JPS62237010A - Excessive speed suppressing system for turbine - Google Patents

Excessive speed suppressing system for turbine

Info

Publication number
JPS62237010A
JPS62237010A JP8011086A JP8011086A JPS62237010A JP S62237010 A JPS62237010 A JP S62237010A JP 8011086 A JP8011086 A JP 8011086A JP 8011086 A JP8011086 A JP 8011086A JP S62237010 A JPS62237010 A JP S62237010A
Authority
JP
Japan
Prior art keywords
turbine
steam
valve
pressure turbine
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8011086A
Other languages
Japanese (ja)
Other versions
JPH0751887B2 (en
Inventor
Yukimasa Yoshinari
吉成 行正
Toyohiko Masuda
豊彦 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61080110A priority Critical patent/JPH0751887B2/en
Publication of JPS62237010A publication Critical patent/JPS62237010A/en
Publication of JPH0751887B2 publication Critical patent/JPH0751887B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To prevent the excessive speed of a steam turbine in trip by connecting a conduit for feeding steam into the steam turbine and a condenser through a piping equipped with a valve. CONSTITUTION:A high pressure turbine inlet pipe 6 for feeding steam into a high pressure turbine 7 and a condenser 14 are connected through a high pressure turbine bypass pipe 34 equipped with a bypass valve 32. Further, a low pressure turbine inlet pipe 12 and the condenser 14 are connected through a low pressure turbine bypass pipe 35 equipped with a bypass valve 33. During the turbine trip, a hydraulic controller 31 is operated to perfectly open the bypass valves 32 and 33. Thus, the excessive speed of the turbine can be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、発電プラントのタービン入口蒸気を直接復水
器へ導入する装置に係り、特に、タービン負荷の緊急切
り離しに伴う供給蒸気の遮断(トリップ)が発生したと
き、タービン回転数が上昇するのを抑制するに好適なタ
ービンオーバースピード抑制系統に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a device for directly introducing steam at a turbine inlet of a power plant to a condenser, and in particular, to a device for directly introducing steam at a turbine inlet of a power plant to a condenser, and in particular, to The present invention relates to a turbine overspeed suppression system suitable for suppressing an increase in turbine rotational speed when a trip occurs.

〔従来技術〕[Prior art]

従来のタービン過速抑制系統の1例として沸騰水型原子
力発電所のタービンサイクルの構成を第3図に示す。
FIG. 3 shows the configuration of a turbine cycle in a boiling water nuclear power plant as an example of a conventional turbine overspeed suppression system.

原子炉容器1で発生した蒸気は、主蒸気管2゜主蒸気へ
ラダ3を通り主蒸気止め弁4.蒸気加減弁5及び高圧タ
ービン入口管(リード管)6を介して、1′に圧タービ
ン7に供給されて仕事を行う、高圧タービン7で仕事を
した蒸気は、クロスアラウンド管8を介し、湿分分離器
9で蒸気中の湿分を除去し、組合せ中間弁10.アクセ
プト弁11゜低圧タービン人口管12を介して低圧ター
ビン13に供給されて仕事をした後、復水器14に於て
冷却され、復水となって復水ポンプ15により復水器1
4から吸み出され、低圧給水加熱器16゜17、により
昇温された後、給水ポンプ18により、さらに昇圧され
、高圧給水加熱器19.20により昇温し、再び原子炉
容器1へ戻される。
The steam generated in the reactor vessel 1 passes through the main steam pipe 2°, the main steam ladder 3, and the main steam stop valve 4. The steam that has done work in the high-pressure turbine 7 is supplied to the pressure turbine 1' through the steam control valve 5 and the high-pressure turbine inlet pipe (lead pipe) 6 to perform work. Moisture in the steam is removed by a separator 9, and a combination intermediate valve 10. After the accept valve 11° is supplied to the low pressure turbine 13 through the low pressure turbine manifold pipe 12 and does work, it is cooled in the condenser 14, becomes condensate, and is sent to the condenser 1 by the condensate pump 15.
After being sucked out from the reactor vessel 1 and heated by the low pressure feed water heaters 16 and 17, the pressure is further increased by the feed water pump 18, the temperature is raised by the high pressure feed water heaters 19 and 20, and then returned to the reactor vessel 1. It will be done.

