JPS62236902A - Vibration mechanism of compacting machine - Google Patents

Vibration mechanism of compacting machine

Info

Publication number
JPS62236902A
JPS62236902A JP8066386A JP8066386A JPS62236902A JP S62236902 A JPS62236902 A JP S62236902A JP 8066386 A JP8066386 A JP 8066386A JP 8066386 A JP8066386 A JP 8066386A JP S62236902 A JPS62236902 A JP S62236902A
Authority
JP
Japan
Prior art keywords
eccentric
eccentric mass
outer peripheral
passes
peripheral end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8066386A
Other languages
Japanese (ja)
Other versions
JPH0516482B2 (en
Inventor
小山 富士夫
健一 宮崎
晃 三井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Heavy Industries Ltd
Original Assignee
Sakai Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Heavy Industries Ltd filed Critical Sakai Heavy Industries Ltd
Priority to JP8066386A priority Critical patent/JPS62236902A/en
Publication of JPS62236902A publication Critical patent/JPS62236902A/en
Publication of JPH0516482B2 publication Critical patent/JPH0516482B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Road Paving Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は締固め機械の振動機構に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a vibration mechanism for a compaction machine.

〔従来の技術〕[Conventional technology]

従来締固め機械において締固め能率を向上するため転動
輪を振動させる手段として、転動輪の回転中心線に沿っ
て転動輪に設けた回転軸に偏心荷量を取付け、該回転軸
を回転させることにより転動輪を該転動輪の接地部に対
し上下に振動せしめていた。この従来技術は地盤を通じ
て上下振動が伝翻するので、住宅地や地盤振動を嫌う施
設近傍における施工で振動公害を発生する欠点があるほ
か、舗装合材の骨材をたたき破壊する等の欠点があった
In conventional compaction machines, as a means of vibrating the rolling wheels to improve compaction efficiency, an eccentric load is attached to the rotating shaft provided on the rolling wheel along the rotational center line of the rolling wheel, and the rotating shaft is rotated. This causes the rolling wheels to vibrate up and down with respect to the ground contact portion of the rolling wheels. Since this conventional technology transmits vertical vibrations through the ground, it has the disadvantage of generating vibration pollution when installed in residential areas or near facilities that do not like ground vibration, and also has disadvantages such as hitting and destroying the aggregate of the paving mixture. there were.

そこで、本出願人はすでに特願昭58−61408号に
おいて、転動輪に偏心質量の回転軸を、該回転軸の回転
中心線が該転動輪の半径方向に平行な直線上に位置する
ように、回転自在に設け、上記回転軸の軸芯に対する各
偏心質量の偏心取付位置を転動輪の起振駆動軸方向に対
して定めて回転させることにより前記転動輪の接地部を
水平面内で振動せしめるように構成した締固め機械の振
動機構を開示し、その一実施例として前記回転軸を転動
輪の半径方向に平行な直線上の左右の位置に2個づづ設
け、該回転軸の軸芯に対する各偏心取付位置を対向位置
又は同一方向に配置することにより、転動輪の接地部を
水平面内で全周方向又は左右方向又は前後方向に振動牽
相乗させたものを提案したが、種々の締固め性能試験及
び実験等をかさねた末、全周方向の振動が最も締固め性
能に優れた結果を得た。即ち、全周方向の振動は、接地
面の土粒子を揺動するように又は循環的にこねるように
運動させるので、好適なニーディング作用が働き、透水
性、気密性等に非常に有益な効果を発揮すると共に締固
め度においても左右又は前後方向の振動に比べよい性能
結果を得た。
Therefore, in Japanese Patent Application No. 58-61408, the present applicant has already provided a rotating shaft of an eccentric mass on a rolling wheel so that the center line of rotation of the rotating shaft is located on a straight line parallel to the radial direction of the rolling wheel. , is rotatably provided, and the eccentric mounting position of each eccentric mass with respect to the axis of the rotating shaft is determined with respect to the direction of the vibration-generating drive axis of the rolling wheel, and the ground contact portion of the rolling wheel is caused to vibrate in a horizontal plane by rotating. Discloses a vibration mechanism for a compaction machine configured as follows, and as an embodiment thereof, two rotating shafts are provided on the left and right positions on a straight line parallel to the radial direction of the rolling wheels, and By arranging the eccentric mounting positions in opposite positions or in the same direction, we have proposed a system in which the ground contact part of the rolling wheel is vibrated in the entire circumferential direction, in the left-right direction, or in the front-rear direction in a horizontal plane, but various compaction methods have been proposed. After repeated performance tests and experiments, we found that vibration in the entire circumferential direction had the best compaction performance. In other words, the vibration in the entire circumferential direction moves the soil particles on the ground surface in a shaking or cyclical kneading motion, so a suitable kneading effect works, which is very beneficial for water permeability, airtightness, etc. Not only was it effective, but also better performance results were obtained in terms of compaction degree compared to vibrations in the left-right or front-back directions.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、全周方向の振動の成分である左右方向の
振動はサスペンションゴムに左右方向(圧縮方向)の力
として働くため、サスペンションゴムで吸収できない振
動がフレーム本体に伝わり、操縦者に疲労を与えるとい
う問題点が残った。
However, horizontal vibration, which is a component of vibration in the circumferential direction, acts on the suspension rubber as a force in the horizontal direction (compression direction), so vibrations that cannot be absorbed by the suspension rubber are transmitted to the frame body, causing fatigue to the operator. Problems remained.

この問題は振動力が大きくなればなるほど比例的に左右
方向の振動力も太き(なることによる。
This problem is caused by the fact that as the vibration force increases, the vibration force in the left-right direction also increases proportionally.

本発明は上記の点に鑑み改良創案されたもので、締固め
性能が良いと共に、振動のフレーム本体への伝達が少な
(、操縦者の疲労を低減した締固め機械の振動機構を提
供することにある。
The present invention has been improved and devised in view of the above points, and provides a vibration mechanism for a compaction machine that has good compaction performance and reduces transmission of vibration to the frame body (and reduces operator fatigue). It is in.

〔問題点を解決するための手段及びその作用〕上記の問
題点を解決するため、本発明においては、転動輪のほぼ
回転中心線における複数位置で、偏心質量の回転軸を上
記転動輪の半径方向に向けて回転自在に取付け、この偏
心質量の回転軸に対する偏心取付位置を所定方向と該所
定方向と180度異なる方向との二種類に定めて配置し
回転させることにより、上記転動輪の接地部をほぼ水平
面内で振動させる締固め機械において、一方の方向に向
いた偏心質量の偏心取付位置の位相を45度以内で進相
又は遅相させたことを特徴とする。
[Means for Solving the Problems and Their Effects] In order to solve the above problems, in the present invention, the rotating shaft of the eccentric mass is aligned with the radius of the rolling ring at a plurality of positions approximately on the center line of rotation of the rolling wheel. The grounding of the rolling wheel is achieved by attaching the eccentric mass so that it can rotate freely in a direction, and by setting and rotating the eccentric mounting position of the eccentric mass with respect to the rotating shaft in two types: a predetermined direction and a direction 180 degrees different from the predetermined direction. In a compaction machine that vibrates in a substantially horizontal plane, the compaction machine is characterized in that the phase of an eccentric mounting position of an eccentric mass facing one direction is advanced or delayed within 45 degrees.

上記構成を採用したことにより、締固め機械は水平面内
の進行方向に対し、左右方向の振動力を小さく、前後方
向の振動力を大きくとった楕円形の円周状または循環状
の振動によって転圧を行うから、良好なニーディング作
用が働き、透水性。
By adopting the above configuration, the compaction machine is capable of rolling in an elliptical circumferential or circular vibration with a small vibration force in the left and right directions and a large vibration force in the front and back directions with respect to the direction of movement in the horizontal plane. Since pressure is applied, good kneading effect works and water permeability.

気密性等に優れた効果を発揮すると共に、左右方向の振
動力が小さいので、フレーム本体への振動の伝達が極め
て少なくなった。
In addition to exhibiting excellent airtightness, the vibration force in the left and right direction is small, so the transmission of vibration to the frame body is extremely reduced.

〔実施例〕〔Example〕

以下本発明の実施例について図面に基づき説明をする。 Embodiments of the present invention will be described below based on the drawings.

第1図は本発明に係る振動機構を適用する締固め機械l
を例示する側面図である。2は原動機、走行装置、操向
装置、操縦席等が配備された車台、3は本台2に設けた
走行輪である。車台2には転動輪4を支持するフレーム
5が連接ビン6を介して取付けられている。
Figure 1 shows a compaction machine to which the vibration mechanism according to the present invention is applied.
FIG. Reference numeral 2 denotes a vehicle chassis on which a prime mover, a traveling device, a steering device, a driver's seat, etc. are provided, and 3 indicates running wheels provided on the main platform 2. A frame 5 that supports rolling wheels 4 is attached to the chassis 2 via connecting pins 6.

第2図は本発明の第1実施例を示す断面図である。フレ
ーム5の左右にアクスル7.7が設けられ、該アクスル
7.7内にサスペンションゴム8.8を介して取付体9
,9が固着される。
FIG. 2 is a sectional view showing a first embodiment of the present invention. Axles 7.7 are provided on the left and right sides of the frame 5, and a mounting body 9 is provided within the axles 7.7 via suspension rubber 8.8.
, 9 are fixed.

