JPS62237055A - Fuel injection control device for internal combustion engine - Google Patents

Fuel injection control device for internal combustion engine

Info

Publication number
JPS62237055A
JPS62237055A JP8261186A JP8261186A JPS62237055A JP S62237055 A JPS62237055 A JP S62237055A JP 8261186 A JP8261186 A JP 8261186A JP 8261186 A JP8261186 A JP 8261186A JP S62237055 A JPS62237055 A JP S62237055A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
engine
control device
throttle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8261186A
Other languages
Japanese (ja)
Inventor
Setsuhiro Shimomura
下村 節宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP8261186A priority Critical patent/JPS62237055A/en
Publication of JPS62237055A publication Critical patent/JPS62237055A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To enable air-fuel ratio to be accurately controlled even when air density is different from the reference, by limiting a fuel supply quantity to an upper limit value corrected by an engine speed, air flow sensor output and an intake throttle valve opening. CONSTITUTION:A control unit 8 obtains a speed of an internal combustion engine 1 from a rotary speed pulse frequency, obtained from an ignition device 9, while an intake air amount by an air flow sensor 3. And the control unit, which uses the present engine speed and intake air amount referring to a MAP data, obtains an opening thetaS of an intake throttle valve 5, when the internal combustion engine 1 is operated in the sea level, and the present intake throttle valve opening thetaH. And the control unit, which calculates air density in that time evaluating a value thetaH/thetaS showing an almost linear correlation to the air density and corrects the maximum intake air amount MAXS determined in the sea level, obtains the proper maximum intake air amount MAXH in the altitude where the internal combustion engine 1 is operated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は自動車用内燃機関の吸入空気量計測値の処理
にかかわる燃料噴射制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a fuel injection control device related to processing of a measured value of intake air amount of an internal combustion engine for an automobile.

〔従来の技術〕[Conventional technology]

従来、この種の内燃機関の燃料噴射制御装置として第1
図に示すものがあった。図において、1は内燃機関、2
は内燃機関1に燃料を供給する電磁駆動式のインジェク
タ(燃料噴射弁)、3は機関に吸入される空気量を検出
する熱線式のエアフローセンサ、5は吸気管6の一部に
設けられ機関への吸入空気量を調節する吸気絞り弁、7
は機関の温度を検出する水温センサ、8はエアフローセ
ンサ3から得られる空気量信号から機関へ供給すべき燃
料量を演算し、インジェクタ2に要求燃料量に対応した
パルス幅を印加する制御装置である。
Conventionally, the first fuel injection control device for this type of internal combustion engine was
There was something shown in the figure. In the figure, 1 is an internal combustion engine, 2
3 is an electromagnetically driven injector (fuel injection valve) that supplies fuel to the internal combustion engine 1; 3 is a hot wire air flow sensor that detects the amount of air taken into the engine; an intake throttle valve that adjusts the amount of air taken into the
8 is a water temperature sensor that detects the temperature of the engine, and 8 is a control device that calculates the amount of fuel to be supplied to the engine from the air amount signal obtained from the air flow sensor 3, and applies a pulse width corresponding to the required fuel amount to the injector 2. be.

又、9は機関の所定回転角ごとにパルス信号を発生する
点火装置、11は燃料タンク、12は燃料を加圧するだ
めの燃料ポンプ、13はインジェクタ2へ供給する燃料
の圧力を一定に保つための燃圧レギュレータ、14は排
気管である。又、80〜84は制御装置8の構成要素で
あり、80は入力インタフェース回路、81はマイクロ
プロセッサで、マイクロプロセッサ81は各種入力信号
を処理し、ROM82に予め記憶されたプログラムに従
って内燃機関1の吸気管6へ供給すべき燃料量を演算し
、インジェクタ2の駆動信号を制御する。83はマイク
ロプロセッサ81が演算実行中にデータを一時記憶する
ためのRAMで、不揮発性メモリにより構成されている
。84はインジェクタ2を駆動する出力インタフェース
回路である。
Further, 9 is an ignition device that generates a pulse signal at every predetermined rotation angle of the engine, 11 is a fuel tank, 12 is a fuel pump for pressurizing the fuel, and 13 is for keeping the pressure of fuel supplied to the injector 2 constant. 14 is a fuel pressure regulator, and 14 is an exhaust pipe. Further, 80 to 84 are components of the control device 8, 80 is an input interface circuit, 81 is a microprocessor, and the microprocessor 81 processes various input signals and controls the internal combustion engine 1 according to a program stored in advance in the ROM 82. The amount of fuel to be supplied to the intake pipe 6 is calculated and the drive signal for the injector 2 is controlled. 83 is a RAM for temporarily storing data while the microprocessor 81 is executing an operation, and is constituted by a non-volatile memory. 84 is an output interface circuit that drives the injector 2.

次に、上記構成の従来装置の動作を説明する。Next, the operation of the conventional device having the above configuration will be explained.

エアフローセンサ3によって検出された機関への吸入空
気は信号を基にして制御装置8により機関へ供給すべき
燃料量を演算するとともに、点火装置9から得られる回
転パルス周波数より機関の回転数を求め、機関1回転当
りの燃料量を算出し、点火ハルスに同期してインジェク
タ2に所要パルス幅を印加する。なお、機関の要求空燃
比は機関の温度が低いときはリッチ側に設定する必要が
あり、水温センサ7から得られる温度信号に従ってイン
ジェクタ2に印加するパルス幅を増大補正する。又、機
関の加速を絞り弁5の開度の変化により検出し、空燃比
をリッチ補正するようにもしである。
The amount of fuel to be supplied to the engine is calculated by the control device 8 based on the signal detected by the air flow sensor 3, and the engine rotation speed is determined from the rotation pulse frequency obtained from the ignition device 9. , calculates the amount of fuel per engine revolution, and applies a required pulse width to the injector 2 in synchronization with the ignition Hals. Note that the required air-fuel ratio of the engine needs to be set to the rich side when the engine temperature is low, and the pulse width applied to the injector 2 is corrected to increase according to the temperature signal obtained from the water temperature sensor 7. It is also possible to detect the acceleration of the engine based on a change in the opening degree of the throttle valve 5 and to perform rich correction on the air-fuel ratio.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかる【、上記した従来装置において、燃料制御に用い
る熱線式のエアフローセンサ3は吸入空気量を重量で検
出できるために大気圧の補正手段を設ける必要がないと
いう優れた特徴を有するが、反面ではエンノンのバルブ
オーバラップによって生じる空気の吹き返しに敏感であ
り、吹き返しを含めて吸入空気量信号として検出してし
まうために実際の吸入空気量よりも多目の出力信号を発
生する。この吹き返しは特に機関の低速全開時に発生し
やすく、第2図に示すように真の吸入空気は時間tBに
おいて吸入されていないにも拘らず吹き返[7によって
あたかも吸入空気が増加したかのような波形となる。そ
の結果、エアフローセンサ3の出力は@3図に示すよう
に低速全開領域において真のイ【ヴ(図の破線で示した
値)よりもかなり大きな値を示す。機関や吸入系のレイ
アウトなどにもよるが、通常吹き返しによる誤差は最大
50%程度にも達するため、このままでは実泪に供し得
ない。このような誤差を補償するため第4図に示すよう
にエアフローセンサ3から得られる出力信号aを無視し
て、予め機関が吸入する最大吸気量(ばらつきを含む)
をROM82に設定しておき、md41ri’*KAW
−11−1;ニー+?AIr七随五n11/7’1mV
/7”1rnl−ズrttskgJlの平均値すに対し
て若干大きな値(例えば10%)でクリップするような
方法が提案されている。しかるに、この方法ではMAX
で示すクリップ値はシーレベル(Sea Level 
)でかつ常温における機関の最大吸入空気量を設定する
ことになるため、大気圧の低い高地走行や吸入空気温度
が高い場合には実際の空気密度の低下により空燃比が大
幅にリッチ側にシフトし、燃費を損うばかりか失火を招
来する可能性もある。又、吸入空気温度が低いときには
空燃比がリーン側に変動するという問題点もある。さら
に、このような吸入空気の吹き返シによるエアフローセ
ンサ3の検出誤差を補正する方法として吹き返しによる
波形を判断して差し引く方法も提案されているが、吹き
返しの波形は機関の回転数や絞り弁開度に対して種々異
なっており、精度良く補正することは困難であった。
However, in the conventional device described above, the hot-wire type air flow sensor 3 used for fuel control has an excellent feature in that it can detect the amount of intake air by weight, so there is no need to provide a correction means for atmospheric pressure. It is sensitive to air blowback caused by the valve overlap of the Ennon, and since the blowback is detected as an intake air amount signal, it generates an output signal that is higher than the actual intake air amount. This blowback is particularly likely to occur when the engine is fully open at low speed, and as shown in Figure 2, even though the true intake air is not being drawn at time tB, the blowback [7] makes it appear as if the intake air has increased. It becomes a waveform. As a result, as shown in Figure @3, the output of the air flow sensor 3 exhibits a value considerably larger than the true value (the value indicated by the broken line in the figure) in the low-speed, fully-open region. Although it depends on the layout of the engine and intake system, the error due to blowback usually reaches up to 50%, so it cannot be used in practice as it is. In order to compensate for such errors, as shown in Fig. 4, the output signal a obtained from the air flow sensor 3 is ignored, and the maximum intake air amount (including variations) taken in by the engine is determined in advance.
Set in ROM82, md41ri'*KAW
-11-1; Knee +? AIr7zui5n11/7'1mV
A method has been proposed in which the average value of /7"1rnl-zrttskgJl is clipped at a slightly larger value (for example, 10%). However, in this method, the MAX
The clip value indicated by is the sea level (Sea Level
) and sets the engine's maximum intake air amount at room temperature, so when driving at high altitudes with low atmospheric pressure or when the intake air temperature is high, the air-fuel ratio will shift significantly to the rich side due to the actual decrease in air density. However, not only does it reduce fuel efficiency, but it may also cause a misfire. Another problem is that when the intake air temperature is low, the air-fuel ratio fluctuates toward the lean side. Furthermore, as a method of correcting the detection error of the air flow sensor 3 due to such blowback of intake air, a method has been proposed in which the waveform due to blowback is judged and subtracted. It is difficult to accurately correct the opening degree as it varies depending on the opening degree.

従来装置では上記のように低速全開時に生じる空気の吹
き返しにより熱線式エアフローセンサ3が吸入空気量を
真の値よりも多目に検出してしまい、空燃比を適切に制
御できない運転領域が存在するという問題点があった。
In the conventional device, as mentioned above, the hot wire air flow sensor 3 detects the intake air amount as higher than the true value due to the blowback of air that occurs when the engine is fully opened at low speed, and there is an operating region where the air-fuel ratio cannot be controlled appropriately. There was a problem.

この発明は上記した従来の問題点を解決するために成さ
れたものであり、大気圧がシーレベルと異なる場合や大
気温度が常温と異なる場合においても空燃比を正確に制
御することができる内燃機関の燃料噴射制御装置を得る
ことを目的とする。
This invention was made in order to solve the above-mentioned conventional problems, and is an internal combustion engine that can accurately control the air-fuel ratio even when the atmospheric pressure differs from the sea level or when the atmospheric temperature differs from room temperature. The purpose is to obtain a fuel injection control device for an engine.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る内燃機関の燃料噴射制御装置は、エアフ
ローセンサの出力またはこの出力に基く燃料供給量を所
定の上限値に制限する手段と、この上限値を機関の回転
数、エアフローセンサの出力および吸気絞り弁開度によ
って補正する手段を有するものである。
The fuel injection control device for an internal combustion engine according to the present invention includes means for limiting the output of an air flow sensor or the fuel supply amount based on this output to a predetermined upper limit value, It has means for correcting based on the opening degree of the intake throttle valve.

〔作 用〕[For production]

エアフローセンサの出力などが実際より大きくなった場
合にこれを所定の上限値に制限するとともに、空気密度
が基準と異なる場合にはこれを補正手段により補正する
When the output of the air flow sensor becomes larger than the actual value, it is limited to a predetermined upper limit value, and when the air density differs from the standard, it is corrected by the correction means.

〔実施例〕〔Example〕

以下、この発明の実施例を図面とともに説明する。この
実施例に係る装置の構成は第1図と外見上は同じである
が、特にROM82 、RAM83などの機能が異なる
。第5図はこの実施例に係る装置の動作を示すフローチ
ャートであり、特に一点鋼線で囲んだ部分が従来と異な
る部分である。
Embodiments of the present invention will be described below with reference to the drawings. Although the configuration of the device according to this embodiment is outwardly the same as that shown in FIG. 1, the functions of the ROM 82, RAM 83, etc. are different. FIG. 5 is a flowchart showing the operation of the apparatus according to this embodiment, and in particular, the part surrounded by a dotted steel wire is different from the conventional one.

尚、この発明と直接関係のない部分は省略しである。ま
ず、ステップS1では機関の回転数Nを読取り、この回
転数Nを用いてステップS2でこの回転数に対応する最
大吸入空気量MAX、を検索する。検索の手段としては
回転数を入力とする関数を用いた演算を行うもの、ある
いは回転数に対応して予めMAXsのデータを記憶させ
であるマツプデータを検索する方式のものなどがある。
Note that parts not directly related to this invention are omitted. First, in step S1, the rotational speed N of the engine is read, and using this rotational speed N, in step S2, the maximum intake air amount MAX corresponding to this rotational speed is searched. Search methods include those that perform calculations using a function that inputs the number of rotations, and those that search for map data by storing MAXs data in advance in correspondence with the number of rotations.

尚、このMAXSのデータはシーレベルで求めたもので
ある。次に、ステップS3でそのとき機関が吸入してい
る吸入空気@Qを読取る。従来装置ではここでステップ
S9へ移るが、この実施例ではステラ7’S4へ移る。
Note that this MAXS data was obtained at the sea level. Next, in step S3, the intake air @Q being sucked into the engine at that time is read. In the conventional device, the process moves to step S9, but in this embodiment, the process moves to Stella 7'S4.

ステップS4ではステップ81゜S3で読取った現在の
回転数Nおよび吸入空気量Qを用いて、見込みの吸気絞
り弁5の開度θSを求める。θSを求めるためには、機
関をシーレベルで運転したときに回転数Nおよび吸入空
気量Qと絞り弁開度θとの関係を予め記憶させたMAP
データを検索する方法などがある。ステップS5では現
在の絞り弁開度θHを求める。もし機関がシーレベルに
あるならばθH=θSとなり、1関が高地にある場合に
はシーレベルと同じ出力を得るためには絞り弁5をより
開く必要があるので、θH〉θSとなる。この実施例は
絞り弁開度のこのような関係からi関が運転されている
高度ないし空気密度に関連するパラメータを求め、最大
吸入空気はMAXの値を補正しようとするものである。
In step S4, the expected opening degree θS of the intake throttle valve 5 is determined using the current rotational speed N and intake air amount Q read in step 81°S3. To find θS, use a MAP that stores in advance the relationship between the rotational speed N, intake air amount Q, and throttle valve opening θ when the engine is operated at sea level.
There are ways to search for data. In step S5, the current throttle valve opening degree θH is determined. If the engine is at sea level, θH=θS, and if the engine is at a high altitude, it is necessary to open the throttle valve 5 more to obtain the same output as at sea level, so θH>θS. This embodiment attempts to obtain parameters related to the altitude or air density at which the i valve is operated from this relationship of the throttle valve opening, and to correct the value of MAX for the maximum intake air.

実験によって求めた空気密度とθVθHの関係は第6図
ンζ示す通りである。同図において、PK 、 psは
夫々高地の大気圧およびシーレベルの大気圧を示し、T
H。
The relationship between air density and θVθH determined by experiment is as shown in Figure 6-ζ. In the figure, PK and ps indicate the atmospheric pressure at high altitude and the atmospheric pressure at sea level, respectively, and T
H.

Tsは夫々高地における吸入室%温度およびシーレベル
で絞り弁開度θSのMAPデータを定めたときの基準の
吸入空気温度を示す。従って、PH−’rs/Ps−T
Hはシーレベルの基準の空気密度に対して現在運転中の
空気密度の比率を示す。このt46図から明らかなよう
・にθH/θSの値は空気密度とほぼ直線的な相関を示
す。従って、θH/θSを評価してそのときの空気密度
を算出し、シーレベルで定めた最大吸入空気量MAX3
を補正して、その高度での妥当な最大吸入空気iMAX
Hを求めることが可能である。
Ts indicates the reference intake air temperature when the MAP data of the intake chamber % temperature at high altitude and the throttle valve opening θS at sea level are determined, respectively. Therefore, PH-'rs/Ps-T
H indicates the ratio of the air density during current operation to the standard air density of the sea level. As is clear from this t46 diagram, the value of θH/θS shows a nearly linear correlation with the air density. Therefore, the air density at that time is calculated by evaluating θH/θS, and the maximum intake air amount MAX3 determined by the sea level is calculated.
correct for the reasonable maximum intake air iMAX at that altitude.
It is possible to find H.

再び、第5図によって説明する。ステップS6では先に
求めたθS、θHからθH/θSを演算し、例えによっ
て禎正値CMPを演算する。ここで、A。
The explanation will be given again with reference to FIG. In step S6, θH/θS is calculated from the previously obtained θS and θH, and by analogy, a positive value CMP is calculated. Here, A.

Bは第6図の特性を直線と見なしたときの定数であり、
従ってCMPは(PH/Ps) ・(Ts/TH)つま
り現在の吸入空気密度とシーレベルにおける基準の吸入
空気密度との比率を表わすパラメータを意味する値であ
る。なお、CMPの計算は上記の関数演算の他に、θH
1θSを主パラメータとする種々の関数演算あるいはM
APデータの検索で実行可能である。次に、ステップS
7ではステップS2で検索し、た最大吸入空気JtMA
XsとステップS6で求めた補正値CMPとにより MAX、=MAXsXCMP の演算をし、現在の高度に対応する最大吸入空気量MA
XHを求める。この計算は機関の行程当りの吸入空気質
量がそのときの大気密度に比例することとCM P ”
’ (PH/PS ) ” (TS/TH)の関係とに
基くものであることは言うまでもない。次に、88では
MAXHをRAM83に記憶させる。次に、ステップS
9ではステップS3で読取った吸入空気量Qと最大吸入
空気ffiMAXHとを比較し、Q≧MAXHならばス
テップS10でQ=MAXHとしてQが過剰に出力され
ている分をMAXHでクリップする。
B is a constant when the characteristics in Figure 6 are considered as a straight line,
Therefore, CMP is (PH/Ps).(Ts/TH), that is, a value meaning a parameter representing the ratio of the current intake air density to the standard intake air density at the sea level. In addition to the above function calculation, CMP calculation is performed using θH
Various functional operations with 1θS as the main parameter or M
This can be done by searching AP data. Next, step S
7, the maximum intake air JtMA searched in step S2
MAX,=MAXsXCMP is calculated using Xs and the correction value CMP obtained in step S6, and the maximum intake air amount MA corresponding to the current altitude is calculated.
Find XH. This calculation is based on the fact that the mass of intake air per engine stroke is proportional to the atmospheric density at that time, and that CMP
It goes without saying that this is based on the relationship of '(PH/PS)' (TS/TH).Next, in step 88, MAXH is stored in the RAM 83.Next, in step S
In step 9, the intake air amount Q read in step S3 is compared with the maximum intake air ffiMAXH, and if Q≧MAXH, in step S10, Q=MAXH and the excessive output of Q is clipped at MAXH.

又、Q<MAXHならばQ=MAXHのクリップは行わ
れず、読取ったQがそのまま燃料供給量演算の次工程(
図示せず)に移行する。
Also, if Q<MAXH, the clipping of Q=MAXH is not performed, and the read Q is used as it is in the next step of fuel supply amount calculation (
(not shown).

なお、第5図の実施例においては最大吸入空気量MAX
を補正する場合を示したが、吸入空気量Qに対応して供
給する燃料量、具体的にはインゾェクタ2の駆動パルス
巾の最大値を補正値CMPによって補正する方法も可能
であるのは言うまでもない。又、第6図に示したような
空気密度と絞り弁開度との密接な関係が認められるのは
、(1)機関の吸入空気量が絞り弁5に律速されている
場合即ち絞り弁5の開度が所定の範囲内にある場合、(
2)吸入空気に吹き返しが無く、正確な吸入空気量を測
定可能な範囲内に吸入空気量あるいは回転数がある場合
、(3)機関の暖機運転時あるいは加減速時のような過
渡状態にない時、などの場合に限定される。従って、第
6図における補正値CMPの演算は上記のような諸条件
が成立したときに行うようにした方がよい。又、上記条
件を付けたとしても若干の変動が補正値CMPに表われ
るのは避けられない。そこで、補正値CMPを適正な周
波数特性のフィルタを通した後、擢正に使用するように
するとなお良い。又、シーレベルにあっては補正値CM
Pの若干の変動によって補正後の最大吸入空気量MAX
Hが変動するのは好ましくないため、CMPが1に近い
範囲では1に固定するなどの保護を行うなどの処理が好
ましい。
In addition, in the embodiment shown in FIG. 5, the maximum intake air amount MAX
Although we have shown a case where the amount of fuel to be supplied corresponds to the amount of intake air Q, it goes without saying that it is also possible to correct the maximum value of the drive pulse width of the injector 2 using the correction value CMP. stomach. Furthermore, a close relationship between the air density and the throttle valve opening as shown in FIG. If the opening degree of is within the specified range, (
2) If there is no blowback in the intake air and the amount of intake air or rotational speed is within a range that allows accurate measurement of the amount of intake air, (3) If the engine is in a transient state such as during engine warm-up or acceleration/deceleration. Limited to cases such as when there is no Therefore, it is preferable to calculate the correction value CMP in FIG. 6 when the above conditions are met. Furthermore, even with the above conditions, it is inevitable that some fluctuations will appear in the correction value CMP. Therefore, it is better to pass the correction value CMP through a filter with appropriate frequency characteristics and then use it in a positive manner. Also, at sea level, the correction value CM
Maximum intake air amount MAX after correction due to slight fluctuations in P
Since it is undesirable for H to fluctuate, it is preferable to perform protection such as fixing it to 1 in a range where CMP is close to 1.

さらに、補正値CMPは取得の条件が成立し、て初めて
取得可能なものであるため、始動後直ちに低速全開走行
を行う場合、補正値CMPが取得されていないという不
都合が生じる。このため、上記実施例では、算出した補
正値CMPにより算出したMAXHを不揮発性メモリか
ら成るRAM83に記憶させ、キースイッチがオフの間
も保持するようにしており、再始動後補正値を取得でき
ない間も保持しであるMAXHを使用して最初から良好
な運転が可能である。
Furthermore, since the correction value CMP can only be obtained after the conditions for obtaining it are satisfied, if the vehicle is driven at full throttle at low speed immediately after starting, there will be a problem that the correction value CMP will not be obtained. For this reason, in the above embodiment, the MAXH calculated from the calculated correction value CMP is stored in the RAM 83 consisting of a non-volatile memory and held even while the key switch is off, so that the correction value cannot be obtained after restarting. Good operation is possible from the beginning using MAXH, which is maintained for a long time.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、従来におけるエアフロ
ーセンサの出力などを制限する所定の上限値がシーレベ
ルで定められ、この値が高地でも採用されるために空燃
比のリッチシフトが生じるという欠点を、絞り弁開度と
吸入空気量と回転数の関係から高度に対応する補正値を
求め、この補正値によって前記上限値を補正するようK
して除去している。又、補正に使用する絞り弁開度など
のパラメータは従来より用いられているものであって特
別なセンサを必要としないので、コストアップなどの不
都合は生じない。さらに、補正値を不揮発性メモリによ
り保持するようにしたので、キースイッチがオフの間も
補正値を保持することができ、再始動後補正値を取得で
きない間も保持した補正値を用いて良好な運転を行うこ
とができる0
As described above, according to the present invention, a predetermined upper limit value that limits the output of the air flow sensor, etc., is determined at the sea level, and this value is also adopted at high altitudes, resulting in a rich shift in the air-fuel ratio. A correction value corresponding to the altitude is determined from the relationship between the throttle valve opening, intake air amount, and rotation speed, and the upper limit value is corrected using this correction value.
and removed. Further, since the parameters such as the opening degree of the throttle valve used for the correction are conventionally used and do not require a special sensor, no inconvenience such as an increase in cost occurs. Furthermore, since the correction value is held in non-volatile memory, the correction value can be held even when the key switch is off, and even when the correction value cannot be acquired after restarting, the held correction value can be used successfully. 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来およびこの発明に係る装置の構成図、第2
図および第3図は夫々吹き返しがある場合の吸入空気検
出量の特性図およびエアフローセンサの出力の特性図、
第4図は従来における吹き返しによる誤差の補正方法を
示す図、第5図はこの発明装置の要部動作を示すフロー
チャート、第6図はこの発明に係る空気密度と絞り弁開
度との関係を示す図である。 1・・・内燃機関、2・・・燃料噴射弁、3・・・熱線
式ニアフロー七ンサ、5・・・吸気絞り弁、8・・・制
御装置、9・・・点火装置。
FIG. 1 is a configuration diagram of a conventional device and a device according to the present invention, and FIG.
Figures 3 and 3 are a characteristic diagram of the detected amount of intake air and a characteristic diagram of the output of the air flow sensor when there is blowback, respectively.
Fig. 4 is a diagram showing a conventional method for correcting errors caused by blowback, Fig. 5 is a flowchart showing the operation of the main parts of the device of the present invention, and Fig. 6 is a diagram showing the relationship between air density and throttle valve opening according to the present invention. FIG. DESCRIPTION OF SYMBOLS 1... Internal combustion engine, 2... Fuel injection valve, 3... Hot wire type near flow sensor, 5... Intake throttle valve, 8... Control device, 9... Ignition device.

Claims (3)

【特許請求の範囲】[Claims] (1)内燃機関の吸入空気量を検出する熱線式エアフロ
ーセンサ、エアフローセンサの出力信号に基いて機関へ
の燃料供給量を演算する制御装置、この制御装置によつ
て駆動され、所定燃料量を噴射する燃料噴射弁を備えた
内燃機関の燃料噴射制御装置において、制御装置はエア
フローセンサの出力またはこの出力に基く燃料供給量を
所定の上限値(MAX)に制限する手段と、機関の回転
数、エアフローセンサの出力および機関の吸入空気量を
調節する吸気絞り弁の開度の関係によつて前記上限値(
MAX)の値を補正するとともに補正値を不揮発性メモ
リに保持する補正手段を含むことを特徴とする内燃機関
の燃料噴射制御装置。
(1) A hot-wire airflow sensor that detects the intake air amount of the internal combustion engine; a control device that calculates the amount of fuel supplied to the engine based on the output signal of the airflow sensor; In a fuel injection control device for an internal combustion engine equipped with a fuel injection valve that injects fuel, the control device includes a means for limiting the output of an air flow sensor or a fuel supply amount based on this output to a predetermined upper limit value (MAX), and a means for controlling the engine rotation speed. , the upper limit value (
1. A fuel injection control device for an internal combustion engine, comprising a correction means for correcting a value of MAX) and storing the correction value in a nonvolatile memory.
(2)前記補正手段は、吸気絞り弁の開度、機関の回転
数およびエアフローセンサの出力のうち少なくとも一つ
によつて定める所定動作状態に機関があるときに作動す
るようにしたことを特徴とする特許請求の範囲第1項記
載の内燃機関の燃料噴射制御装置。
(2) The correction means is configured to operate when the engine is in a predetermined operating state determined by at least one of the opening degree of the intake throttle valve, the engine speed, and the output of the air flow sensor. A fuel injection control device for an internal combustion engine according to claim 1.
(3)前記補正手段は、エアフローセンサの出力と機関
の回転数とから得られた吸気絞り弁の開度の見込値(θ
_S)と現在の吸気絞り弁の開度(θ_H)との比率に
基く値によつて前記上限値(MAX)を補正するように
したことを特徴とする特許請求の範囲第1項または第2
項記載の内燃機関の燃料噴射制御装置。
(3) The correction means includes an estimated value (θ) of the intake throttle valve opening obtained from the output of the air flow sensor and the engine speed.
_S) and the current opening degree (θ_H) of the intake throttle valve.
A fuel injection control device for an internal combustion engine according to paragraph 1.
JP8261186A 1986-04-08 1986-04-08 Fuel injection control device for internal combustion engine Pending JPS62237055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8261186A JPS62237055A (en) 1986-04-08 1986-04-08 Fuel injection control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8261186A JPS62237055A (en) 1986-04-08 1986-04-08 Fuel injection control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JPS62237055A true JPS62237055A (en) 1987-10-17

Family

ID=13779270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8261186A Pending JPS62237055A (en) 1986-04-08 1986-04-08 Fuel injection control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JPS62237055A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543292A (en) * 1978-09-20 1980-03-27 Bosch Gmbh Robert Device for determining fuel quantity signal for internal combustion engine
JPS55125334A (en) * 1979-03-19 1980-09-27 Nissan Motor Co Ltd Fuel controller
JPS57148039A (en) * 1981-03-10 1982-09-13 Nissan Motor Co Ltd Altitude corrector for engine fuel feeder
JPS58131329A (en) * 1982-01-29 1983-08-05 Nippon Denso Co Ltd Fuel injection controlling method
JPS59190431A (en) * 1983-04-11 1984-10-29 Toyota Motor Corp Fuel injection quantity control method of internal- combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5543292A (en) * 1978-09-20 1980-03-27 Bosch Gmbh Robert Device for determining fuel quantity signal for internal combustion engine
JPS55125334A (en) * 1979-03-19 1980-09-27 Nissan Motor Co Ltd Fuel controller
JPS57148039A (en) * 1981-03-10 1982-09-13 Nissan Motor Co Ltd Altitude corrector for engine fuel feeder
JPS58131329A (en) * 1982-01-29 1983-08-05 Nippon Denso Co Ltd Fuel injection controlling method
JPS59190431A (en) * 1983-04-11 1984-10-29 Toyota Motor Corp Fuel injection quantity control method of internal- combustion engine

Similar Documents

Publication Publication Date Title
US4598684A (en) Apparatus for controlling air/fuel ratio for internal combustion engine
JP2796419B2 (en) Electronic control fuel injection device
JP3284395B2 (en) Throttle valve control device for internal combustion engine
JPS6296751A (en) Fuel injection controller for internal combustion engine
US5517970A (en) Fuel feeding system and method for internal combustion engine
JPS6278449A (en) Fuel injection controller of internal combustion engine
US4757793A (en) Fuel injection control system for internal combustion engine
JPS5870034A (en) Electronically controlled fuel jetting apparatus of internal-combustion engine with supercharger
JPS62237055A (en) Fuel injection control device for internal combustion engine
JPS6340935B2 (en)
JPH0515906B2 (en)
JP2677426B2 (en) Fuel injection amount control method for internal combustion engine
JPH04342857A (en) Electronic control device of internal combustion engine
JPS62186031A (en) Fuel injection controller for internal combustion engine
JP2677421B2 (en) Fuel injection amount control method for internal combustion engine
JP2677425B2 (en) Fuel injection amount control method for internal combustion engine
JPH08291732A (en) Fuel injection control device for internal combustion engine
JPH063304A (en) Air/fuel ratio detecting device for internal combustion engine
JPH07117023B2 (en) Engine controller
JPH0337344A (en) Electronical fuel injection controller for internal combustion engine
JP2528279B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH0612087B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH025734A (en) Method for controlling auxiliary air feeding device of internal combustion engine
JPH0686831B2 (en) Air-fuel ratio learning controller for internal combustion engine
JPH102243A (en) Fuel controller for internal combustion engine