一方、高圧給水加熱器19.20及び低圧給水加熱器1
6.17へは、給水及び復水の加熱の為に、高圧タービ
ン7出口或はタービンの中間段落から抽気された蒸気が
抽気管21,22,23゜24、及び抽気逆止弁26,
27,28.29を介して導入される。
On the other hand, high pressure feed water heater 19.20 and low pressure feed water heater 1
6.17, steam extracted from the outlet of the high-pressure turbine 7 or an intermediate stage of the turbine is passed through bleed pipes 21, 22, 23° 24, and bleed check valves 26, 24 to heat the feed water and condensate.
27, 28, and 29.

さらに、タービントリップが発生したときは。Additionally, when a turbine trip occurs.

高圧タービン7の入口に設置された主蒸気止め弁4、蒸
気加減弁5.及び低圧タービン13の入口に設置された
組合せ中間弁10.アクセプト弁11が閉鎖されるため
、タービンへの蒸気供給が遮断される。
A main steam stop valve 4 and a steam control valve 5 installed at the inlet of the high pressure turbine 7. and a combination intermediate valve 10 installed at the inlet of the low pressure turbine 13. Since the accept valve 11 is closed, the steam supply to the turbine is cut off.

また、この時には、低圧給水加熱器16.17及び高圧
給水加熱器19.20のドレンフラッシュによるタービ
ンの過速防止の為に抽気逆止弁25.26,27.28
も閉鎖する。一方、タービントリップ以降、タービン7
.13への流路を遮断されたことによる原子炉圧力上昇
を低減する為に、″L蒸気管2を介して主蒸気へラダ3
から送られてくる蒸気タービンバイパス管29を通り、
タービンバイパス弁30を介し、直接復水器14へ導か
れ、復水器14にて復水となった後、再び原子炉容器1
へ送られる。
Also, at this time, the bleed check valves 25, 26, 27, 28 are used to prevent overspeeding of the turbine due to the drain flush of the low pressure feed water heater 16.17 and the high pressure feed water heater 19.20.
will also be closed. On the other hand, after the turbine trip, the turbine 7
.. In order to reduce the rise in reactor pressure due to the flow path to 13 being cut off, the main steam is
Pass through the steam turbine bypass pipe 29 sent from
The water is directly led to the condenser 14 via the turbine bypass valve 30, and after becoming condensed in the condenser 14, it is returned to the reactor vessel 1.
sent to.

なお、この種の装置に関する公知技術としては例えば特
開昭55−3197 、特開昭55−48699等が挙
げられる。
Incidentally, known techniques regarding this type of device include, for example, Japanese Patent Application Laid-Open No. 55-3197 and Japanese Patent Application Laid-Open No. 55-48699.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術においては、タービントリップしたときは
、高圧タービン7の入口に設置された主蒸気止め弁4.
蒸気加減弁5、及び低圧タービン13の入口に設置され
た組合せ中間弁10.アクセプト弁11が閉鎖される。
In the above-described conventional technology, when the turbine trips, the main steam stop valve 4 installed at the inlet of the high pressure turbine 7.
A steam control valve 5 and a combination intermediate valve 10 installed at the inlet of the low pressure turbine 13. Accept valve 11 is closed.

