。
(Prior Art) Agar is used for the purpose of solidifying a culture medium in the field of luminescence and microorganisms. An agar medium is usually prepared by adding about 1 to 2% agar to a liquid medium. Since the agar medium thus prepared and the agar medium after culturing microorganisms are solid, it is difficult to measure the hydrogen ion concentration (hereinafter referred to as pH). Usually, the pH of an agar medium is measured by adding a pH indicator to the medium and observing changes in the color of the pH indicator. In recent years, pH measurement using special glass electrodes has also begun, but it is impossible to measure the pH of individual microbial colonies or the pH distribution around the colony using the conventional devices described above. be.

(発明が解決しようとする問題点) 前記pH指示薬を用いる測定方法では、培地自体の色に
よってpH指示薬の発色の観察が妨害されたり、測定に
誤差が生じたりする。また判定が観察による主観である
ための誤差、観察者ごとの個人差が生じやすい。またこ
の場合はpH分布まで測定することは基本的に困難であ
る。
(Problems to be Solved by the Invention) In the measurement method using the pH indicator, the color of the medium itself may obstruct observation of the color development of the pH indicator or cause errors in measurement. Furthermore, since the judgment is subjective based on observation, errors and individual differences between observers are likely to occur. Furthermore, in this case, it is basically difficult to measure the pH distribution.

また前記ガラス製pH電極を用いる方法でも、寒天の局
所的なpH変化に対応できず、同時に多数の領域のpH
測定を行なうことも困難である。
Furthermore, even with the method using the glass pH electrode, it is not possible to deal with local pH changes in the agar, and the pH of many regions at the same time cannot be adjusted.
It is also difficult to make measurements.

前記のように、寒天のpH測定自体が困難であるうえに
、pHの局地的な変化・いわばpH分布測定は従来の装
置では不可能であった。
As mentioned above, it is difficult to measure the pH of agar itself, and it has been impossible to measure local changes in pH, so to speak, pH distribution using conventional devices.

本発明は、溶液中のイオン濃度を電界効果型トランジス
タの中を流れる電流値に変換して測定する電解効果型イ
オンセンサ(以後l8FETと呼ぶ)ゲート領域にあた
る能動領域を水素イオン感受性膜で覆った水素イオン感
受性l5FET(以後pH−l5FETと呼ぶ)を用い
て、前記の様に困難もしくは不可能であった寒天のpH
分布測定を含んだpH測定を容易に迅速に行なえ、且つ
多数の領域のpH変化にも対応できる新規なpH分布測
定装置を提供するものである。
The present invention covers the active region corresponding to the gate region of a field-effect ion sensor (hereinafter referred to as 18FET) that measures the ion concentration in a solution by converting it into a current value flowing through a field-effect transistor with a hydrogen ion-sensitive membrane. Using a hydrogen ion-sensitive 15FET (hereinafter referred to as pH-15FET), the pH of agar, which was difficult or impossible as described above, can be adjusted.
The present invention provides a novel pH distribution measuring device that can easily and quickly perform pH measurements including distribution measurements, and can also respond to pH changes in a large number of regions.

(問題を解決するための手段) 本発明によれば、複数の水素イオン感応性半導体電界効
丙型4オンセンサが形成された基板と、被測定物内に挿
入する前記複数のイオンセンサに共通な参照電極と、前
記複数のイオンセンサと接続しl1l−のイオンセンサ
からの信号を選択するスイッチ系と、このスイッチ系か
らの信号を測定する測定系とを具備したことを特徴とす
る水素イオン濃度分布測定装置が得られる。
(Means for Solving the Problem) According to the present invention, a substrate on which a plurality of hydrogen ion-sensitive semiconductor field effect type 4-on sensors are formed, and a substrate that is common to the plurality of ion sensors inserted into the object to be measured. A hydrogen ion concentration characterized by comprising a reference electrode, a switch system that is connected to the plurality of ion sensors and selects a signal from the ion sensor 11-, and a measurement system that measures the signal from this switch system. A distribution measuring device is obtained.