一方転動輸4の内部に側板10.11が設けられ、右側
の側板10の中央に中空のボス軸12が固着される。該
ボス軸12は前記取付体9,9に軸受13.13を介し
て軸支されている。
On the other hand, a side plate 10.11 is provided inside the rolling shaft 4, and a hollow boss shaft 12 is fixed to the center of the right side plate 10. The boss shaft 12 is pivotally supported by the mounting bodies 9, 9 via bearings 13, 13.

右側の取付体9の中央に正逆回転可能な起振用の油圧モ
ータ14が固着され、該油圧モータ14の出力軸が中空
のボス軸12と右側の側板10に盲人され左方へ延設さ
れた起振駆動軸15にカップリングを介して接続されて
いる。該駆動軸15は前記右側の側板10にベアリング
16.16を介して枢支されると共に、該駆動軸15の
側板10側先端に一つの駆動傘歯車17が設けられてい
る。一方前記右側の側板10内側面には転動輪4の回転
中心線Aに直交する半径方向の直線上に各々回転中心線
B及びCを有する回転軸18a1および18bをベアリ
ング19.19.19および20,20.20を介して
軸支するブラケット21,21.21が設けられている
。前記回転軸18aのほぼ中央部には従動傘歯車22が
設けられ、前記駆動軸15の駆動傘歯車17に噛合する
。そして回転軸18aの中途部に設けられた駆動平歯車
23が、回転軸18bの中途部に設けられた従動平歯車
24に噛合する。
A hydraulic motor 14 for excitation, which can rotate forward and backward, is fixed to the center of the mounting body 9 on the right side, and the output shaft of the hydraulic motor 14 is blindly attached to the hollow boss shaft 12 and the side plate 10 on the right side and extends to the left. It is connected to the vibration driving shaft 15 via a coupling. The drive shaft 15 is pivotally supported by the right side plate 10 via a bearing 16.16, and one drive bevel gear 17 is provided at the tip of the drive shaft 15 on the side plate 10 side. On the other hand, on the inner surface of the right side plate 10, bearings 19, 19, 19 and 20 are mounted on rotating shafts 18a1 and 18b having rotation center lines B and C, respectively, on a straight line in the radial direction orthogonal to the rotation center line A of the rolling wheel 4. , 20.20 are provided. A driven bevel gear 22 is provided approximately at the center of the rotating shaft 18a, and meshes with the driving bevel gear 17 of the driving shaft 15. A driving spur gear 23 provided at an intermediate portion of the rotating shaft 18a meshes with a driven spur gear 24 provided at an intermediate portion of the rotating shaft 18b.

前記各回転軸18a、 18bの両外方端には偏心質量
25a 、 25bおよび25c、25dが取付けられ
ている。なお、26は転動輪4を駆動するホイールモー
タである。
Eccentric masses 25a, 25b and 25c, 25d are attached to both outer ends of each of the rotating shafts 18a, 18b. Note that 26 is a wheel motor that drives the rolling wheels 4.

前記偏心質量25a、25b及び25c、25dの偏心
取付位置は次のように定められている。即ち、偏心質量
25a、25bの偏心取付位置の相互関係及び偏心質量
25c、25dの偏心取付位置の相互関係は、転動輪4
の回転中心線上の軸方向に対して180度+30度ずれ
て取付けられ、且つ転動輪4の半径方向に対し180度
相反する位置に配置されたものである。
The eccentric mounting positions of the eccentric masses 25a, 25b, 25c, and 25d are determined as follows. That is, the mutual relationship between the eccentric mounting positions of the eccentric masses 25a and 25b and the mutual relationship between the eccentric mounting positions of the eccentric masses 25c and 25d is as follows.
The rolling wheel 4 is mounted at a position shifted by 180 degrees + 30 degrees with respect to the axial direction on the rotational center line of the rolling wheel 4, and at a position opposite to the radial direction of the rolling wheel 4 by 180 degrees.

また、偏心質量25a 、 25cの偏心取付位置の相
互関係及び偏心質量25b、25dの偏心取付位置の相
互関係は、転動輪4の回転中心線上の軸方向に対して1
80度+30度ずれて取付けられ、且つ転動輪4の軸方
向に離間して同じ半径方向に位Hするものである。
Moreover, the mutual relationship between the eccentric mounting positions of the eccentric masses 25a and 25c and the mutual relationship between the eccentric mounting positions of the eccentric masses 25b and 25d is as follows:
They are installed at an angle of 80 degrees + 30 degrees, and are spaced apart in the axial direction of the rolling wheels 4 and positioned in the same radial direction.

次にこの第1実施例に係る振動機構の作用について説明
をする。締固め機械1の走行を停止した状態で油圧モー
タ14により出力軸、カップリング。
Next, the operation of the vibration mechanism according to the first embodiment will be explained. The output shaft and the coupling are connected by the hydraulic motor 14 while the compaction machine 1 is stopped running.

起振駆動軸15.駆動傘歯車17.従動傘歯車22.駆
動平歯車23.従動平歯車24を介して回転軸18a、
 18bを矢印の如く回転させると、第3図において偏
心質ff125aの外周端は回転中心線Bを中心に位置
F、E、D、Gの順に回転し、偏心質ff125bの外
周端は同様にD’、G’、F’、E’の順に回転し、偏
心質量25cの外周端は回転中心vAcを中心に逆に)
l’、I’+J’+に′の順に回転し、偏心質925d
の外周端は同様にJ、 K、 H,Iの順に回転をする
。この回転中に偏心質量25aの外周端が位置Fを通過
するとき、偏心質量25Gの外周端が位置Iドを通過し
、偏心質量25bの外周端が位ff1D’をi1N遇す
るとき、偏心質量25dの外周端が位置Jを通過する。
Vibration drive shaft 15. Drive bevel gear 17. Driven bevel gear 22. Drive spur gear 23. The rotating shaft 18a via the driven spur gear 24,
When 18b is rotated as shown by the arrow, the outer peripheral end of the eccentric ff125a rotates around the rotation center line B in the order of positions F, E, D, and G in FIG. 3, and the outer peripheral end of the eccentric ff125b similarly rotates at positions D. ', G', F', and E' rotate in this order, and the outer peripheral end of the eccentric mass 25c is rotated in the opposite direction around the rotation center vAc)
Rotate in the order of l', I'+J'+', eccentricity 925d
Similarly, the outer peripheral edge of rotates in the order of J, K, H, and I. During this rotation, when the outer circumferential end of the eccentric mass 25a passes through the position F, the outer circumferential end of the eccentric mass 25G passes through the position I, and when the outer circumferential end of the eccentric mass 25b passes through the position ff1D' and i1N, the eccentric mass The outer peripheral end of 25d passes through position J.

ごの時、BからFに向う遠心力とCがら1ビに向う遠心
力及びBからD′に向う遠心力とCがらJに向う遠心力
が各々はぼ打ち消し合うが、BF−CH’ cos 3
0度及びCJ−BD ’ cos 30度に当るBがら
Fに向う遠心力及びCからJに向う遠心力が残り、図中
転動輪4に右側に振動するカαが作用する。同様に回転
中に偏心質量25aの外周端が位fDを通過するとき、
偏心質量25cの外周端が位置J′を通過瞳偏心質量2
5bの外周端が位置F′を通過するとき、偏心質量25
dの外周端は位置11を通過する。この時、BからDに
向う遠心力とCがらJ′に向う遠心力及びBからF′に
向う遠心力とCがら11に向う遠心力が各々はぼ打ち消
し合うが、BD −CJ ’ cos30度及びC11
−BF ’ cos 30度に当るBがらDに向う遠心
力及びCからHに向う遠心力が残り、図中転動輪4に左
側に振動するカβが作用する。
When , the centrifugal force from B to F, the centrifugal force from C to 1B, the centrifugal force from B to D', and the centrifugal force from C to J almost cancel each other out, but BF-CH' cos 3
A centrifugal force from B toward F and a centrifugal force from C toward J, which correspond to 0 degrees and CJ-BD' cos 30 degrees, remain, and a force α that vibrates to the right acts on the rolling wheel 4 in the figure. Similarly, when the outer peripheral end of the eccentric mass 25a passes through the position fD during rotation,
The outer peripheral end of the eccentric mass 25c passes through the position J' Pupil eccentric mass 2
When the outer peripheral end of 5b passes through position F', the eccentric mass 25
The outer peripheral edge of d passes through position 11. At this time, the centrifugal force from B to D, the centrifugal force from C to J', the centrifugal force from B to F', and the centrifugal force from C to 11 almost cancel each other out, but BD - CJ' cos 30 degrees. and C11
-BF' cos A centrifugal force from B toward D and a centrifugal force from C toward H, which correspond to 30 degrees, remain, and a force β that vibrates to the left acts on the rolling wheel 4 in the figure.