又この時は、低圧給水加熱器16.17及び高圧給水加
熱器19゜20内のドレンフラッシュによるタービンの
過速を防止するため、抽気逆止弁25,26,27゜2
8、を設置しているが、高圧タービン入口管6、低圧タ
ービン入口管12、抽気管21,22゜23.24高圧
タービン7及び低圧タービン13の内部蒸気残留エネル
ギーによって、タービンが過速される虞れがある。また
、上記管内の内部蒸気残留エネルギーを低減するため、
主蒸気止め弁4、蒸気加減弁52組合せ中間弁10.ア
クセプト弁11及び抽気逆止弁25,26,27.28
の配置設計に制約条件が必要となり、配置設計を困難な
らしめていた。
Also, at this time, the bleed check valves 25, 26, 27°2 are turned on to prevent overspeeding of the turbine due to drain flash in the low pressure feedwater heaters 16, 17 and high pressure feedwater heaters 19°20.
8 is installed, but the turbine is overspeeded by the internal steam residual energy of the high pressure turbine inlet pipe 6, the low pressure turbine inlet pipe 12, the bleed pipes 21, 22゜23.24, the high pressure turbine 7 and the low pressure turbine 13. There is a risk. In addition, in order to reduce the internal steam residual energy in the pipe,
Main steam stop valve 4, steam control valve 52 combination intermediate valve 10. Accept valve 11 and bleed check valve 25, 26, 27.28
Restrictive conditions were required for layout design, making layout design difficult.

本発明の目的とすることは、タービン過速の要因となる
ところの、上記内部蒸気残留エネルギーを低減し、抽気
逆止弁の削除を可能ならしめると共に、配置設計の制約
条件を緩和し、かつ信頼性を向上させることのできるタ
ービン過速抑制系統を得ることにある。
It is an object of the present invention to reduce the internal steam residual energy that causes turbine overspeed, to make it possible to eliminate the bleed check valve, and to ease constraints on layout design. The object of the present invention is to obtain a turbine overspeed suppression system that can improve reliability.

〔問題点を解決するための手段〕[Means for solving problems]

前述の目的を達成する為に創作した本発明の基本的な原
理について次に略述する6本発明においては、タービン
過速の要因となる高圧タービン入口管6、低圧タービン
入口管12、抽気管21゜22.23,24.高圧ター
ビン7及び低圧タービン13の内部蒸気残留エネルギー
を低減する。
The basic principle of the present invention created to achieve the above-mentioned object will be briefly described below.6 In the present invention, the high-pressure turbine inlet pipe 6, the low-pressure turbine inlet pipe 12, and the bleed air pipe, which are the causes of turbine overspeed, are 21°22.23,24. The internal steam residual energy of the high pressure turbine 7 and the low pressure turbine 13 is reduced.

特に、高圧タービン入口管6.低圧タービン入口管12
.高圧タービン7及び低圧タービン13の内部蒸気残留
エネルギーは、全体の70%以上をしめており、上記、
内部蒸気残留エネルギーを低減するし、タービン過速を
防止する。
In particular, the high pressure turbine inlet pipe 6. Low pressure turbine inlet pipe 12
.. The internal steam residual energy of the high-pressure turbine 7 and the low-pressure turbine 13 accounts for more than 70% of the total, and the above-mentioned
Reduce internal steam residual energy and prevent turbine overspeed.

実用、ヒ充分な程度にタービン過速を防止するため本発
明者は、内部蒸気残留エネルギーを全体の70’X以上
をしめる部分から内部蒸気残留エネルギーを取り出すこ
とによりタービン過速を防止することができることに着
目した。
In order to prevent turbine overspeed to a sufficient extent for practical use, the inventor of the present invention has found that it is possible to prevent turbine overspeed by extracting internal steam residual energy from a portion that makes up 70'X or more of the total internal steam residual energy. I focused on what I could do.

また内部蒸気残留エネルギーの取り出し先としては、タ
ービンバイパス運転時においても負圧となる復水器に導
入することが適切であると考えられる。
Furthermore, it is considered appropriate to introduce the internal steam residual energy into the condenser, which has a negative pressure even during turbine bypass operation.

一ヒ述の原理に基づいて前記の目的(トリップ時のオー
バーランニング防止)を達成するため、本発明に係る系
統は、蒸気発生装置と蒸気タービンと復水器とを設けた
発電プラントにおいて、前記の蒸気タービンに対して蒸
気を供給する管路と復水器とを、弁を備えた配管によっ
て接続したことを特徴とする。
In order to achieve the above object (preventing overrunning during tripping) based on the above-mentioned principle, the system according to the present invention provides a power generation plant equipped with a steam generator, a steam turbine, and a condenser. The condenser is connected to a conduit for supplying steam to the steam turbine by a pipe equipped with a valve.

〔作用〕[Effect]

上記のように構成した抑制系統によれば、前記の弁を開
始して、蒸気タービンの上流側管路内の高温高圧蒸気を
復水器に導入してエネルギーを取り除き、トリップされ
た蒸気タービンのオーバーランニングを防止することが
できる。
According to the suppression system configured as described above, the valve is started to introduce high-temperature, high-pressure steam in the upstream line of the steam turbine to the condenser to remove energy, and to remove the energy from the tripped steam turbine. Overrunning can be prevented.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図により説明
する。第1図は本実施例における全体的系統図、第2図
は、同要部抽出詳細図である。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is an overall system diagram of this embodiment, and FIG. 2 is a detailed diagram of the extracted main parts.

従来の系統構成(第3図)に比して異なる点は、高圧タ
ービン入口管6から分岐せしめて高圧タービンバイパス
管34及び高圧タービンバイパス弁35を設け、さらに
、低圧タービン入口管12から分岐せしめて低圧タービ
ンバイパス管35及び低圧タービンバイパス弁33を設
けたことである。
The difference from the conventional system configuration (FIG. 3) is that a high-pressure turbine bypass pipe 34 and a high-pressure turbine bypass valve 35 are branched off from the high-pressure turbine inlet pipe 6, and are further branched off from the low-pressure turbine inlet pipe 12. This is because a low pressure turbine bypass pipe 35 and a low pressure turbine bypass valve 33 are provided.

本発明を実施する場合、高圧タービン入口管6、高圧タ
ービン7、低圧タービン入口管12、低圧タービン13
、抽気管21,22,23,24、の内部蒸気残留エネ
ルギーを最小限に少なくすることが望ましい。本実施例
においては、主蒸気止め弁4.蒸気加減弁5、組合せ中
間弁10.アクセプト弁11.抽気逆止弁25,26,
27,28、をタービンの近傍に設け、配置を短くシ、
内部蒸気残留エネルギーを小さくしている。
When implementing the present invention, the high pressure turbine inlet pipe 6, the high pressure turbine 7, the low pressure turbine inlet pipe 12, the low pressure turbine 13
It is desirable to minimize the internal steam residual energy in the bleed pipes 21, 22, 23, 24. In this embodiment, the main steam stop valve 4. Steam control valve 5, combination intermediate valve 10. Acceptance valve 11. Bleed check valve 25, 26,
27, 28, are installed near the turbine, and the arrangement is shortened.
Internal steam residual energy is reduced.

しかし、配置計画及び配管ルート計画との関係から、上
記弁をタービン近傍に設けることは非常にむずかしい場
合がある。特に近年の原子カプラントにおいては、建屋
スペースの縮小化を計るため、第4図に示す如く、低圧
給水加熱16.17゜を復水器14に内蔵しており、抽
気逆止弁の設置位置が固定化している。しかし、本発明
を適用してタービン近傍の内部蒸気残留エネルギーを、
高圧タービン入口管6がら高圧タービンバイパス管34
、高圧タービンバイパス弁32を介して復水器14に導
入すると共に、低圧タービン入口管12の内部蒸気残留
エネルギーを、低圧タービン入口管12から低圧タービ
ンバイパス管35.低圧タービンバイパス弁33を介し
て復水器14へ導入すると、タービン近接の内部蒸気残
留エネルギーが少なくなり油気管23.24に逆止弁を
設ける必要が無くなる。逆止弁を省略し得ることによっ
て製造コストが低減されることは勿論、設計上の制約が
少なくなって設計し易くなる。
However, it may be very difficult to provide the above-mentioned valve near the turbine due to the relationship with layout planning and piping route planning. In particular, in recent years, in order to reduce the building space, in nuclear couplers, a low-pressure feed water heater 16.17° is built into the condenser 14, as shown in Figure 4, and the location of the bleed check valve is It is fixed. However, by applying the present invention, the internal steam residual energy near the turbine can be
High pressure turbine inlet pipe 6 to high pressure turbine bypass pipe 34
, into the condenser 14 via the high-pressure turbine bypass valve 32 , and the internal steam residual energy of the low-pressure turbine inlet pipe 12 is transferred from the low-pressure turbine inlet pipe 12 to the low-pressure turbine bypass pipe 35 . When introduced into the condenser 14 via the low-pressure turbine bypass valve 33, the internal steam residual energy in the vicinity of the turbine is reduced, eliminating the need for check valves in the oil air pipes 23,24. By omitting the check valve, manufacturing costs are reduced, of course, and design constraints are reduced, making design easier.

本実施例(第1図)においては、タービントリップ時に
抽圧制御装置31が作動して主蒸気止め弁4.蒸気加減
弁52組合せ中間弁1o及びアクセプト弁11が閉鎖さ
れる。また、タービントリップの信号により抽圧制御装
置31が作動し、タービンバイパス弁30は約0.3秒
で全開する。
In the present embodiment (FIG. 1), the extraction pressure control device 31 operates when the turbine trips, and the main steam stop valve 4. The steam control valve 52 combination intermediate valve 1o and the accept valve 11 are closed. Further, the extraction pressure control device 31 is activated by the turbine trip signal, and the turbine bypass valve 30 is fully opened in about 0.3 seconds.

一方、従来装置におけるタービンの過速は、タービント
リップ後約3秒で最大となる、従って、タービントリッ
プの信号により油圧制御装置31を作動させて(前記の
タービンバイパス弁3oと同様に)高圧タービンバイパ
ス弁32と低圧タービンバイパス弁33とを全開させる
ことにより、タービンの過速を防止可能となる。タービ
ンの過速が防止されることによって、実用面において(
a)低圧給水加熱器のフラッシュ蒸気を防止するための
抽気逆止弁が削除可能となる。
On the other hand, in the conventional system, the overspeed of the turbine reaches its maximum approximately 3 seconds after the turbine trip. By fully opening the bypass valve 32 and the low pressure turbine bypass valve 33, overspeed of the turbine can be prevented. In practical terms, by preventing overspeeding of the turbine (
a) The bleed check valve to prevent flash steam in the low pressure feed water heater can be eliminated.

(b)特に近年の原子カプラントにおいては、低圧給水
加熱を復水器に内蔵しているため、抽気逆止弁の削除に
より、抽気管を復水器内で処理可能となり、大口径の抽
気管が約30%程度短縮できる。
(b) Particularly in recent nuclear couplers, low-pressure feedwater heating is built into the condenser, so by removing the bleed check valve, the bleed pipe can be processed inside the condenser, and large-diameter bleed pipes can be reduced by about 30%.

(c)また、復水器内で油気管が処理できるため、大口
径の復水器座が少なくなり、リークポテンシャルが緩和
され、信頼性向上が計れる。
(c) Furthermore, since the oil pipe can be treated within the condenser, there are fewer large-diameter condenser seats, the leak potential is alleviated, and reliability can be improved.

といった効果を奏する。It produces such effects.

〔発明の効果〕〔Effect of the invention〕

以ヒ説明したように、本発明のタービン過速抑制系統を
適用すると1発電プラントの蒸気タービンがトリップし
たとき、該蒸気タービンの過速を防IFすることができ
る。
As explained below, by applying the turbine overspeed suppression system of the present invention, when the steam turbine of one power generation plant trips, it is possible to prevent overspeed of the steam turbine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る制御系統の1実施例を設けた9!
電プラントの系統図、第2図は」二記実施例におけるタ
ービンバイパス装置の系統図、第3図は従来形発電プラ
ントの系統図、第4図は従来例の復水器の構成説明図で
ある。 1・・・原子炉圧力容器、2・・・主蒸気管、3・・・
主蒸気ヘッダ、4・・・主蒸気止め弁、5・・・蒸気加
減弁、6・・・高圧タービン入口管、7・・・高圧ター
ビン、8・・・クロスアラウンド管、9・・・湿分分離
器、10・・・組合せ中間弁、11・・・アクセプト弁
、12・・・低圧タービン入口管、13・・・低圧ター
ビン、14・・・復水器、15・・・復水器ポンプ、1
6・・・低圧給水加熱器、17・・・低圧給水加熱器、
18・・・給水ポンプ、19・・・高圧第1給水加熱器
、20・・・高圧第2給水加熱器、21・・・第1抽気
管、22・・・第2抽気管、23・・・第3油気管、2
4・・・第4油気管、25・・・第1抽気逆止弁、26
・・・第2抽気逆止弁、27・・・第3抽気逆止弁、2
8・・・第4抽気逆止弁、29・・・タービンバイパス
管、30・・・タービンバイパス弁、31・・・油圧制
御装置、32・・・高圧タービンバイパス弁、33・・
・低圧タービンバイパス弁、34・・・高圧タービンバ
イパス管、35・・・低圧タービンバイパス管、36・
・・低圧第1給水加熱器、37・・・低圧第2給水加熱
器。
FIG. 1 shows 9! which provides one embodiment of the control system according to the present invention.
Figure 2 is a system diagram of a power generation plant, Figure 2 is a system diagram of a turbine bypass device in the second embodiment, Figure 3 is a system diagram of a conventional power generation plant, and Figure 4 is an explanatory diagram of the configuration of a condenser in a conventional example. be. 1... Reactor pressure vessel, 2... Main steam pipe, 3...
Main steam header, 4... Main steam stop valve, 5... Steam control valve, 6... High pressure turbine inlet pipe, 7... High pressure turbine, 8... Cross around pipe, 9... Humidity Separator, 10... Combined intermediate valve, 11... Accept valve, 12... Low pressure turbine inlet pipe, 13... Low pressure turbine, 14... Condenser, 15... Condenser pump, 1
6...Low pressure feed water heater, 17...Low pressure feed water heater,
18... Water supply pump, 19... High pressure first feed water heater, 20... High pressure second feed water heater, 21... First air bleed pipe, 22... Second air bleed pipe, 23...・Third oil trachea, 2
4... Fourth oil trachea pipe, 25... First bleed air check valve, 26
...Second bleed check valve, 27...Third bleed check valve, 2
8... Fourth extraction check valve, 29... Turbine bypass pipe, 30... Turbine bypass valve, 31... Hydraulic control device, 32... High pressure turbine bypass valve, 33...
-Low pressure turbine bypass valve, 34...High pressure turbine bypass pipe, 35...Low pressure turbine bypass pipe, 36.
...Low pressure first feed water heater, 37...Low pressure second feed water heater.

Claims (1)

【特許請求の範囲】 1、蒸気発生装置と蒸気タービンと復水器とを設けた発
電プラントにおいて、前記の蒸気タービンに対して蒸気
を供給する管路と復水器とを、弁を備えた配管によつて
接続したことを特徴とするタービン過速抑制系統。 2、前記の蒸気タービンは、高圧タービン、中圧タービ
ン、及び低圧タービンの内の少なくとも何れか一つであ
ることを特徴とする特許請求の範囲第1項に記載のター
ビン過速抑制系統。 3、前記の弁は、タービンの負荷が急速に解除されたと
きに開弁される自動制御手段を備えたものであることを
特徴とする特許請求の範囲第1項に記載のタービン過速
抑制系統。
[Claims] 1. In a power generation plant equipped with a steam generator, a steam turbine, and a condenser, a pipe line and a condenser for supplying steam to the steam turbine are provided with a valve. A turbine overspeed suppression system characterized by being connected by piping. 2. The turbine overspeed suppression system according to claim 1, wherein the steam turbine is at least one of a high pressure turbine, an intermediate pressure turbine, and a low pressure turbine. 3. Turbine overspeed suppression according to claim 1, wherein the valve is equipped with automatic control means that opens when the load on the turbine is rapidly released. system.
JP61080110A 1986-04-09 1986-04-09 Turbin overspeed suppression system Expired - Lifetime JPH0751887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61080110A JPH0751887B2 (en) 1986-04-09 1986-04-09 Turbin overspeed suppression system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61080110A JPH0751887B2 (en) 1986-04-09 1986-04-09 Turbin overspeed suppression system

Publications (2)

Publication Number Publication Date
JPS62237010A true JPS62237010A (en) 1987-10-17
JPH0751887B2 JPH0751887B2 (en) 1995-06-05

Family

ID=13709045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61080110A Expired - Lifetime JPH0751887B2 (en) 1986-04-09 1986-04-09 Turbin overspeed suppression system

Country Status (1)

Country Link
JP (1) JPH0751887B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112402A (en) * 2004-10-18 2006-04-27 Toshiba Corp Nuclear power plant and method of operation control for the same
JP2007224883A (en) * 2006-02-27 2007-09-06 Toshiba Corp Over speed prevention device for steam turbine
JP2015048711A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Generating set
JP2017522483A (en) * 2014-06-04 2017-08-10 シーメンス アクティエンゲゼルシャフト Method for warming up or keeping warm of steam turbine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146602A (en) * 1974-10-17 1976-04-21 Tokyo Shibaura Electric Co TAABINS EIGYOHOHO

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146602A (en) * 1974-10-17 1976-04-21 Tokyo Shibaura Electric Co TAABINS EIGYOHOHO

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006112402A (en) * 2004-10-18 2006-04-27 Toshiba Corp Nuclear power plant and method of operation control for the same
JP4575109B2 (en) * 2004-10-18 2010-11-04 株式会社東芝 Nuclear power plant
JP2007224883A (en) * 2006-02-27 2007-09-06 Toshiba Corp Over speed prevention device for steam turbine
JP4643470B2 (en) * 2006-02-27 2011-03-02 株式会社東芝 Steam turbine overspeed prevention device
JP2015048711A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Generating set
JP2017522483A (en) * 2014-06-04 2017-08-10 シーメンス アクティエンゲゼルシャフト Method for warming up or keeping warm of steam turbine
US10100665B2 (en) 2014-06-04 2018-10-16 Siemens Aktiengesellschaft Method for heating up a steam turbine or for keeping a steam turbine hot

Also Published As

Publication number Publication date
JPH0751887B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
JP4395254B2 (en) Combined cycle gas turbine
CN106887265B (en) The start and stop shut-down system of one bulb bed modular high temperature gas cooled reactor
JP2011179494A (en) Systems and methods for prewarming heat recovery steam generator piping
JP4643470B2 (en) Steam turbine overspeed prevention device
JPS62237010A (en) Excessive speed suppressing system for turbine
CN114034032A (en) Heat recovery system and method for high-temperature gas cooled reactor in low-load operation stage
CN208587901U (en) A kind of power plant boiler water supply system
JPH04190001A (en) Method of clean-up in steam power plant
JP2001091689A (en) Starting method for supercritical pressure light water- cooled reactor
CN218093171U (en) 700MW thermal power generating unit prevents device that vapour pump minimum flow valve erodees
CN114811562B (en) Interlocking control method for boiler drum water level of gas-steam combined cycle unit
JP2870759B2 (en) Combined power generator
JPS5993906A (en) Steam turbine plant
JPH0610619A (en) Supply water heating device
JPS6168596A (en) Feedwater heater for nuclear reactor
JPH07101081B2 (en) Steam turbine plant and its operating method
JPH11295481A (en) Nuclear power plant
JPH0135244B2 (en)
CN113623638A (en) RB-capable boiler deoxygenation water supply system with single 100% steam-driven water supply pump and control method
JP2685472B2 (en) Condensate system control method and device
JPS6032324Y2 (en) power plant
CN116335778A (en) Thermodynamic cycle system with MSR and starting method thereof
JPH01203804A (en) Feed water heater drain system
JPS5813724B2 (en) Synchronous system of two-shaft steam turbine power generation equipment
JPS60119304A (en) Steam turbine