(作用) 本発明でpH−l5FETは、従来のl5FETのゲー
ト電極が例えば窒化シリコン(Si3NJ膜に代表され
る水素イオン感応性膜に覆われた構造を持ち、シリコン
ICの製造技術をそのまま使用し作製することができる
。そのため微小化及び同一基板上の任意の位置に配置す
ることが可能である。前記pH−l5FETを溶液に浸
した際、その溶液のpHによって前記pH−l5FET
中を流れる’lH流が変化するため、その溶液のpHの
値を知ることができる。本発明においては、前記pHJ
SFETを寒天表面に密着することでも寒天のpHの測
定ができ、且つ前記pH−l5FETが密着した微小領
域のpHの測定ができるという現象を利用している。ま
たこの場合前記溶液のpHの測定と同様に、参照電極が
必要となる。
(Function) In the present invention, the pH-15FET has a structure in which the gate electrode of the conventional 15FET is covered with a hydrogen ion-sensitive film such as silicon nitride (Si3NJ film), and the manufacturing technology of silicon ICs can be used as is. Therefore, it is possible to miniaturize and place it at any position on the same substrate.When the pH-15FET is immersed in a solution, the pH-15FET can be fabricated depending on the pH of the solution.
Since the 'lH flow flowing through the solution changes, it is possible to know the pH value of the solution. In the present invention, the pHJ
The pH of the agar can be measured by bringing the SFET into close contact with the surface of the agar, and the pH of the micro region to which the pH-15FET is brought into close contact can be measured. Further, in this case, a reference electrode is required as in the case of measuring the pH of the solution.

同一基板上のpH−l5FETの配置は、必要に応じて
一列に並べたり縦横2次元に並べるなど任意の配置をと
ることが可能である。また各このpH−l5FETは例
えば1100p四方程度の大きさで作成することが容易
であり、また信号の取り出し等の配線及びpH−l5F
ETの選択のためのスイッチ等を同一基板上に設ける場
合でも、例えば200pm間隔で縦横2次元にpH−l
5FETを配置することが容易である。このため、本発
明装置によれば寒天表面上の例えば200pm離れた2
点間のpHを別々に測定することが可能となる。
The pH-15FETs on the same substrate can be arranged in any arbitrary arrangement, such as in a line or two-dimensionally in a vertical and horizontal direction, as necessary. In addition, each pH-15FET can be easily manufactured with a size of, for example, about 1100p square, and wiring for signal extraction, etc.
Even if a switch for selecting ET is provided on the same substrate, the pH-l value can be adjusted in two dimensions vertically and horizontally at intervals of 200 pm, for example.
It is easy to arrange 5FETs. For this reason, according to the apparatus of the present invention, it is possible to
It becomes possible to measure the pH between points separately.

(実施例) 次に本発明の実施例について、図面を参照して説明する
。第1図は、本発明の一実施例を示す測定装置の模式図
である。被検体である寒天11の表面に、複数のpH−
l5FETが形成された基板12を密着している。該基
板12のpH−l5FETからの信号は、リード線13
を経てスイッチマトリックス14に入り、ここで任意の
pH−l5FETからの信号が選択され電圧測定器15
へと接続される。また該寒天11に挿入された参照電極
16も該電圧測定器15へと接続される。
(Example) Next, an example of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram of a measuring device showing an embodiment of the present invention. A plurality of pH-
The substrate 12 on which the 15FET is formed is closely attached. The signal from the pH-15FET of the substrate 12 is connected to the lead wire 13.
The signal from an arbitrary pH-15FET is selected and sent to the voltage measuring device 15.
connected to. A reference electrode 16 inserted into the agar 11 is also connected to the voltage measuring device 15.

該電圧測定器によって測定されたpHの値は、コンピュ
ータ等に送り、データの解析を行なうことも可能である
The pH value measured by the voltage measuring device can also be sent to a computer or the like for data analysis.

第2図は、pH−l5FETの回路図である。図中スイ
ッチ21.22.24は、第1図のスイッチマトリック
ス14に設けられたスイッチである。1つのダイオード
25と1つのpH−l5EFET26により、pH測定
の1つの単位となっている。該pH−l5EFET26
におけるpHによる信号を得るためには、該スイッチ2
1且つ23を閉とすることにより、該pH−l5EFE
T26のみで外部測定回路27と接線され測定可能とな
る。尚、破線28に囲まれた領域が、第1図に示した基
板12に形成されている。
FIG. 2 is a circuit diagram of the pH-15FET. Switches 21, 22, and 24 in the figure are switches provided in the switch matrix 14 of FIG. One diode 25 and one pH-15EFET 26 constitute one unit of pH measurement. The pH-15EFET26
In order to obtain a signal due to the pH at
By closing 1 and 23, the pH-15EFE
Only T26 is connected to the external measurement circuit 27 and measurement is possible. Note that a region surrounded by a broken line 28 is formed on the substrate 12 shown in FIG.

第3図は、第1図の基板12の部分平面図であり、平面
状のシリコン基板上にpHJsEFET及びダイオード
が形成されている。図中31はpH−l5EPETのド
レイン領域且つダイオードのカソード領域の兼用領域、
32はpPLIsEFETのゲート領域、33はpH−
l5EFETのソース領域、34はダイオードのアノー
ド領域、35は高不純物濃度p形ポリシリコン領域であ
る。第4図、第5図、第6図、第7図、第8図は、それ
ぞれ第3図の一点鎖線A−A’、 B−B’、 C−C
’、 D−D’、 E−E’におけるl折面図で、41
はp形基板、42は高不純物濃度n形ソース領域、43
はn形ゲート領域、44は高不純物濃度n形ドレイン及
びカソード領域、45はp形アノード領域、46は高不
純純物濃度p形ポリシリコン領域、47は水素イオン感
応性膜、48は絶縁膜である。図示していないが、前記
高不純物濃度n形ソース領域42、且つ前記高不純物濃
度p形ポリシリコン領域46は、基板の末端まで延長さ
れ、第1図で示したリード線13に個々接続されている
FIG. 3 is a partial plan view of the substrate 12 of FIG. 1, in which a pHJsEFET and a diode are formed on a planar silicon substrate. In the figure, 31 is a region that serves as the drain region of pH-15EPET and the cathode region of the diode,
32 is the gate region of pPLIsEFET, 33 is the pH-
15 is a source region of the EFET, 34 is a diode anode region, and 35 is a high impurity concentration p-type polysilicon region. Figures 4, 5, 6, 7, and 8 correspond to the dashed-dotted lines AA', BB', and C-C in Figure 3, respectively.
', D-D', EE', 41
42 is a p-type substrate, 42 is a high impurity concentration n-type source region, and 43 is a p-type substrate.
is an n-type gate region, 44 is a high impurity concentration n-type drain and cathode region, 45 is a p-type anode region, 46 is a high impurity concentration p-type polysilicon region, 47 is a hydrogen ion sensitive film, and 48 is an insulating film. It is. Although not shown, the high impurity concentration n-type source region 42 and the high impurity concentration p-type polysilicon region 46 extend to the end of the substrate and are individually connected to the lead wires 13 shown in FIG. There is.

以上のような装置を用い、大腸菌(Escherich
ia曲)を培養した寒天培地のpHの測定を行なった。
Using the above-mentioned apparatus, Escherichia coli (Escherich
The pH of the agar medium in which the .ia song) was cultured was measured.

培地はブドウ糖10g、ペプトン2g、塩化ナトリウム
5g、リン酸水素二カリウム0.3g、寒天15gを蒸
留水で1eにしたものを用い、オートクレーブ滅菌後、
pHを7.2に調整し、90mmシャーレに分注した。
The medium used was 10 g of glucose, 2 g of peptone, 5 g of sodium chloride, 0.3 g of dipotassium hydrogen phosphate, and 15 g of agar made up to 1e with distilled water. After sterilization in an autoclave,
The pH was adjusted to 7.2, and the mixture was dispensed into a 90 mm petri dish.

前記培地に大腸菌を白金耳を用いて接種した。E. coli was inoculated into the medium using a platinum loop.

30°Cで4時間培養後、約0.2mmのコロニーが形
成し、このコロニーを中心として、その周辺のpHの測
定を行なった。pH測定領域は縦5mm横5mm、pH
JsEFETは基板上に縦構0.2mmおきに設けた。
After culturing at 30°C for 4 hours, a colony of about 0.2 mm was formed, and the pH around this colony was measured. The pH measurement area is 5 mm long and 5 mm wide.
JsEFETs were provided on the substrate at intervals of 0.2 mm in the vertical structure.

第9図は寒天培地のpH分布図でpHを0.2単位で表
示したものである。
FIG. 9 is a pH distribution diagram of an agar medium, in which pH is expressed in units of 0.2.

実施例からの結果から、本発明装置によれば寒天のpH
測定が可能であり、例えば、0.2mmおきにpHを測
定し、前記第9図に示したようなpH分布を求めること
も可能である。基板設計の段階で、微細な領域の測定を
行なうことを考察に入れれば、この0.2mmの間隔を
、さらに小さくすることも容易に実現できる。
From the results from the examples, it can be seen that according to the device of the present invention, the pH of agar
For example, it is also possible to measure the pH at intervals of 0.2 mm and obtain the pH distribution as shown in FIG. 9 above. If consideration is given to measuring a minute area at the board design stage, it is possible to easily reduce this 0.2 mm interval even further.

(発明の効果) 以上のように本発明の装置によればpHの分布測定を容
易に迅速に行なうことができる。
(Effects of the Invention) As described above, according to the apparatus of the present invention, pH distribution measurement can be easily and quickly performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す測定装置の模式図、第
2図はpH−l5FET群の回路図、第3図は基板の部
分平面図、第4図、第5図、第6図、第7図および第8
図は第3図で一点鎖線A−A’、 B−B’、 C−C
’、 D−D’およびE−E’におけるそれぞれの断面
図、第9図は実施例の結果を示す寒天のpH分布図であ
る。 図において、 11・・・・寒天、12・・・・基板、13・・・・リ
ード線、14・・・・スイッチマトリックス、15・・
・・電圧測定器、16・・・・参照電極、21.22.
23.24・・・・スイッチ、25・・・・ダイオード
、26・・・・pH−l5EFET、27・・・・外部
測定回路、31・・・・ドレイン領域且つカソード領域
の兼用領域、32・・・・ゲート領域、33・・・・ソ
ース領域、34・・・・アノード領域、35・・・・高
不純物濃度p形ポリシリコン領域、41・・・・p形基
板、42・・・・高不純物濃度n形ソース領域、43・
・・・n形ゲート領域、44・・・・高不純物濃度n形
ドレイン及びカソード領域、45・・・・n形アノード
領域、46・・・・高不純物濃度p形ポリシリコン領域
、47・・・・水素イオン感応性筋2図 椿 4図 第5図 第 乙 図 第 7 図 筋8図 4ど    4/
Fig. 1 is a schematic diagram of a measuring device showing an embodiment of the present invention, Fig. 2 is a circuit diagram of a pH-15FET group, Fig. 3 is a partial plan view of a substrate, Figs. 4, 5, and 6. Figures 7 and 8
The diagram is shown in Figure 3 with dash-dotted lines A-A', B-B', and C-C.
', DD' and EE', and FIG. 9 is a pH distribution map of agar showing the results of the example. In the figure, 11...agar, 12...substrate, 13...lead wire, 14...switch matrix, 15...
... Voltage measuring device, 16... Reference electrode, 21.22.
23.24...Switch, 25...Diode, 26...pH-15EFET, 27...External measurement circuit, 31...Drain region and cathode region combined area, 32... ... gate region, 33 ... source region, 34 ... anode region, 35 ... high impurity concentration p-type polysilicon region, 41 ... p-type substrate, 42 ... High impurity concentration n-type source region, 43.
... n-type gate region, 44 ... high impurity concentration n-type drain and cathode region, 45 ... n-type anode region, 46 ... high impurity concentration p-type polysilicon region, 47 ... ...Hydrogen ion sensitive muscles Figure 2 Camellia 4 Figure 5 Figure 7 Figure 7 Muscles 8 Figure 4 4/

Claims (1)

【特許請求の範囲】[Claims] 複数の水素イオン感応性半導体電界効果型イオンセンサ
が形成された基板と、被測定物内に挿入する前記複数の
イオンセンサに共通な参照電極と、前記複数のイオンセ
ンサと接続し単一のイオンセンサからの信号を選択する
スイッチ系と、このスイッチ系からの信号を測定する測
定系とを具備したことを特徴とする水素イオン濃度分布
測定装置。
A substrate on which a plurality of hydrogen ion-sensitive semiconductor field effect ion sensors are formed, a reference electrode common to the plurality of ion sensors inserted into the object to be measured, and a reference electrode common to the plurality of ion sensors connected to the plurality of ion sensors. A hydrogen ion concentration distribution measuring device characterized by comprising a switch system for selecting a signal from a sensor and a measurement system for measuring a signal from the switch system.
JP61081720A 1986-04-08 1986-04-08 Instrument for measuring distribution of hydrogen ion concentration Granted JPS62237349A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61081720A JPS62237349A (en) 1986-04-08 1986-04-08 Instrument for measuring distribution of hydrogen ion concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61081720A JPS62237349A (en) 1986-04-08 1986-04-08 Instrument for measuring distribution of hydrogen ion concentration

Publications (2)

Publication Number Publication Date
JPS62237349A true JPS62237349A (en) 1987-10-17
JPH0533745B2 JPH0533745B2 (en) 1993-05-20

Family

ID=13754249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61081720A Granted JPS62237349A (en) 1986-04-08 1986-04-08 Instrument for measuring distribution of hydrogen ion concentration

Country Status (1)

Country Link
JP (1) JPS62237349A (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424061U (en) * 1990-06-20 1992-02-27
US5401607A (en) * 1991-04-17 1995-03-28 Polaroid Corporation Processes and compositions for photogeneration of acid
JP2013537619A (en) * 2010-06-30 2013-10-03 ライフ テクノロジーズ コーポレーション Transistor circuits for chemical reaction and compound detection and measurement
US9110015B2 (en) 2010-09-24 2015-08-18 Life Technologies Corporation Method and system for delta double sampling
US9239313B2 (en) 2010-06-30 2016-01-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US9269708B2 (en) 2006-12-14 2016-02-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9852919B2 (en) 2013-01-04 2017-12-26 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US9951382B2 (en) 2006-12-14 2018-04-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9964515B2 (en) 2008-10-22 2018-05-08 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10718733B2 (en) 2009-05-29 2020-07-21 Life Technologies Corporation Methods and apparatus for measuring analytes
US11231451B2 (en) 2010-06-30 2022-01-25 Life Technologies Corporation Methods and apparatus for testing ISFET arrays
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626251A (en) * 1979-08-10 1981-03-13 Olympus Optical Co Ltd Detecting method for chemical material using chemical sensor having insulated gate type transistor structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626251A (en) * 1979-08-10 1981-03-13 Olympus Optical Co Ltd Detecting method for chemical material using chemical sensor having insulated gate type transistor structure

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0424061U (en) * 1990-06-20 1992-02-27
US5401607A (en) * 1991-04-17 1995-03-28 Polaroid Corporation Processes and compositions for photogeneration of acid
US9951382B2 (en) 2006-12-14 2018-04-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10502708B2 (en) 2006-12-14 2019-12-10 Life Technologies Corporation Chemically-sensitive sensor array calibration circuitry
US10415079B2 (en) 2006-12-14 2019-09-17 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US10203300B2 (en) 2006-12-14 2019-02-12 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US9269708B2 (en) 2006-12-14 2016-02-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10816506B2 (en) 2006-12-14 2020-10-27 Life Technologies Corporation Method for measuring analytes using large scale chemfet arrays
US9989489B2 (en) 2006-12-14 2018-06-05 Life Technnologies Corporation Methods for calibrating an array of chemically-sensitive sensors
US11435314B2 (en) 2006-12-14 2022-09-06 Life Technologies Corporation Chemically-sensitive sensor array device
US9404920B2 (en) 2006-12-14 2016-08-02 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US10633699B2 (en) 2006-12-14 2020-04-28 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US11137369B2 (en) 2008-10-22 2021-10-05 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US9964515B2 (en) 2008-10-22 2018-05-08 Life Technologies Corporation Integrated sensor arrays for biological and chemical analysis
US11692964B2 (en) 2009-05-29 2023-07-04 Life Technologies Corporation Methods and apparatus for measuring analytes
US11768171B2 (en) 2009-05-29 2023-09-26 Life Technologies Corporation Methods and apparatus for measuring analytes
US9927393B2 (en) 2009-05-29 2018-03-27 Life Technologies Corporation Methods and apparatus for measuring analytes
US10718733B2 (en) 2009-05-29 2020-07-21 Life Technologies Corporation Methods and apparatus for measuring analytes
US10809226B2 (en) 2009-05-29 2020-10-20 Life Technologies Corporation Methods and apparatus for measuring analytes
US10641729B2 (en) 2010-06-30 2020-05-05 Life Technologies Corporation Column ADC
US9164070B2 (en) 2010-06-30 2015-10-20 Life Technologies Corporation Column adc
US10481123B2 (en) 2010-06-30 2019-11-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US9239313B2 (en) 2010-06-30 2016-01-19 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US11231451B2 (en) 2010-06-30 2022-01-25 Life Technologies Corporation Methods and apparatus for testing ISFET arrays
JP2013537619A (en) * 2010-06-30 2013-10-03 ライフ テクノロジーズ コーポレーション Transistor circuits for chemical reaction and compound detection and measurement
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US9960253B2 (en) 2010-07-03 2018-05-01 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
US9958414B2 (en) 2010-09-15 2018-05-01 Life Technologies Corporation Apparatus for measuring analytes including chemical sensor array
US9618475B2 (en) 2010-09-15 2017-04-11 Life Technologies Corporation Methods and apparatus for measuring analytes
US9110015B2 (en) 2010-09-24 2015-08-18 Life Technologies Corporation Method and system for delta double sampling
US10365321B2 (en) 2011-12-01 2019-07-30 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10598723B2 (en) 2011-12-01 2020-03-24 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US10404249B2 (en) 2012-05-29 2019-09-03 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9270264B2 (en) 2012-05-29 2016-02-23 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9985624B2 (en) 2012-05-29 2018-05-29 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9852919B2 (en) 2013-01-04 2017-12-26 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US10436742B2 (en) 2013-01-08 2019-10-08 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US9995708B2 (en) 2013-03-13 2018-06-12 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US10422767B2 (en) 2013-03-15 2019-09-24 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9671363B2 (en) 2013-03-15 2017-06-06 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9823217B2 (en) 2013-03-15 2017-11-21 Life Technologies Corporation Chemical device with thin conductive element
US10100357B2 (en) 2013-05-09 2018-10-16 Life Technologies Corporation Windowed sequencing
US11028438B2 (en) 2013-05-09 2021-06-08 Life Technologies Corporation Windowed sequencing
US10655175B2 (en) 2013-05-09 2020-05-19 Life Technologies Corporation Windowed sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10816504B2 (en) 2013-06-10 2020-10-27 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US11499938B2 (en) 2013-06-10 2022-11-15 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US11774401B2 (en) 2013-06-10 2023-10-03 Life Technologies Corporation Chemical sensor array having multiple sensors per well
US10379079B2 (en) 2014-12-18 2019-08-13 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US10767224B2 (en) 2014-12-18 2020-09-08 Life Technologies Corporation High data rate integrated circuit with power management
US11536688B2 (en) 2014-12-18 2022-12-27 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management
US10605767B2 (en) 2014-12-18 2020-03-31 Life Technologies Corporation High data rate integrated circuit with transmitter configuration

Also Published As

Publication number Publication date
JPH0533745B2 (en) 1993-05-20

Similar Documents

Publication Publication Date Title
JPS62237349A (en) Instrument for measuring distribution of hydrogen ion concentration
Milgrew et al. A large transistor-based sensor array chip for direct extracellular imaging
US4743954A (en) Integrated circuit for a chemical-selective sensor with voltage output
Milgrew et al. A 16× 16 CMOS proton camera array for direct extracellular imaging of hydrogen-ion activity
JP4825976B2 (en) pH detector
JPS6266154A (en) Chemical sensitive semiconductor device
CA1088216A (en) Ion-controlled diode
KR960004971B1 (en) Biosensor with ion-sensitive field-effect transistor
US20070000778A1 (en) Multi-parameter sensor with readout circuit
JPS62130349A (en) Device for measuring concentration of substance in solution
Wiest et al. Cellular assays with multiparametric bioelectronic sensor chips
CN206573523U (en) A kind of highly integrated type pH sensors
Fiaccabrino et al. Array of individually addressable microelectrodes
CN110568053A (en) Non-contact type cell membrane potential sensor based on field effect tube sensing structure
JPS59206756A (en) Fet chemical sensor combined with reference electrode
CN1059092A (en) Sensor for detecting ph value of upper digestive tract
CN101101272A (en) Biochemical microsensing integrated chip, its manufacture and mould preparation method
US8410530B2 (en) Sensitive field effect transistor apparatus
JP3167022B2 (en) Gas sensor
Yang et al. A 640× 640 ISFET array for detecting cell metabolism
JPH03131749A (en) Gaseous hydrogen sensor
Giagkoulovits et al. Hybrid amperometric and potentiometrie sensing based on a CMOS ISFET array
Aydogmus et al. FET-based integrated charge sensor for organ-on-chip applications
Futagawa et al. $1024\times 1024$ Pixel Charge-Transfer-Type Hydrogen Ion Image Sensor
Futagawa et al. Fabrication of a stripe-gate type pH sensor for inhibition of drift in pH measurement for long-term soil monitoring