また、回転中に偏心質量25aの外周端が位置Eを通過
するとき、偏心質量25bの外周端は位置G′を通過し
、偏心質量25cの外周端が位置ビを通過するとき、偏
心質量25dの外周端が位置Kを通過する。この時、第
4図に示す如く、転動輪4にL方向(円周方向)に回転
する刀がほぼ相乗して作用する。従って、転動輪4の接
地部には地面と平行に前後方向の力θが作用する。同様
に回転中に偏心質ff125aの外周端が位置Gを通過
するとき、偏心質量25bの外周端が位置E′を通過し
、偏心質量25cの外周端が位置に′を通過するとき、
偏心質量25dの外周端が位置■を通過するので、前記
し方向と反対のM方向く円周方向)に回転する力がほぼ
相乗して作用する。この刀をγで表わす。
Furthermore, when the outer peripheral end of the eccentric mass 25a passes through position E during rotation, the outer peripheral end of eccentric mass 25b passes through position G', and when the outer peripheral end of eccentric mass 25c passes through position B, the eccentric mass 25d The outer peripheral edge of passes through position K. At this time, as shown in FIG. 4, the blades rotating in the L direction (circumferential direction) act substantially synergistically with the rolling wheel 4. Therefore, a force θ in the longitudinal direction is applied to the ground contact portion of the rolling wheel 4 in parallel to the ground. Similarly, when the outer peripheral end of the eccentric mass ff125a passes through the position G during rotation, the outer peripheral end of the eccentric mass 25b passes through the position E', and when the outer peripheral end of the eccentric mass 25c passes through the position ',
Since the outer circumferential end of the eccentric mass 25d passes through the position (2), forces rotating in the M direction (circumferential direction), which is opposite to the above-mentioned direction, act almost synergistically. This sword is represented by γ.

このように偏心質量25a、 25b、 25c、 2
5dが回転すると水平面上で連続的に方向を変える放射
状のカα〜θ〜β〜T〜αが転動輪4の接地部に作用す
るから、該接地部は矢印Wの如く水平面上の楕円形の円
周状又は循環状の振動をする。また締固め機械1を走行
させながら偏心質1t25a、 25b、 25c、 
25dを回転させると、転動輪4の接地部は、上記の水
平振動と走行に伴う前進又は後退運動とが合成された水
平運動を行うことになる。従って、締固め機械lが走行
している状態においても走行を停止している状態におい
ても、偏心ffff125a、25b、25c、25d
を回転させて締固め作業を行うと、転動輪4が接地面の
土粒子を揺動するように又は循環的にこねるように運動
するがら、舗装合材の骨材の破壊及びヘアクラックの発
生がな(且つ締固めの能率向上が図られる。また水平方
向に締固め作用を行うから、地盤の特性上、上下振動に
比較して地盤の振動減衰効率が大きく、従って地盤振動
を嫌う施設近傍における転圧作業や住居の多い生活道路
の施工に振動公害を大幅に減少し得る利点と共に、第4
図に示す如(発生した前後方向の振動(第2図における
γ、θ方向のカ)は、転動輪の回転中心線Aを中心に転
勤輪廻りのモーメントとしてのみ働くから転動輪の回転
軸は振動をうけないのでサスペンションゴムには振動が
働かず、また発生した左右方向の振動(第2図における
α。
In this way, the eccentric masses 25a, 25b, 25c, 2
When 5d rotates, a radial force α~θ~β~T~α that changes direction continuously on the horizontal plane acts on the grounding part of the rolling wheel 4, so the grounding part forms an elliptical shape on the horizontal plane as shown by arrow W. vibrates in a circular or circular manner. In addition, while running the compaction machine 1, the eccentric parts 1t25a, 25b, 25c,
When the wheel 25d is rotated, the ground contact portion of the rolling wheel 4 performs a horizontal movement that is a combination of the horizontal vibration described above and the forward or backward movement associated with running. Therefore, whether the compaction machine l is running or not running, the eccentricity ffff125a, 25b, 25c, 25d
When compaction work is performed by rotating the rolling wheels 4, the rolling wheels 4 move to shake or cyclically knead the soil particles on the contact surface, causing destruction of the aggregate of the paving mix and generation of hair cracks. (and improves the efficiency of compaction. Also, since the compaction action is performed in the horizontal direction, due to the characteristics of the ground, the vibration damping efficiency of the ground is greater than that of vertical vibrations. Therefore, it is suitable for use near facilities where ground vibrations are averse. In addition to the advantage of significantly reducing vibration pollution in compaction work in the area and construction of residential roads with many residences, the fourth
As shown in the figure, the generated longitudinal vibration (force in the γ and θ directions in Fig. 2) acts only as a moment around the rolling wheel around the rotational center line A, so the rotational axis of the rolling wheel is Since the suspension rubber is not subjected to vibration, no vibration acts on the suspension rubber, and the vibration in the left and right direction that occurs (α in Figure 2).

β方向の力)は、その大きさ自身が小さく、さらにサス
ペンションゴムには圧縮方向の力として働くことになり
、機械本体の垂直荷重及び駆動力とは力の方向が変わる
ため剪断力としては非常に小さな値となるから、これに
耐えるサスペンションゴムはバネ定数の小さい柔らかい
ものでよく必然的に防振効果が高くフレーム本体への振
動の伝達が小さくなり、操縦者の疲労を低減させる利点
がある。さらに、本発明の締固め機械は水平面内の進行
方向に対し、左右方向の振動力を小さく、前後方向の振
動力を大きくとった楕円形の円周状又は循環状の振動に
よって転圧を行うから、大きな振動力であってもサスペ
ンションゴムへの振動影響が少なく全周方向の振動と同
じく良好なニイーディングの作用が働くから、第14図
、第15図に示す如く、締固め度及び透水性においても
、従来の前後方向或は左右方向のみの振動と比較して、
非常に優れた効果を発揮する。即ち、第14図、第15
図は次の試験条件で締固め回数に対する締固め度及び透
水係数を測定したものである。
The force in the β direction is small in size, and acts on the suspension rubber as a force in the compressive direction.The direction of the force is different from the vertical load and driving force of the machine body, so it is extremely small as a shearing force. Since this is a small value, the suspension rubber that can withstand this is preferably a soft material with a small spring constant, which naturally has a high vibration-proofing effect and reduces the transmission of vibration to the frame body, which has the advantage of reducing operator fatigue. . Furthermore, the compaction machine of the present invention performs compaction through elliptical circumferential or circular vibrations with a small vibration force in the left-right direction and a large vibration force in the front-rear direction with respect to the direction of movement in the horizontal plane. Therefore, even if there is a large vibration force, the effect of vibration on the suspension rubber is small, and a good kneading effect works just like vibration in the all-round direction, so as shown in Figures 14 and 15, the degree of compaction and water permeability are improved. Also, compared to conventional vibrations only in the front-rear direction or left-right direction,
Demonstrates excellent effects. That is, FIGS. 14 and 15
The figure shows the degree of compaction and hydraulic conductivity measured against the number of compactions under the following test conditions.

機械型@     6,300 kg 転圧輪負荷荷重 3.150 kg 転圧輪の径X中 1.050φXl+450 +n振動
数     3.1100vp 振動力     5.100 kg 車速      2km/h。
Mechanical type @ 6,300 kg Rolling wheel load 3.150 kg Rolling wheel diameter X 1.050φXl+450 +n Frequency 3.1100vp Vibration force 5.100 kg Vehicle speed 2km/h.

路面状態    瀝青合材密粒 6cIII第14図、
第15図の通り、例えば締固め回数が8回の場合、締固
め度は本発明のものが101%なのに対し、従来の前後
・左右方向のみの振動のものは98%、透水係数は本発
明のものが2.5 xto  cm/secなのに対し
、従来のものは4 XIOcm/seeとなっており、
いずれの場合も本発明の振動の方が優れた結果を示して
いる。
Road surface condition Bituminous composite dense grain 6cIII Fig. 14,
As shown in Fig. 15, for example, when the number of compactions is 8, the compaction degree of the present invention is 101%, while the conventional one with vibrations only in the longitudinal and lateral directions is 98%, and the hydraulic conductivity of the present invention is 98%. The conventional one has 4 XIOcm/see, while the conventional one has 2.5 xto cm/sec.
In both cases, the vibration of the present invention shows superior results.

次に第2実施例を第5図に基づき説明する。Next, a second embodiment will be explained based on FIG.

この第2実施例では偏心質量の回転軸の数及び偏心質量
の取付は方以外の構成は第1実施例と同じであるので、
同一部材には同符号を付し説明は省略する。
In this second embodiment, the configuration other than the number of rotating shafts of the eccentric mass and the mounting of the eccentric mass is the same as the first embodiment.
Identical members are designated by the same reference numerals and descriptions thereof will be omitted.

第2実施例は転動輪4の回転中心線Aに直交する半径方
向の直線上に、第1実施例の回転中心線B及びCを有す
る回転軸18a及び18bの他に、回転中心線Xを有す
る回転軸18oを設け、あらたにベアリング28.28
.28と従動平歯車29を付加したものである。勿論、
該従動平歯車29は回転軸18oの中途部に設けられ、
前記回転軸L8bの中途部に設けられた平歯車24と噛
合し、回転の伝達を受けるように構成されている。そし
て、各回転軸18 a * 18 b +18oの両外
方端には本実施例の偏心質127a、27b。
In the second embodiment, in addition to the rotation axes 18a and 18b having the rotation center lines B and C of the first embodiment, a rotation center line A rotating shaft 18o is provided, and a new bearing 28.28 is installed.
.. 28 and a driven spur gear 29 are added. Of course,
The driven spur gear 29 is provided in the middle of the rotating shaft 18o,
It is configured to mesh with the spur gear 24 provided in the middle of the rotating shaft L8b and receive rotation transmission. Eccentric bodies 127a and 27b of this embodiment are provided at both outer ends of each rotating shaft 18a*18b+18o.

及び27c、 27d及び27e、27fが取付けられ
ている。
and 27c, 27d, 27e, and 27f are attached.

該偏心質量27a、27b及び27c、 27d及び2
7e、 27fの質量条件は27c = 27a + 
27e及び27d =27b +27f及び27c =
27dという関係にあると共に、偏心質量27a 、 
27b及び27c、27d及び27e、27fの偏心取
付位置は次のように定められている。
The eccentric masses 27a, 27b and 27c, 27d and 2
The mass conditions for 7e and 27f are 27c = 27a +
27e and 27d = 27b + 27f and 27c =
27d, and the eccentric mass 27a,
The eccentric mounting positions of 27b, 27c, 27d, 27e, and 27f are determined as follows.

即ち、偏心質量27a、27bの偏心取付位置の相互関
係及び偏心質量27c 、27dの偏心取付位置の相互
関係及び偏心質量27e、27fの偏心取付位置の相互
関係は、転動輪4の回転中心線上の軸方向に180度+
30度ずれて取付けられ、且つ転動輪4の半径方向に対
し180度相反する位置に配置されたものである。また
、偏心質量27a、 27eの偏心取付位置の相互関係
及び偏心質量27b、27fの偏心取付位置の相互関係
は転動輪4の回転中心線上の軸方間に同一方向に向いて
離間して同じ半径方向に位置するものである。これに対
して、偏心質量27a、27cの偏心取付位置の相互関
係及び偏心質量27b、27dの偏心取付位置の相互関
係は転勤@4の回転中心線上の軸方向に対し180度+
30度ずれて取付けられ、且つ軸方向に離間して同じ半
径方向に位置するものである。
That is, the mutual relationship between the eccentric mounting positions of the eccentric masses 27a and 27b, the mutual relationship between the eccentric mounting positions of the eccentric masses 27c and 27d, and the mutual relationship between the eccentric mounting positions of the eccentric masses 27e and 27f are as follows: 180 degrees + in the axial direction
They are attached at a 30 degree offset and are placed at positions 180 degrees opposite to the radial direction of the rolling wheels 4. Furthermore, the mutual relationship between the eccentric mounting positions of the eccentric masses 27a and 27e and the mutual relationship between the eccentric mounting positions of the eccentric masses 27b and 27f are such that they are axially oriented in the same direction on the rotational center line of the rolling wheel 4, spaced apart, and have the same radius. It is located in the direction. On the other hand, the mutual relationship between the eccentric mounting positions of the eccentric masses 27a and 27c and the mutual relationship between the eccentric mounting positions of the eccentric masses 27b and 27d is 180 degrees +
They are mounted 30 degrees apart and axially spaced and located in the same radial direction.

次にこの第2実施例に係る振動機構の作用について説明
をする。締固め機械■の走行を停止した状態で油圧モー
タ14により出力軸、カップリング。
Next, the operation of the vibration mechanism according to the second embodiment will be explained. With the compaction machine ■ stopped running, the hydraulic motor 14 connects the output shaft.

起振駆動軸15.駆動傘歯車17.従動傘歯車22.駆
動率山車23.従動平歯車24.29を介して回転軸1
8a。
Vibration drive shaft 15. Drive bevel gear 17. Driven bevel gear 22. Drive rate float 23. Rotating shaft 1 via driven spur gear 24.29
8a.

18b、 L8oを矢印の如く回転させると、第6図に
おいて偏心質量27aの外周端は回転中心線Bを中心と
して位置F、E、D、Gの順に回転し、偏心質量27b
の外周端は同様にD r 、Gr 、pr 、Etの順
に回転し、偏心質量27cの外周端は回転中心線Cを中
心として逆に11’、I’、J’、に’の順に回転し、
偏心質量27dの外周端は同様にJ、に、)1.1の順
に回転し、偏心質量27eの外周端は回転中心線Xを中
心として逆にP、O,N、Qの順に回転し、偏心質量2
7fの外周端はN’、Q’、P’、O’の順に回転する
。この回転中に偏心質量27aの外周端が位置Fを通過
し、且つ偏心質量27eの外周端が位置Pを通過すると
き、偏心質量27cの外周端が位置(ドを通過し、偏心
質量27bの外周端が位置D′を通過し、且つ偏心質量
27fの外周端が位置N′を通過するとき、偏心質量2
7dの外周端が位iJを通過する。この時、BからFに
向う遠心力とXからPに向う遠心力とCから11′に向
う遠心力及びBからD′に向う遠心力とXからN′に向
う遠心力とCからJに向う遠心力とが各々はぼ打ち消し
合うが、(BF+XP)−CH’ cos 30度及び
CJ −(BD ’ cos 30度十XN ’ co
s30度)に当るBからF及びXからPに向う遠心力及
びCからJに向う遠心力が残り、図中転動輪4に右側に
振動する力αが作用する。同様に回転中に偏心質1f2
7aの外周端が位置りを通過し、且つ偏心質量27eの
外周端が位置Nを通過するとき、偏心質量27cの外周
端が位置J′を通過し、偏心質量27bの外周端が位置
F′を通過し、且つ偏心質量27fの外周端が位置P′
を通過するとき、偏心質量27dの外周端は位置Hを通
過する。この時、BからDに向う遠心力とXからNに向
う遠心力とCからJ′に向う遠心力及びBからF′に向
う遠心力とXからP′に向う遠心力とCからIIに向う
遠心力とが各々はぼ打ち消し合うが、(BD十χN)−
CJ ’ cos 30度及びCI −(BF ’ c
os 30度十XP ’ cos30度)に当るBから
D及びXからNに向う遠心力及びCからHに向う遠心力
が残り、図中転動輪4に左側に振動する力βが作用する
When 18b and L8o are rotated as indicated by the arrows, the outer peripheral end of the eccentric mass 27a rotates around the rotation center line B in the order of positions F, E, D, and G in FIG.
Similarly, the outer peripheral end of the eccentric mass 27c rotates in the order of Dr, Gr, pr, and Et, and the outer peripheral end of the eccentric mass 27c rotates in the reverse order of 11', I', J', and Ni' around the rotation center line C. ,
The outer peripheral end of the eccentric mass 27d similarly rotates in the order of J, , )1.1, and the outer peripheral end of the eccentric mass 27e rotates in the reverse order of P, O, N, Q around the rotation center line X, Eccentric mass 2
The outer peripheral end of 7f rotates in the order of N', Q', P', and O'. During this rotation, when the outer circumferential end of the eccentric mass 27a passes the position F and the outer circumferential end of the eccentric mass 27e passes the position P, the outer circumferential end of the eccentric mass 27c passes through the position When the outer peripheral end of the eccentric mass 27f passes through the position D' and the outer peripheral end of the eccentric mass 27f passes through the position N', the eccentric mass 2
The outer peripheral end of 7d passes through position iJ. At this time, centrifugal force from B to F, centrifugal force from X to P, centrifugal force from C to 11', centrifugal force from B to D', centrifugal force from X to N', and centrifugal force from C to J. The opposing centrifugal forces cancel each other out, but (BF + XP) - CH' cos 30 degrees and CJ - (BD' cos 30 degrees + XN' co
Centrifugal force from B to F and from X to P and centrifugal force from C to J, which correspond to s30 degrees), remain, and a force α that vibrates to the right side acts on the rolling wheel 4 in the figure. Similarly, eccentricity 1f2 during rotation
When the outer peripheral end of 7a passes through position and the outer peripheral end of eccentric mass 27e passes through position N, the outer peripheral end of eccentric mass 27c passes through position J', and the outer peripheral end of eccentric mass 27b passes through position F'. , and the outer peripheral end of the eccentric mass 27f is at position P'
, the outer peripheral end of the eccentric mass 27d passes through position H. At this time, centrifugal force from B to D, centrifugal force from X to N, centrifugal force from C to J', centrifugal force from B to F', centrifugal force from X to P', and centrifugal force from C to II. The opposing centrifugal forces cancel each other out, but (BD 1xN) -
CJ' cos 30 degrees and CI - (BF' c
Centrifugal force from B to D and from X to N and centrifugal force from C to H, which correspond to os 30 degrees X

また、回転中に偏心質量27aの外周端が位fiEを通
過するとき、偏心質量27bの外周端は位置G′を通過
し、偏心質量27cの外周端が位置ビを通過する時、偏
心質127dの外周端は位置Kを通過し、偏心質量27
eの外周端が位置0を通過するとき、f信心質量27f
の外周端は位置Ω′を通過するので、第7図において転
動輪4にL方向(円周方向)に回転する力がほぼ相乗し
て作用する。従って、転動輪4の接地部には地面と平行
に前後方向の力θが作用する。同様に回転中に偏心質量
27aの外周端が位置Gを通過するとき、偏心質量27
bの外周端が位置E′を通過し、偏心質量27cの外周
端が位置に′を通過するとき、偏心質量27dの外周端
が位置Iを通過し、偏心質量27eの外周端が位置Qを
通過するとき、偏心質ff127fの外周端が位1 o
’を通過するので、前記り方向と反対のM方向く円周方
向)に回転する力が相乗して作用する。この力をγで表
わす。
Furthermore, when the outer circumferential end of the eccentric mass 27a passes through position fiE during rotation, the outer circumferential end of eccentric mass 27b passes through position G', and when the outer circumferential end of eccentric mass 27c passes through position B, eccentric mass 127d The outer peripheral end of passes through position K, and the eccentric mass 27
When the outer peripheral end of e passes through position 0, f faith mass 27f
Since the outer circumferential end of the roller passes through the position Ω', forces rotating in the L direction (circumferential direction) act substantially synergistically on the rolling wheel 4 in FIG. Therefore, a force θ in the longitudinal direction is applied to the ground contact portion of the rolling wheel 4 in parallel to the ground. Similarly, when the outer peripheral end of the eccentric mass 27a passes through position G during rotation, the eccentric mass 27
When the outer peripheral end of b passes through position E' and the outer peripheral end of eccentric mass 27c passes through position ', the outer peripheral end of eccentric mass 27d passes through position I, and the outer peripheral end of eccentric mass 27e passes through position Q. When passing, the outer peripheral end of the eccentric ff127f is at the position 1 o
', so the force of rotation in the M direction (circumferential direction), which is opposite to the above-mentioned direction, acts synergistically. This force is expressed as γ.

このように偏心質量27a + 27b + 27c 
、27d 、27e 、27 f +が回転すると水平
面上で連続的に方向を変える放射状の力α〜θ〜β〜γ
〜αが転動輪4の接地部に作用するから、該接地部は矢
印Wの如く水平面上の楕円形の円周状又は循環状の振動
をする。よって、本実施例は第1実施例と同様に作用し
、同様の効果をもたらすものである。
In this way, eccentric mass 27a + 27b + 27c
, 27d, 27e, 27f + rotates, the radial force α ~ θ ~ β ~ γ changes direction continuously on the horizontal plane
Since ~α acts on the ground contact portion of the rolling wheel 4, the ground contact portion vibrates in an elliptical circumferential or cyclical manner on a horizontal plane as shown by arrow W. Therefore, this embodiment operates in the same manner as the first embodiment and provides similar effects.

次に第3実施例を第8図に基づき説明する。Next, a third embodiment will be explained based on FIG.

第3実施例は第1.第2実施例が回転軸を傘歯車を介し
て直径方向に配置しているのに対し、回転軸を半径方向
に傘歯車を介して複数個別々に配置している点が異なる
。即ち、駆動傘歯車17に至るまでの構成は第1.第2
実施例の構成と同じであるので同符号を付し説明を省略
し、駆動傘歯車17以降の構成について説明する。
The third embodiment is similar to the first embodiment. Unlike the second embodiment, in which the rotating shafts are arranged in the diametrical direction via bevel gears, the difference is that a plurality of rotating shafts are individually arranged in the radial direction via bevel gears. That is, the configuration up to the drive bevel gear 17 is the same as the first one. Second
Since the configuration is the same as that of the embodiment, the same reference numerals are given and the explanation will be omitted, and the configuration after the drive bevel gear 17 will be explained.

右側の取付体9に固着された油圧モータ14の出力軸は
カップリングを介して側板10内側に貰入された起振駆
動軸15に接続され、該起振駆動軸15の先端には駆動
傘歯車17が取付けられ、該起振駆動軸15はベアリン
グ16.16に軸支されている。一方側板10の内側面
には転動輪4の回転中心線Aに直交する半径方向の直線
上に各々回転中心線B及びCを有する回転軸18c、 
18d及び18e、 18fをベアリング19a、 1
9a、 19a、 19a及び20a 、 20a 、
 20a 、 20aを介して軸支するブラケット21
a、21a、2La、21aが設けられている。前記回
転軸18c、 18dの内方端には従動傘歯車22a 
、 22bが設けられ、各々前記駆動軸15に設けられ
た駆動傘歯車17に噛合する。そして、前記回転軸18
c、 18dのほぼ中央部には駆動平歯車23a、23
bが設けられ、該駆動平歯車23a 、 23bは回転
軸18e、 18fのほぼ中央部に設けられた従動平歯
車24a、24bに各々噛合する。前記各回転軸18c
、18d及びL8e、 18fの外方端には偏心質量3
0a、30b及び30c、 30dが取付けられている
The output shaft of the hydraulic motor 14 fixed to the mounting body 9 on the right side is connected to a vibration drive shaft 15 inserted inside the side plate 10 via a coupling, and a drive umbrella is provided at the tip of the vibration drive shaft 15. A gear 17 is attached, and the vibration driving shaft 15 is supported by a bearing 16.16. On the inner surface of the side plate 10, a rotating shaft 18c having rotation center lines B and C, respectively, on a straight line in the radial direction perpendicular to the rotation center line A of the rolling wheel 4;
18d and 18e, 18f to bearing 19a, 1
9a, 19a, 19a and 20a, 20a,
20a, bracket 21 pivotally supported via 20a
a, 21a, 2La, and 21a are provided. A driven bevel gear 22a is provided at the inner end of the rotating shafts 18c and 18d.
, 22b are provided, each meshing with the drive bevel gear 17 provided on the drive shaft 15. Then, the rotating shaft 18
Driving spur gears 23a, 23 are located approximately in the center of the gears c and 18d.
The driving spur gears 23a and 23b mesh with driven spur gears 24a and 24b provided approximately at the center of the rotating shafts 18e and 18f, respectively. Each of the rotating shafts 18c
, 18d and L8e, and an eccentric mass 3 at the outer end of 18f.
0a, 30b, 30c, and 30d are attached.

前記偏心質量30a、30b及び30c、30dの偏心
取付位置は次のように定められている。即ち、偏心質1
30a、30bの偏心取付位置の相互関係及び偏心質量
30c、30dの偏心取付位置の相互関係は、転動輪4
の回転中心線上の軸方向に同一方向に取付けられ、かつ
転動輪4の半径方向に対し180度相反する位置に配置
されたものである。また、偏心質量30a、30cの偏
心取付位置の相互関係及び偏心質量30b、 30dの
偏心取付位置の相互関係は、転動輪4の回転中心線上の
軸方向に180度+30度位相をずらして取付られ、且
つ軸方向に離間し同じ半径方向に位置するものである。
The eccentric mounting positions of the eccentric masses 30a, 30b, 30c, and 30d are determined as follows. That is, eccentricity 1
The mutual relationship between the eccentric mounting positions of the eccentric masses 30a and 30b and the mutual relationship between the eccentric mounting positions of the eccentric masses 30c and 30d are as follows:
The rolling wheels 4 are mounted in the same axial direction on the rotation center line of the rolling wheels 4, and are arranged at positions 180 degrees opposite to the radial direction of the rolling wheels 4. Moreover, the mutual relationship between the eccentric mounting positions of the eccentric masses 30a and 30c and the mutual relationship between the eccentric mounting positions of the eccentric masses 30b and 30d is such that the eccentric masses 30a and 30c are mounted with a phase shift of 180 degrees + 30 degrees in the axial direction on the rotation center line of the rolling wheel 4. , and are axially spaced apart and located in the same radial direction.

次にこの第3実施例に係る振動機構の作用について説明
をする。締固め機械1の走行を停止した状態で油圧モー
タ14により出力軸、カップリング。
Next, the operation of the vibration mechanism according to the third embodiment will be explained. The output shaft and the coupling are connected by the hydraulic motor 14 while the compaction machine 1 is stopped running.

起振駆動軸15.駆動傘歯車17.従動傘歯車22a、
 22b。
Vibration drive shaft 15. Drive bevel gear 17. driven bevel gear 22a,
22b.

駆動平歯車23a 、 23b、従動平歯車24a、2
4bを介して回転軸18c、 18d、 18e、 1
8fを矢印の如く回転させると、第9図において偏心質
量30aの外周端は回転中心線Bを中心に位置り、E、
F、Gの順に回転し、偏心質量30bの外周端は逆に位
置り、G、F、Hの順に回転する。また、偏心質量30
cの外周端は回転中心線Cを中心に位置J’、I’、H
’、に’の順に回転し、偏心質量30dの外周端は逆に
位置J’、に’、H’、T’の順に回転をする。この回
転中に偏心質量30aの外周端が位置りを通過するとき
、偏心質量30bの外周端も位IDを通過し、偏心質量
30cの外周端が位置J′を通過するとき、偏心質量3
0dの外周端も位置J′を通過する。この時、BからD
に向う遠心力(図中左側に働()が相乗して作用するが
、CからJ′に向う遠心力(図中右側に働()も相乗し
て作用するため、はぼ打ち消し合うが、BD−CJ ’
 cos 30  度に当るBからDに向う遠心力が相
乗して残り、転動輪4に左側に振動する力βが作用する
。同様に回転中に偏心質量30aの外周端が位置Fを通
過するとき、偏心質量30bの外周端も位置Fを通過し
、偏心質13Qcの外周端が位置II ’を通過すると
き、偏心質量30dの外周端も位置(ビを通過する。こ
の時、BからFに向う遠心力(図中右側に働く)が相乗
して作用するが、CからH′に向う遠心力(図中左側に
働く)−も相乗して作用するため、はぼ打ち消し合うが
、BF−CH’ cos 30度に当るBからFに向う
遠心力が相乗して残り、転動輪4に右側に振動する力α
が作用する。
Drive spur gears 23a, 23b, driven spur gears 24a, 2
Rotating shafts 18c, 18d, 18e, 1 via 4b
When 8f is rotated as shown by the arrow, the outer peripheral end of the eccentric mass 30a is located around the rotation center line B in FIG. 9, and E,
F and G rotate in this order, and the outer peripheral end of the eccentric mass 30b is located in the opposite direction, and G, F, and H rotate in this order. In addition, eccentric mass 30
The outer peripheral end of c is located at positions J', I', and H around the rotation center line C.
The outer circumferential end of the eccentric mass 30d rotates in the order of ', ', ', and the outer peripheral end of the eccentric mass 30d conversely rotates to positions 'J', ', H', and T'. During this rotation, when the outer peripheral end of the eccentric mass 30a passes through the position ID, the outer peripheral end of the eccentric mass 30b also passes through the position ID, and when the outer peripheral end of the eccentric mass 30c passes through the position J', the eccentric mass 3
The outer peripheral end of 0d also passes through position J'. At this time, from B to D
The centrifugal force (acting on the left side in the figure) acts synergistically, but the centrifugal force from C towards J' (acting on the right side in the figure () also acts synergistically, so they almost cancel each other out, BD-CJ'
The centrifugal force from B toward D, which corresponds to cos 30 degrees, remains and acts on the rolling wheel 4 as a force β that causes it to vibrate to the left. Similarly, when the outer peripheral end of the eccentric mass 30a passes through position F during rotation, the outer peripheral end of eccentric mass 30b also passes through position F, and when the outer peripheral end of eccentric mass 13Qc passes through position II', the eccentric mass 30d The outer peripheral end of is also passing through position (B). At this time, the centrifugal force from B to F (acting on the right side in the figure) acts synergistically, but the centrifugal force from C towards H' (acting on the left side in the figure) ) - act synergistically, so they cancel each other out, but the centrifugal force from B to F, which corresponds to BF-CH' cos 30 degrees, remains in synergy and causes the rolling wheel 4 to vibrate to the right, α.
acts.

また、回転中に偏心質量30aの外周端が位置Eを通過
するとき、偏心質量30bの外周端は位置Gを通過し、
偏心質量30cの外周端が位置■′を通過するとき、偏
心質量30dの外周端が位置に′を通過する。この時、
第1θ図に示す如く、転動輪4にL方向(円周方向)に
回転する力がほぼ相乗して作用する。従って、転動輪4
の接地部には地面と平行に前後方向の力θが作用する。
Further, when the outer peripheral end of the eccentric mass 30a passes through the position E during rotation, the outer peripheral end of the eccentric mass 30b passes through the position G,
When the outer peripheral end of the eccentric mass 30c passes through the position ■', the outer peripheral end of the eccentric mass 30d passes through the position ''. At this time,
As shown in FIG. 1θ, forces rotating in the L direction (circumferential direction) act on the rolling wheel 4 almost synergistically. Therefore, rolling wheel 4
A force θ in the longitudinal direction is applied to the ground-contacting part of the ground parallel to the ground.

同様に回転中に偏心質量30aの外周端が位置Gを通過
するとき、偏心質1i30bの外周端は位置Eを通過し
、偏心質量30cの外周端が位置に′を通過するとき、
偏心質ff130dの外周端は位置計を通過するので、
前記り方向と反対のM方向(円周方向)に回転する力が
ほぼ相乗して作用する。この力をγで表わす。
Similarly, when the outer peripheral end of the eccentric mass 30a passes through the position G during rotation, the outer peripheral end of the eccentric mass 1i30b passes through the position E, and when the outer peripheral end of the eccentric mass 30c passes through the position ',
Since the outer peripheral end of the eccentric ff130d passes through the position meter,
Forces rotating in the M direction (circumferential direction), which is opposite to the above direction, act almost synergistically. This force is expressed as γ.

このように偏心質量30a、30b、30c、30dが
回転すると水平面上で連続的に方向を変える放射状の力
β〜θ〜α〜γ〜βが転動輪4の接地部に作用するから
、該接地部は矢印Wの如く水平面上の楕円形の円周状又
は循環状の振動をする。よって本実施例は第1.第2実
施例と同様に作用し、同様の効果をもたらすものである
When the eccentric masses 30a, 30b, 30c, and 30d rotate in this way, a radial force β~θ~α~γ~β that changes direction continuously on the horizontal plane acts on the ground contact portion of the rolling wheel 4, so that the ground contact The part vibrates in an elliptical circumferential or cyclical manner on a horizontal plane as indicated by arrow W. Therefore, this embodiment is based on the first example. This operates in the same manner as the second embodiment and brings about the same effects.

次に第4実施例を第11図に基づき説明する。この第4
実施例では偏心質量の回転軸の数及び偏心質量の取付は
方以外の構成は第3実施例と同じであるので、同一部材
には同符号を付し説明は省略する。
Next, a fourth embodiment will be explained based on FIG. 11. This fourth
In this embodiment, the configuration other than the number of rotating shafts of the eccentric mass and the manner in which the eccentric mass is mounted is the same as that of the third embodiment, so the same reference numerals are given to the same members and a description thereof will be omitted.

第4実施例は転動輪4の回転中心線Aに直交する半径方
向の直線上に、第3実施例の回転中心線B及びCを有す
る回転軸18c、 18d及びL8e、 18fの他に
、回転中心線Xを有する回転軸18g、 18hを設け
、あらたにベアリング31.31,31.31と従動平
歯車32a、 32bを付加したものである。勿論、該
従動平歯車32a 、 32bは回転軸18g、 18
hのほぼ中央部に設けられ、前記回転軸18e、 18
fのほぼ中央部に設けられた平歯車24a、24bと噛
合し、回転の伝達を受けるように構成されている。そし
て、各回転軸18c、18d及び18e、 18f及び
18g、 18hの外方端には本実施例の偏心質量33
a、 33b、及び33c、33d及び33e。
In the fourth embodiment, in addition to the rotation axes 18c, 18d, L8e, and 18f having the rotation center lines B and C of the third embodiment, the rotation axis Rotating shafts 18g and 18h having a center line X are provided, and bearings 31.31 and 31.31 and driven spur gears 32a and 32b are added. Of course, the driven spur gears 32a and 32b are connected to the rotating shafts 18g and 18.
h, and the rotating shafts 18e, 18
It is configured to mesh with spur gears 24a and 24b provided approximately at the center of f, and to receive rotation transmission. The eccentric mass 33 of this embodiment is attached to the outer end of each rotating shaft 18c, 18d, 18e, 18f, 18g, and 18h.
a, 33b, and 33c, 33d and 33e.

33fが取付けられている。33f is installed.

該偏心質量33a 、 33b及び33c、 33d及
び33e、33fの質量条件は33c = 33a +
 33e及び33d =33b +33f及び33c 
=33dという関係にあると共に、偏心質yN33a、
33b及び33c、33d及び33e、33fの偏心取
付位置は次のように定められている。即ち、偏心質量3
3a 、 33bの偏心取付位置の相互関係及び偏心質
量33c 、33dの偏心取付位置の相互関係及び偏心
質量33e、33fの偏心取付位置の相互関係は、転動
輪4の回転中心線上の軸方向に同一方向に取付けられ、
且つ転動輪4の半径方向に対し180度相l1る位置に
配置されたものである。また、偏心質量33a、33e
の偏心取付位置の相互関係及び偏心質fi33b、33
fの偏心取付位置の相互関係は転動輪4の回転中心線上
の軸方向に同一方向に向いて離間して同じ半径方向に位
置するものである。これに対して、偏心質133a、3
3cの偏心取付位置の相互関係及び偏心質量33b、3
3dの偏心取付位置の相互関係は転動輪4の回転中心線
上の軸方向に対し180度+30度ずれて取付けられ、
且つ軸方向に離間して同じ半径方向に位置するものであ
る。
The mass conditions for the eccentric masses 33a, 33b, 33c, 33d, 33e, and 33f are 33c = 33a +
33e and 33d = 33b + 33f and 33c
=33d, and eccentricity yN33a,
The eccentric mounting positions of 33b, 33c, 33d, 33e, and 33f are determined as follows. That is, eccentric mass 3
The mutual relationship between the eccentric mounting positions of the eccentric masses 3a and 33b, the mutual relationship between the eccentric mounting positions of the eccentric masses 33c and 33d, and the mutual relationship between the eccentric mounting positions of the eccentric masses 33e and 33f are the same in the axial direction on the rotation center line of the rolling wheel 4. mounted in the direction,
Moreover, it is arranged at a position 180 degrees opposite to the radial direction of the rolling wheel 4. In addition, eccentric masses 33a, 33e
Correlation of eccentric mounting positions and eccentric quality fi33b, 33
The mutual relationship of the eccentric mounting positions f is such that they are oriented in the same axial direction on the rotational center line of the rolling wheel 4, spaced apart, and located in the same radial direction. On the other hand, eccentricity 133a, 3
Correlation of eccentric mounting positions of 3c and eccentric masses 33b, 3
The mutual relationship of the eccentric mounting positions of 3d is that the rolling wheels 4 are mounted offset by 180 degrees + 30 degrees with respect to the axial direction on the rotation center line,
and are spaced apart in the axial direction and located in the same radial direction.

次にこの第4実施例に係る振動機構の作用について説明
をする。締固め機械1の走行を停止した状態で油圧モー
タ14により出力軸、カップリング。
Next, the operation of the vibration mechanism according to the fourth embodiment will be explained. The output shaft and the coupling are connected by the hydraulic motor 14 while the compaction machine 1 is stopped running.

起振駆動軸15.駆動傘歯車17.従動傘歯車22a、
22b。
Vibration drive shaft 15. Drive bevel gear 17. driven bevel gear 22a,
22b.

駆動平歯車23a、23b、従動平歯車24a、24b
、32a、32b。
Drive spur gears 23a, 23b, driven spur gears 24a, 24b
, 32a, 32b.

を介して回転軸18c、 18d、及び18e、 L8
f及び18g、1.8hを矢印の如(回転させると、第
12図において偏心質量33aの外周端は回転中心線B
を中心として位置り、H,F、Gの順に回転し、偏心質
量33bの外周端は同様に位置り、G、F、f!の順に
回転し、偏心質133cの外周端は回転中心線Cを中心
として逆にJ′、(1゜Iド K rの順に回転し、偏
心質量33dの外周端はJ’ 、に’ 、H’、r’の
順に回転し、偏心質ffk 33 eの外周端は回転中
心線Xを中心にN、0.P、Qの順に回転し、偏心質量
33fの外周端はN、ill、P、0の順に回転する。
Through the rotating shafts 18c, 18d, and 18e, L8
When f, 18g, and 1.8h are rotated as shown by the arrows, the outer peripheral end of the eccentric mass 33a will be aligned with the rotation center line B in Fig. 12.
It rotates in the order of H, F, G, and the outer peripheral end of the eccentric mass 33b is located in the same way, G, F, f! The outer circumferential end of the eccentric mass 133c rotates in the order of J', (1°I, Kr) about the rotation center line C, and the outer circumferential end of the eccentric mass 33d rotates in the order of J', (1°I), H. The outer peripheral end of the eccentric mass 33e rotates in the order of N, 0.P, Q around the rotation center line X, and the outer peripheral end of the eccentric mass 33f rotates in the order of N, ill, P, Rotate in order of 0.

この回転中に偏心質量33aの外周端が位zDを通過す
るとき、偏心質量33bの外周端は位置りを通過し、偏
心質量33cの外周端が位置J′を通過するとき、偏心
質量33dの外周端は位置J′を通過し、偏心質ff1
33eの外周端が位置Nを通過するとき、偏心質量33
fの外周端は位置Nを通過する。この時、BからDに向
う遠心力及びXがらNに向う遠心力(各々図中左側に働
く)が各々相乗して作用するが、CからJ′に向う遠心
力(図中右側に働く)も相乗して作用し、且つ質量条件
が33c = 33a + 33e及び33d =33
b +33f及び33c=33dなので、はぼ打ち消し
合うが、(BD+XN )−CJ ’ cos 30度
に当る左側に働く遠心力が相乗して残り、転動輪4に左
側に振動する力βが作用する。同様に回転中に偏心質I
i 33 aの外周端が位置Fを通過するとき、偏心質
量33bの外周端も位置Fを通過し、偏心質量33cの
外周端が位置H′を通過するとき、偏心質量33dの外
周端も位置11′を通過し、偏心質量33eの外周端が
位置Pを通過するとき、偏心質量33fの外周端は位置
Pを通過する。この時、BからFに向う遠心力及びXか
らPに向う遠心力(各々図中右側に働く)が各々相乗し
て作用するが、Cから1ビに向う遠心力(図中左側に働
く)も相乗して作用し、且つ質量条件が33c = 3
3a + 33e及び33d =33b +33f及び
33c−33dなので、はぼ打ち消し合うが、(BF+
XP)−CI ’ cos 30度に当る右側に働く遠
心力が相乗して残り、転動輪4に右側に振動する力αが
作用する。
During this rotation, when the outer circumferential end of the eccentric mass 33a passes through the position zD, the outer circumferential end of the eccentric mass 33b passes through the position, and when the outer circumferential end of the eccentric mass 33c passes through the position J', the outer circumferential end of the eccentric mass 33d passes through the position. The outer peripheral end passes through position J' and has eccentricity ff1
When the outer peripheral end of 33e passes through position N, the eccentric mass 33
The outer peripheral end of f passes through position N. At this time, the centrifugal force from B to D and the centrifugal force from X to N (each acting on the left side in the figure) act synergistically, but the centrifugal force from C towards J' (acting on the right side in the figure) also act synergistically, and the mass conditions are 33c = 33a + 33e and 33d = 33
Since b + 33f and 33c = 33d, they cancel each other out, but the centrifugal force acting on the left side corresponding to (BD + XN) - CJ' cos 30 degrees remains together, and a force β that vibrates to the left side acts on the rolling wheel 4. Similarly, eccentricity I during rotation
When the outer peripheral end of i 33a passes through position F, the outer peripheral end of eccentric mass 33b also passes through position F, and when the outer peripheral end of eccentric mass 33c passes through position H', the outer peripheral end of eccentric mass 33d also passes through position F. 11', and when the outer peripheral end of the eccentric mass 33e passes through the position P, the outer peripheral end of the eccentric mass 33f passes through the position P. At this time, the centrifugal force from B to F and the centrifugal force from X to P (each acting on the right side in the figure) act synergistically, but the centrifugal force from C towards 1B (acting on the left side in the figure) also act synergistically, and the mass condition is 33c = 3
Since 3a + 33e and 33d = 33b + 33f and 33c - 33d, they cancel each other out, but (BF +
XP)-CI' cos The centrifugal force acting on the right side corresponding to 30 degrees remains together, and a force α that vibrates to the right side acts on the rolling wheel 4.

また、回転中に偏心質量33aの外周端が位置Eを通過
するとき、偏心質量33bの外周端は位置Gを通過し、
偏心質量33cの外周端が位置ビを通過するとき、偏心
質量33dの外周端が位置に′を通過し、偏心質量33
eの外周端が位置0を通過するとき、偏心質量33fの
外周端が位置口を通過する。この時、第13図に示す如
く、転動輪4にL方向(円周方向)に回転する力がほぼ
相乗して作用する。従って、転動輪4の接地部には地面
と平行に前後方向の力θが作用する。同様に回転中に偏
心質量33aの外周端が位置Gを通過するとき、偏心質
量33bの外周端は位置Eを通過し、偏心質量33cの
外周端が位置に′を通過するとき、偏心質量33dの外
周端が位置I′を通過し、偏心質量33eの外周端が位
置口を通過するとき、偏心質1i33fの外周端が位置
0を通過するので、前記り方向と反対のM方向(円周方
向)に回転する力がほぼ相乗して作用する。この力をγ
で表わす。
Further, when the outer peripheral end of the eccentric mass 33a passes through the position E during rotation, the outer peripheral end of the eccentric mass 33b passes through the position G,
When the outer peripheral end of the eccentric mass 33c passes through the position B, the outer peripheral end of the eccentric mass 33d passes through the position '', and the eccentric mass 33
When the outer peripheral end of e passes through position 0, the outer peripheral end of eccentric mass 33f passes through the position opening. At this time, as shown in FIG. 13, forces that rotate in the L direction (circumferential direction) act on the rolling wheel 4 almost synergistically. Therefore, a force θ in the longitudinal direction is applied to the ground contact portion of the rolling wheel 4 in parallel to the ground. Similarly, when the outer peripheral end of eccentric mass 33a passes through position G during rotation, the outer peripheral end of eccentric mass 33b passes through position E, and when the outer peripheral end of eccentric mass 33c passes through position ', eccentric mass 33d When the outer circumferential end of the eccentric mass 33e passes through the position I' and the outer circumferential end of the eccentric mass 33e passes through the position opening, the outer circumferential end of the eccentric mass 1i33f passes through the position 0. The rotational forces in the direction) act almost synergistically. This force is γ
It is expressed as

このように偏心質量33a、33b、33c、33d、
33e、33fが回転をすると水平面上で連続的に方向
を変える放射状の力β〜θ〜α〜γ〜βが転動輪4の接
地部に作用するから、該接地部は矢印Wの如く水平面上
の楕円形の円周状又は循環状の振動をする。
In this way, the eccentric masses 33a, 33b, 33c, 33d,
When 33e and 33f rotate, a radial force β ~ θ ~ α ~ γ ~ β that continuously changes direction on the horizontal plane acts on the ground contact part of the rolling wheel 4, so that the ground contact part is on the horizontal plane as indicated by the arrow W. It vibrates in an elliptical circumferential or circular manner.

よって、本実施例は第1.第2.第3の実施例と同様に
作用し、同様の効果をもたらすものである。
Therefore, this embodiment is based on the first example. Second. This operates in the same manner as the third embodiment and brings about the same effects.

なお、偏心質量の偏心取付位置の位相を45度以内で進
相又は遅相させる意味は、45度以内であれば、前後方
向のみの振動と比較して良好な楕円形の円周状及び循環
状の振動をすることができるということである。
In addition, the meaning of advancing or retarding the phase of the eccentric mounting position of the eccentric mass within 45 degrees is that within 45 degrees, the elliptical circumferential shape and circulation are better than vibrations only in the front and rear directions. This means that it is possible to make vibrations like this.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した如く、締固め機械において水平面
内の進行方向に対し、左右方向の振動力を小さく、前後
方向の振動力を大きくとった楕円形の円周状又は循環状
の振動によって転圧を行うから、振動公害の発生を可及
的に防止できると共に、良好なニーディング作用が働き
、透水性、気密性等に優れた効果を発揮すると共に、左
右方向の振動力が小さいので振動がサスペンションゴム
によく吸収されフレーム本体への振動力の伝達が極めて
少なくなり操縦者の疲労を低減することができる。
As explained above, the present invention provides compaction machines that use elliptical circumferential or circular vibrations that have a small vibration force in the left-right direction and a large vibration force in the front-rear direction with respect to the direction of movement in a horizontal plane. Since the pressure is applied, vibration pollution can be prevented as much as possible, and a good kneading effect works, providing excellent water permeability, airtightness, etc., and the vibration force in the left and right directions is small, so vibrations can be prevented. is well absorbed by the suspension rubber, and transmission of vibration force to the frame body is extremely reduced, reducing operator fatigue.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は締固め機械の側面図、第2図は本発明の第1実
施例を示す転動輪の断面図、第3図は第2図の■矢視説
明図、第4図は第2図のX矢視説明図、第5図は本発明
の第2実施例を示す転動輪の断面図、第6図は第5図の
■矢視説明図、第7図は第5図の■矢視説明図、第8図
は本発明の第3実施例を示す転動輪の断面図、第9図は
第8図のX矢視説明図、第10図は第8図のX矢視説明
図、第11図は本発明の第4実施例を示す転動輪の断面
図、第12図は第11図のXπ矢視説明図、第13図は
第11図のXT!L矢視説明図、第14図は本発明の締
固め度と締固め回数との関係を示す線図、第15図は同
じく透水係数と締固め回数との関係を示す線図である。 ■・・・締固め機械    へ・・・転動輪5・・・フ
レーム     9・・・取付体10、11・・・側板
    12・・・ボス軸13・・・軸受      
14・・・油圧モータ15・・・起振駆動軸   17
・・・駆動傘歯車LBa、 18b+ L8c、 L8
d+ L8e。 18f 、 18g、 18h・・・回転軸19.19
a、20a  ・・・ベアリング22.22a、22b
−従動傘歯車 23.23a、23b・・・駆動傘歯車24.24a、
24b・・・従動平歯車25a、25b、25c、25
d −・・偏心質量27a、27b、27c、27d、
27e、27f −偏心質量30a、30b、30c、
30d ・・・偏心質量33a、33b、33c、33
d、33e、33F −偏心質量特許出願人 酒井重工
業株式会社 牙1図 第4図 第14図 諦固め回数
Fig. 1 is a side view of the compaction machine, Fig. 2 is a sectional view of the rolling wheel showing the first embodiment of the present invention, Fig. 3 is an explanatory view in the direction of the ■ arrow in Fig. 2, and Fig. 4 is the 5 is a sectional view of a rolling wheel showing the second embodiment of the present invention, FIG. 6 is an explanatory view as viewed from the ■ arrow in FIG. 5, and FIG. 8 is a cross-sectional view of a rolling wheel showing the third embodiment of the present invention, FIG. 9 is an explanatory view in the direction of the X arrow in FIG. 8, and FIG. 10 is an explanatory view in the direction of the X arrow in FIG. 11 is a sectional view of a rolling wheel showing a fourth embodiment of the present invention, FIG. 12 is an explanatory view taken along the Xπ arrow in FIG. 11, and FIG. 13 is an XT! 14 is a diagram showing the relationship between the degree of compaction and the number of times of compaction according to the present invention, and FIG. 15 is a diagram showing the relationship between the permeability coefficient and the number of times of compaction. ■...Compaction machine To...Rolling wheel 5...Frame 9...Mounting body 10, 11...Side plate 12...Boss shaft 13...Bearing
14...Hydraulic motor 15...Vibration drive shaft 17
...Drive bevel gear LBa, 18b+ L8c, L8
d+ L8e. 18f, 18g, 18h...rotating shaft 19.19
a, 20a...Bearing 22.22a, 22b
- Driven bevel gears 23.23a, 23b... Drive bevel gears 24.24a,
24b...driven spur gears 25a, 25b, 25c, 25
d - Eccentric masses 27a, 27b, 27c, 27d,
27e, 27f - eccentric masses 30a, 30b, 30c,
30d...Eccentric mass 33a, 33b, 33c, 33
d, 33e, 33F - Eccentric mass Patent applicant Sakai Heavy Industries Co., Ltd. Fang 1 Figure 4 Figure 14 Number of yields

Claims (1)

【特許請求の範囲】[Claims] 転動輪のほぼ回転中心線における複数位置で、偏心質量
の回転軸を上記転動輪の半径方向に向けて回転自在に取
付け、この偏心質量の回転軸に対する偏心取付位置を所
定方向と該所定方向と180度異なる方向との二種類に
定めて配置し回転させることにより、上記転動輪の接地
部をほぼ水平面内で振動させる締固め機械において、一
方の方向に向いた偏心質量の偏心取付位置の位相を45
度以内で進相又は遅相させたことを特徴とする締固め機
械の振動機構。
The rotating shaft of the eccentric mass is rotatably mounted in a radial direction of the rolling ring at a plurality of positions approximately on the center line of rotation of the rolling ring, and the eccentric mounting position of the eccentric mass with respect to the rotating shaft is set in a predetermined direction and in the predetermined direction. In a compaction machine that vibrates the ground-contacting part of the rolling wheels in a substantially horizontal plane by arranging and rotating them in two different directions by 180 degrees, the phase of the eccentric mounting position of the eccentric mass facing in one direction is 45
A vibration mechanism for a compaction machine characterized by a phase advance or a phase delay within a degree.
JP8066386A 1986-04-08 1986-04-08 Vibration mechanism of compacting machine Granted JPS62236902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8066386A JPS62236902A (en) 1986-04-08 1986-04-08 Vibration mechanism of compacting machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8066386A JPS62236902A (en) 1986-04-08 1986-04-08 Vibration mechanism of compacting machine

Publications (2)

Publication Number Publication Date
JPS62236902A true JPS62236902A (en) 1987-10-17
JPH0516482B2 JPH0516482B2 (en) 1993-03-04

Family

ID=13724601

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8066386A Granted JPS62236902A (en) 1986-04-08 1986-04-08 Vibration mechanism of compacting machine

Country Status (1)

Country Link
JP (1) JPS62236902A (en)

Also Published As

Publication number Publication date
JPH0516482B2 (en) 1993-03-04

Similar Documents

Publication Publication Date Title
JPS6156724B2 (en)
CN102985616A (en) Compaction device and method for compacting ground
WO2012061471A2 (en) Vibratory compactor
JP3799022B2 (en) Vibration mechanism and vibration roller
JPH08105011A (en) Dynamic-pressure soil tamping method and device thereof
CN107916608A (en) The exciting device of vertical vibration roller
US3722380A (en) Vibrating roller earth compactor
JP3914919B2 (en) Exciter for ground compaction device
JP2799691B2 (en) Vibrating tire roller
JPH032403A (en) Vibrating mechanism for compression roller
JPS62236902A (en) Vibration mechanism of compacting machine
JP3962344B2 (en) Vibration mechanism and vibration roller
RU94033300A (en) Self-propelled vibration roller with combination-action vibration exciter
JPH0240084Y2 (en)
RU2690250C1 (en) Road vibratory roller
JPS62258004A (en) Vibration mechanism of compactor
JP2004223313A (en) Vibration mechanism and vibration roller
JP2812816B2 (en) How to compact the ground
JPH0516481B2 (en)
JPH0444506A (en) Exciter of vibrating compaction machine
JPH0154482B2 (en)
JPS61257507A (en) Vibration mechanism of compaction mechine
CN214882770U (en) Directional vibration road roller
JPH0747445Y2 (en) Vibratory roller of triaxial vibration mechanism
CN214939020U (en) Adjustable wheel type vibratory roller

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees