JPS62237166A - Creep force control method for continuous variable transmission - Google Patents

Creep force control method for continuous variable transmission

Info

Publication number
JPS62237166A
JPS62237166A JP61078747A JP7874786A JPS62237166A JP S62237166 A JPS62237166 A JP S62237166A JP 61078747 A JP61078747 A JP 61078747A JP 7874786 A JP7874786 A JP 7874786A JP S62237166 A JPS62237166 A JP S62237166A
Authority
JP
Japan
Prior art keywords
variable transmission
continuously variable
idle
ratio
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61078747A
Other languages
Japanese (ja)
Other versions
JP2517227B2 (en
Inventor
Masao Shimamoto
雅夫 嶋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP61078747A priority Critical patent/JP2517227B2/en
Publication of JPS62237166A publication Critical patent/JPS62237166A/en
Application granted granted Critical
Publication of JP2517227B2 publication Critical patent/JP2517227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

PURPOSE:To maintain the force of creep constant, by shifting a continuously variable transmission to the high speed ratio side in accordance with the ratio between the rotational speed of an engine upon idle-up and the rotation speed thereof upon nonidle-up. CONSTITUTION:The power of an engine 1 is transmitted to an input shaft 3 through a fluid coupling 2 which is a starting clutch, and is transmitted to a continuously variable transmission 6. Further, the continuously variable transmission 6 is controlled to a desired speed change ratio on the high speed ratio side. Accordingly, even though the engine rotational speed becomes higher than a normal idle rotational speed and therefore, the transmitted torque is increased, the continuously variable transmission 6 cancels out the increased torque so that a constant torque is always transmitted to an output shaft 28, thereby it is possible to maintain the creep force constant.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は無段変速機のクリープ力制御方法、即ちアイド
リング時における引きずり現象を制御する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for controlling the creep force of a continuously variable transmission, that is, a method for controlling the drag phenomenon during idling.

従来技術とその問題点 従来、例えば■ベルト式無段変速機において、無段変速
装置の上流側に流体継手や遠心クラッチなどの発進クラ
ッチを設けたものが知られている(例えば特開昭58−
42862号公報、特開昭58−149458号公報参
照)。
Conventional technology and its problems Conventionally, for example, belt type continuously variable transmissions are known in which a starting clutch such as a fluid coupling or a centrifugal clutch is provided on the upstream side of the continuously variable transmission (for example, Japanese Patent Laid-Open No. 58 −
42862, JP-A-58-149458).

この種の無段変速機の場合、アイドリング時においても
出力軸に僅かな回転力が伝わり、所謂クリープ現象を起
こす。通常の非アイドルアップ時にはクリープ力は小さ
いので問題にはならないが、エアコン使用時や寒冷時に
チョークなどでアイドルアップを行うとクリープ力が大
きくなり、アクセルを踏まないのに発進してしまうとい
う問題がある。
In the case of this type of continuously variable transmission, a slight rotational force is transmitted to the output shaft even during idling, causing a so-called creep phenomenon. During normal non-idling, the creep force is small and does not pose a problem, but if you use a choke to increase the idle when using an air conditioner or when it is cold, the creep force increases, causing the problem of the car starting without pressing the accelerator. be.

発明の目的 本発明はかかる問題点に鑑みてなされたもので、その目
的は、アイドルアップ時のクリープ力を非アイドルアッ
プ時と略等しくすることができる無段変速機のクリープ
力制御方法を提供することにある。
OBJECTS OF THE INVENTION The present invention has been made in view of the above problems, and its purpose is to provide a creep force control method for a continuously variable transmission that can make the creep force during idle up approximately equal to that during non-idle up. It's about doing.

発明の構成 上記目的を達成するために、本発明は、無段変速装置よ
り上流側に発進クラッチを設けたfi段変連撮において
、アイドルアップ時のエンジン回転数を検出し、該エン
ジン回転数と非アイドルアップ時のエンジン回転数との
比に応じて無段変速装置の変速比を高速比側へ変速し、
アイドルアップ時のクリープ力を亦アイドルアップ時と
略等しく制御するものである。
Structure of the Invention In order to achieve the above-mentioned object, the present invention detects the engine rotational speed at the time of idling up, and detects the engine rotational speed at the time of idling up in an FI-speed variable continuous shooting in which a starting clutch is provided upstream of a continuously variable transmission. The gear ratio of the continuously variable transmission is shifted to the high speed ratio side according to the ratio of the engine speed at non-idling up time.
The creep force during idle up is controlled to be approximately equal to that during idle up.

実施例の説明 第1図は本発明が通用されるVベルト式無段変速機の一
例を示し、エンジン1の動力は発進クラッチである流体
継手2を介して入力軸3に伝達されており、この入力軸
3は減速ギヤ4.5を介して無段変速装置6の駆動軸7
に接続されている。
DESCRIPTION OF EMBODIMENTS FIG. 1 shows an example of a V-belt type continuously variable transmission to which the present invention is applicable, in which power from an engine 1 is transmitted to an input shaft 3 via a fluid coupling 2 which is a starting clutch. This input shaft 3 is connected to a drive shaft 7 of a continuously variable transmission 6 via a reduction gear 4.5.
It is connected to the.

無段変速装置6は、駆動軸7に設けた駆動側プーリ8と
、従動軸11に設けた従動側プーリ12と、両プーリ間
に巻き掛けたVベルト14とで構成されている。駆動側
プーリ8は固定シーブ8aと可動シーブ8bとを有して
おり、可動シーブ8bの背後にはトルクカム装置9と圧
縮スプリングlOとが設けられている。上記トルクカム
装置9は入力トルクに比例した推力を発生し、圧縮スプ
リング10はVベルト4が弛まないだけの初期推力を発
生し、これら推力によりVベルト14にトルク伝達に必
要なベルト張力を付与している。一方、従動側プーリ1
2も駆動側ブーIJ ’i3と同様に、固定シーブ12
aと可動シーブ12bとを有しており、可動シーブ12
bの背後には変速比制御用の油圧室13が設けられてい
る。この油圧室13の油圧は後述する変速制御バルブ3
0によって制御される。
The continuously variable transmission 6 includes a drive pulley 8 provided on a drive shaft 7, a driven pulley 12 provided on a driven shaft 11, and a V-belt 14 wound between both pulleys. The drive pulley 8 has a fixed sheave 8a and a movable sheave 8b, and a torque cam device 9 and a compression spring 1O are provided behind the movable sheave 8b. The torque cam device 9 generates a thrust proportional to the input torque, and the compression spring 10 generates an initial thrust sufficient to prevent the V-belt 4 from loosening, and these thrusts provide the V-belt 14 with belt tension necessary for torque transmission. ing. On the other hand, driven pulley 1
2 also has a fixed sheave 12 similar to the drive side boob IJ 'i3.
a and a movable sheave 12b.
A hydraulic chamber 13 for gear ratio control is provided behind b. The oil pressure in this oil pressure chamber 13 is controlled by a speed change control valve 3 which will be described later.
Controlled by 0.

従動軸11の外周には中空軸15が回転自在に外挿され
ており、従動軸11と中空軸15とは動力断続クラッチ
16によって断続される。中空軸15には前進用ギヤ1
7と後進用ギヤ18とが回転自在に支持されており、前
後進切換スリーブ19によって前進用ギヤ17あるいは
後進用ギヤ18のいずれか一方を中空軸15と連結する
ようになっている。後進用アイドラ軸20は従動軸重1
と平行に配置されており、この軸20には後進用ギヤ1
8に噛み合う後進用アイドラギヤ21と、別の後進用ア
イドラギヤ22とが固定されている。カウンタ軸23も
従動軸11と平行に配置されており、このカウンタ軸2
3には上記前進用ギヤ17と後進用アイドラギヤ22と
に同時に噛み合うカウンタギヤ24と、終減速ギヤ25
とが固定されており、終減速ギヤ25はディファレンシ
ャル装置26のリングギヤ27に噛み合い、動力を出力
軸28に伝達している。
A hollow shaft 15 is rotatably inserted around the outer periphery of the driven shaft 11, and the driven shaft 11 and the hollow shaft 15 are connected to each other by a power intermittent clutch 16. The hollow shaft 15 has a forward gear 1.
7 and a reverse gear 18 are rotatably supported, and either the forward gear 17 or the reverse gear 18 is connected to the hollow shaft 15 by a forward/reverse switching sleeve 19. The reverse idler shaft 20 has a driven axle load of 1
This shaft 20 is arranged in parallel with the reverse gear 1.
A reverse idler gear 21 meshing with the reverse idler gear 8 and another reverse idler gear 22 are fixed. A counter shaft 23 is also arranged parallel to the driven shaft 11.
3 includes a counter gear 24 that meshes with the forward gear 17 and the reverse idler gear 22 at the same time, and a final reduction gear 25.
are fixed, and the final reduction gear 25 meshes with the ring gear 27 of the differential device 26 to transmit power to the output shaft 28.

変速制御バルブ30はスプリング31によって左方へ付
勢されたスプール32を有しており、入力ボート33に
はライン圧PLが導かれ、出力ボート34は従動側ブー
1月2の油圧室13と接続されている。ボート35はド
レンボートであり、スプリング31を収容した右端室の
ボート36にはソレノイドバルブ40から信号油圧PS
が導かれている。また、スプール32には出力ボート3
4と左端室37とを結ぶ連通孔32aが形成されており
、これにより出力ボート34から出力される出力油圧P
1.Tは次式で与えられる。
The speed change control valve 30 has a spool 32 biased leftward by a spring 31, line pressure PL is guided to an input boat 33, and an output boat 34 is connected to the hydraulic chamber 13 of the driven side boot 2. It is connected. The boat 35 is a drain boat, and a signal hydraulic pressure PS is supplied from a solenoid valve 40 to the boat 36 in the right end chamber that houses the spring 31.
is being guided. Also, the spool 32 has an output boat 3.
4 and the left end chamber 37 is formed, whereby the output oil pressure P output from the output boat 34
1. T is given by the following equation.

P[1lT−AH= Ps  −A2 +S     
  −(11上式において、A1はスプール32の左側
ランド32bの受圧面精、A2は右側ランド32cの受
圧面精、Sはスプリング31のばね荷重である。
P[1lT-AH= Ps-A2 +S
-(11 In the above equation, A1 is the pressure receiving surface roughness of the left land 32b of the spool 32, A2 is the pressure receiving surface roughness of the right land 32c, and S is the spring load of the spring 31.

制御回路50には、エンジン回転数、車速、スロ7)ル
開度、アイドルアップ信号、チョーク信号などが入力さ
れ、運転状態に応じて上記ソレノイドバルブ40をデユ
ーティ制御している。ここでデユーティ制御とは、ソレ
ノイドバルブ40にON時間とOFF時間とを含む所定
周期のパルス信号を出力し、ON時間の周期に対する比
(デユーティ比)を変化させることにより、デユーティ
比に比例した信号油圧Psを発生させる制御をいう。
The control circuit 50 receives inputs such as engine speed, vehicle speed, throttle opening, idle up signal, choke signal, etc., and controls the solenoid valve 40 in accordance with the driving state. Duty control here refers to outputting a pulse signal with a predetermined cycle including an ON time and an OFF time to the solenoid valve 40, and changing the ratio of the ON time to the cycle (duty ratio) to generate a signal proportional to the duty ratio. Control that generates hydraulic pressure Ps.

いま、制御回路50からソレノイドバルブ40に出力さ
れる制御信号のデユーティ比をD(%)とすると、 Ps =PL  −D/100           
・・・(21であるから、(2)式を(1)式に代入す
ると、P[11T−A+ =PL −A2  ’ D/
100 +S  −(31となる。(3)式においてA
、、A2.S、PLはそれぞれ定数であるから、出力油
圧P1はデユーティ比りのみで制御され、結局変速比は
デユーティ比で自在に制御できる。
Now, if the duty ratio of the control signal output from the control circuit 50 to the solenoid valve 40 is D (%), then Ps = PL - D/100
...(21), so by substituting equation (2) into equation (1), P[11T-A+ =PL -A2' D/
100 +S - (31. In equation (3), A
,,A2. Since S and PL are each constant, the output oil pressure P1 is controlled only by the duty ratio, and after all, the gear ratio can be freely controlled by the duty ratio.

上記構成のVベルト式無段変速機において、アイドリン
グ時には制御回路50から構成される装置信号のデユー
ティ比D=100%であり、出力油圧pHjTは最大と
なって無段変速装置6の変速比は最低速比i。に保持さ
れている。ところが、アイドルアップ時にはエンジン回
転数Nが上昇し、かつ流体継手2の特性は T=C−N2            ・・・(4)(
T:伝達トルク、C:定数) であるので、伝達トルクがエンジン回転数Nの二乗に比
例して増大し、クリープ現象が過激になるという問題が
ある。この問題を解決するために本発明は、アイドルア
ップ時のエンジン回転数を検出し、このエンジン回転数
と非アイドルアップ時のエンジン回転数との比に応じて
無段変速装置の変速比を高速比側へ変速し、アイドルア
ップ時のクリープ力を低減させて非アイドルアップ時と
略同等になるように制御するものである。
In the V-belt type continuously variable transmission having the above configuration, during idling, the duty ratio D of the device signal constituted by the control circuit 50 is 100%, the output oil pressure pHjT is maximum, and the gear ratio of the continuously variable transmission 6 is lowest speed ratio i. is maintained. However, when idling up, the engine speed N increases, and the characteristics of the fluid coupling 2 are T=C-N2...(4)(
T: transmission torque, C: constant) Therefore, there is a problem that the transmission torque increases in proportion to the square of the engine rotation speed N, and the creep phenomenon becomes extreme. In order to solve this problem, the present invention detects the engine speed when idling up, and changes the gear ratio of the continuously variable transmission to a high speed according to the ratio of this engine speed to the engine speed when not idling up. The control is performed by shifting toward the ratio side and reducing the creep force during idle up so that it is approximately equal to that during non-idle up.

ここで、アイドルアップ時におけるクリープ力制御方法
を第2図にしたがって説明する。
Here, a creep force control method during idle up will be explained with reference to FIG.

まずスタートすると、車速Vを最低車速(5ka+/h
)と比較しく60)、■≧5であれば車両が発進を完了
していることを意味するので以下の制御は行わず、終了
する。■〈5であれば、つぎにアイドルアップ信号がO
Nか否かを判別しく61)、アイドルアップ信号がOF
Fであればチョーク信号がONか否かを判別する(62
)。アイドルアップ信号及びチョーク信号がいずれもO
FFであればそのまま終了し、いずれかがONであれば
エンジン回転数Nを読み込み(63)、このエンジン回
転数Nからアイドルアップ時に無段変速装置6を変速す
べき目標変速比i6を次式によって計算する(64)。
First, when starting, set the vehicle speed V to the minimum vehicle speed (5ka+/h
), 60), ■≧5 means that the vehicle has completed starting, so the following control is not performed and the process ends. ■ If it is <5, then the idle up signal is O
61), the idle up signal is OFF.
If F, it is determined whether the choke signal is ON or not (62
). Idle up signal and choke signal are both O
If it is FF, the process ends as is, and if either is ON, the engine speed N is read (63), and from this engine speed N, the target gear ratio i6 at which the continuously variable transmission 6 should be changed when the idle is up is determined by the following formula. Calculate by (64).

上式において、i、は最低速比、Naはアイドルアップ
信号及びチョーク信号が共にOFF時におけるアイドル
回転数である。
In the above equation, i is the lowest speed ratio, and Na is the idle rotation speed when both the idle up signal and the choke signal are OFF.

上記のようにして目標変速比iEを計算した後、デユー
ティ比りを5%だけ減算しく65)、出力油圧PlII
Tを低くする。これにより無段変速装置6は高速比側へ
変速され、実際の変速比iが減少し始める。そして、実
際の変速比iと目標変速比i。
After calculating the target gear ratio iE as described above, subtract 5% from the duty ratio (65), output oil pressure PlII
Lower T. As a result, the continuously variable transmission device 6 is shifted to the high speed ratio side, and the actual gear ratio i begins to decrease. Then, the actual gear ratio i and the target gear ratio i.

とを比較しく66)、i>i(のとき即ち実際の変速比
が目標変速比より低速比側に有るときには、車速Vと最
低車速(5km/h)とを比較しく67)、■≧5であ
れば制御を終了し、V<5であれば再びデユーティ比り
を5%だけ減算して(65)、 (66)の動作を繰り
返す。またi≦i、のとき即ち実際の変速比が目標変速
比より高速比側に移行したときには、デユーティ比りを
1%だけ加算しく68)、出力・油圧PIlljTを高
くして無段変速装置6を低速比側へ変速する。その後、
実際の変速比iと目標変速比i、とを比較しく69)、
i≦15のときには車速■と最低車速(5km/h)と
を比較しく70)、■≧5であれば制御を終了し、v<
5であれば再びデユーティ比りを1%だけ加算して(6
8)、 (69)の動作を繰り返す。i>1.になれば
デユーティ比りを1%だけ減算しく71)、車速Vと最
低車速(5ka+/h)とを比較する(72)。■く5
であれば再び(69)に戻って制御を続行し、■≧5で
あれば制御を終了する。
66), when i>i (that is, when the actual gear ratio is on the lower gear ratio side than the target gear ratio, compare the vehicle speed V and the minimum vehicle speed (5 km/h) 67), ■≧5 If so, the control is ended, and if V<5, the duty ratio is subtracted by 5% again (65) and the operation of (66) is repeated. Further, when i≦i, that is, when the actual gear ratio shifts to a higher speed ratio than the target gear ratio, the duty ratio is added by 1% (68), the output/hydraulic pressure PIlljT is increased, and the continuously variable transmission 6 Shift to a lower speed ratio. after that,
Compare the actual gear ratio i and the target gear ratio i69),
When i≦15, the vehicle speed ■ is compared with the minimum vehicle speed (5 km/h) (70), and if ■≧5, the control is ended and v<
If it is 5, add 1% to the duty ratio again (6
8), repeat the operations of (69). i>1. If so, the duty ratio is subtracted by 1% (71), and the vehicle speed V is compared with the minimum vehicle speed (5ka+/h) (72). ■ku5
If so, the process returns to step (69) again to continue the control, and if ■≧5, the control ends.

上記のようにアイドルアップ時に無段変速装置6を高速
比側の目標変速比i5に制御すれば、エンジン回転数N
が通常のアイドル回転数Naより高くなって伝達トルク
Tが上昇しても、その上昇分を無段変速装置6が相殺し
て出力軸28には常に一定のトルクが伝達される。例え
ば、N = 150Orpm 、 Na =100Or
pm 、  i ax−2,508とすると、(4)式
から通常時の伝達トルクT1及びアイドルアップ時の伝
達トルクT2は Tl =CX(1000)2. T2=CX(1500
)2である。一方、通常時の変速比はi。=2.508
であり、アイドルアップ時の目標変速比は(5)式から
lc =1.115である。出力軸28の出力トルクは
流体継手2の伝達トルクと無段変速装置6を含む変速機
内部の総変速比との積であるから、Tl X t ll
t、=T2 X i Eとなり、通常時とアイドルアッ
プ時とで出力軸28の出力トルク、即ちクリープ力は一
定となる。
As mentioned above, if the continuously variable transmission device 6 is controlled to the target gear ratio i5 on the high-speed ratio side when idling up, the engine speed N
Even if the transmission torque T increases because the rotation speed Na becomes higher than the normal idle rotation speed Na, the continuously variable transmission 6 cancels out the increase, and a constant torque is always transmitted to the output shaft 28. For example, N = 150Orpm, Na = 100Orpm
pm, i ax-2,508, then from equation (4), the transmission torque T1 during normal operation and the transmission torque T2 during idle up are Tl = CX (1000) 2. T2=CX(1500
)2. On the other hand, the gear ratio under normal conditions is i. =2.508
The target gear ratio at idle up is lc = 1.115 from equation (5). Since the output torque of the output shaft 28 is the product of the transmission torque of the fluid coupling 2 and the total gear ratio inside the transmission including the continuously variable transmission 6, Tl X t ll
t, = T2 X i E, and the output torque of the output shaft 28, that is, the creep force, is constant during normal times and during idle up.

なお、上記実施例では発進クラッチとして流体継手2の
例を示したが、本発明はこれに限定するものではなく、
回転数と伝達トルクとの関係が−様に決定されている発
進クラ・7チであれば、遠心クラッチや湿式クラッチな
ども使用できる。即ち、遠心クラッチの場合にはその特
性が(4)式と同様であり、エンジン回転数の二乗に比
例した伝達トルクを発生する。また、湿式クラッチの場
合には任意の特性に設定できる。また、目標変速比を求
める方法は、上記実施例のように計算式で求める場合の
他、マツプから読み出してもよい。
In addition, although the example of the fluid coupling 2 was shown as a starting clutch in the said Example, this invention is not limited to this,
Centrifugal clutches, wet clutches, etc. can also be used as long as the starting clutch has a relationship between rotational speed and transmitted torque that is determined in a negative manner. That is, in the case of a centrifugal clutch, its characteristics are similar to equation (4), and it generates a transmission torque proportional to the square of the engine speed. Further, in the case of a wet type clutch, arbitrary characteristics can be set. Further, the target gear ratio can be determined by using a calculation formula as in the above embodiment, or by reading it from a map.

また、本発明において無段変速装置2としては■ベルト
式無段変速装置に限らず、例えばトロイダル形無段変速
装置などいかなる無段変速装置でも使用できる。
Further, in the present invention, the continuously variable transmission 2 is not limited to the belt type continuously variable transmission, but any continuously variable transmission such as a toroidal type continuously variable transmission can be used.

発明の効果 以上の説明で明らかなように、本発明によれば無段変速
装置より上流側に発進クラッチを設けた無段変速機にお
いて、アイドルアップ時のエンジン回転数と非アイドル
771時のエンジン回転数との比に応じて無段変速装置
を高速比側へ変速するようにしたので、アイドルアップ
時と非アイドルアップ時とで出力軸のトルクが一定とな
り、クリープ力を常に一定に保持できる。したがって、
アイドルアップ時にアクセルを踏まないのに発進すると
いった不具合を解消できる。
Effects of the Invention As is clear from the above explanation, according to the present invention, in a continuously variable transmission in which a starting clutch is provided upstream of the continuously variable transmission, the engine speed when idling up and the engine speed when not idling are 771. Since the continuously variable transmission shifts to a higher speed ratio depending on the ratio to the rotation speed, the torque of the output shaft is constant between idle up and non-idle up, and the creep force can always be kept constant. . therefore,
This solves the problem of starting the vehicle without pressing the accelerator when the idle is up.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明が通用されるVベルト式無段変速機の一
例の構成図、第2図は制御方法の一例のフローチャート
図である。 2・・・流体継手(発進クラッチ)、6・・・無段変速
装置、8・・・駆動側プーリ、9・・・トルクカム装置
、12・・・従動側プーリ、13・・・油圧室、14・
・・■ベルト、30・・・変速制御バルブ、40・・・
ソレノイドバルブ、50・・・制御回路。 出 願 人  ダイハツ工業株式会社 代 理 人  弁理士 筒井 秀隆 第1図 第2図
FIG. 1 is a block diagram of an example of a V-belt type continuously variable transmission to which the present invention is applied, and FIG. 2 is a flowchart of an example of a control method. 2... Fluid coupling (starting clutch), 6... Continuously variable transmission device, 8... Driving side pulley, 9... Torque cam device, 12... Driven side pulley, 13... Hydraulic chamber, 14・
・・■Belt, 30...Shift control valve, 40...
Solenoid valve, 50...control circuit. Applicant Daihatsu Motor Co., Ltd. Agent Patent Attorney Hidetaka Tsutsui Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)無段変速装置より上流側に発進クラッチを設けた
無段変速機において、アイドルアップ時のエンジン回転
数を検出し、該エンジン回転数と非アイドルアップ時の
エンジン回転数との比に応じて無段変速装置の変速比を
高速比側へ変速し、アイドルアップ時のクリープ力を非
アイドルアップ時と略等しく制御することを特徴とする
無段変速機のクリープ力制御方法。
(1) In a continuously variable transmission with a starting clutch provided upstream of the continuously variable transmission, the engine speed at idle up is detected, and the ratio of the engine speed at idle up to the engine speed at non-idle up is calculated. A method for controlling creep force in a continuously variable transmission, characterized in that the gear ratio of the continuously variable transmission is shifted to a high speed ratio side in response to the above, and the creep force during idle up is controlled to be substantially equal to that during non-idle up.
JP61078747A 1986-04-05 1986-04-05 Creeping force control method for continuously variable transmission Expired - Fee Related JP2517227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61078747A JP2517227B2 (en) 1986-04-05 1986-04-05 Creeping force control method for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61078747A JP2517227B2 (en) 1986-04-05 1986-04-05 Creeping force control method for continuously variable transmission

Publications (2)

Publication Number Publication Date
JPS62237166A true JPS62237166A (en) 1987-10-17
JP2517227B2 JP2517227B2 (en) 1996-07-24

Family

ID=13670480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61078747A Expired - Fee Related JP2517227B2 (en) 1986-04-05 1986-04-05 Creeping force control method for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2517227B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781940A1 (en) * 1995-12-26 1997-07-02 Aisin Aw Co., Ltd. Continuously variable transmission
JPH1163183A (en) * 1997-08-25 1999-03-05 Mazda Motor Corp Control device for continuously variable transmission
JP2000179669A (en) * 1998-12-18 2000-06-27 Mazda Motor Corp Control device of power train
JP2008256122A (en) * 2007-04-05 2008-10-23 Yamaha Motor Co Ltd Stepless transmission
JP2014070726A (en) * 2012-10-02 2014-04-21 Nsk Ltd Infinite variable-speed drive

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200844A (en) * 1983-04-29 1984-11-14 Mitsubishi Electric Corp Controller for automatic speed change gear for vehicle
JPS60241530A (en) * 1984-05-14 1985-11-30 Nissan Motor Co Ltd Controller for automatic clutch

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59200844A (en) * 1983-04-29 1984-11-14 Mitsubishi Electric Corp Controller for automatic speed change gear for vehicle
JPS60241530A (en) * 1984-05-14 1985-11-30 Nissan Motor Co Ltd Controller for automatic clutch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781940A1 (en) * 1995-12-26 1997-07-02 Aisin Aw Co., Ltd. Continuously variable transmission
JPH1163183A (en) * 1997-08-25 1999-03-05 Mazda Motor Corp Control device for continuously variable transmission
JP2000179669A (en) * 1998-12-18 2000-06-27 Mazda Motor Corp Control device of power train
JP2008256122A (en) * 2007-04-05 2008-10-23 Yamaha Motor Co Ltd Stepless transmission
JP2014070726A (en) * 2012-10-02 2014-04-21 Nsk Ltd Infinite variable-speed drive

Also Published As

Publication number Publication date
JP2517227B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US4730712A (en) System for controlling a clutch for a motor vehicle
US4880094A (en) Control system for a clutch for a vehicle
US4850935A (en) Transmission ratio control system for a continuously variable transmission
JPS62237166A (en) Creep force control method for continuous variable transmission
US5209332A (en) Control system for a clutch of a motor vehicle
US4846321A (en) Control system for a clutch for a vehicle
JPS62255247A (en) Automatic clutch control device for vehicle
EP0240281B1 (en) Control system for an electromagnetic clutch for a vehicle
JP2910325B2 (en) Control device for lock-up device
JP2599278B2 (en) Control device for belt-type continuously variable transmission with torque converter
JPS6338759A (en) Method of controlling continuous variable transmission provided with direct-coupling mechanism
JPS6252268A (en) Shift-down control for v belt type continuously variable transmission
JPH01148631A (en) Control method for continuously variable transmission of vehicle
JPS63240436A (en) Reverse movement preventing device for vehicle
JPS60192130A (en) Hydraulic-type automatic clutch
JP2598253B2 (en) Automatic clutch control system for vehicles
JPS63121536A (en) Control method for continuously variable transmission with direct coupling mechanism
JPH0667698B2 (en) Control device for automatic starting clutch
JPS63121535A (en) Control method for continuously variable transmission with direct coupling mechanism
JP2906565B2 (en) Gear ratio control device for continuously variable transmission for vehicles
JPH01108454A (en) Speed change control of v-belt type continuously variable transmission
JPH01141271A (en) Switching control method for continuously variable transmission provided with direct-coupling mechanism
JPH0765677B2 (en) Controller for continuously variable transmission
JPS6338043A (en) Starting clutch controlling method for automatic transmission
JPS62275847A (en) Starting clutch controlling method for automatic transmission

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees