JPS62235438A - Manufacture of bearing alloy - Google Patents

Manufacture of bearing alloy

Info

Publication number
JPS62235438A
JPS62235438A JP7800286A JP7800286A JPS62235438A JP S62235438 A JPS62235438 A JP S62235438A JP 7800286 A JP7800286 A JP 7800286A JP 7800286 A JP7800286 A JP 7800286A JP S62235438 A JPS62235438 A JP S62235438A
Authority
JP
Japan
Prior art keywords
billet
ratio
matrix
bearing
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7800286A
Other languages
Japanese (ja)
Inventor
Masahiko Shioda
正彦 塩田
Yoshihiro Marai
馬来 義弘
Akira Matsuyama
晃 松山
Katsuji Tanizaki
谷崎 勝二
Noboru Okabe
岡部 登
Katsuhiro Kishida
岸田 勝弘
Takeshi Sakai
坂井 武志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Original Assignee
NDC Co Ltd
Nissan Motor Co Ltd
Nippon Dia Clevite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NDC Co Ltd, Nissan Motor Co Ltd, Nippon Dia Clevite Co Ltd filed Critical NDC Co Ltd
Priority to JP7800286A priority Critical patent/JPS62235438A/en
Publication of JPS62235438A publication Critical patent/JPS62235438A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a lightweight bearing alloy having superior fatigue resistance and lubricity by compacting Al alloy powder contg. lubricative and hard components each in a specified ratio in cross-sectional area to the matrix and a specified amount of a strengthening component, heat treating the resulting billet and extruding it. CONSTITUTION:Al alloy powder contg. one or more kinds of lubricative components selected among Pb, Sn, In, Sb and Bi in 0.04-0.07 ratio in cross-sectional area to the matrix, Si as a hard component in 0.01-0.17 ratio in cross-sectional area to the matrix and 0.2-5.0wt% one or more kinds of strengthening components selected among Cu, Cr, Mg, Mn, Ni, Zn and Fe is compacted to form a billet having 80-95% theoretical relative density. The grain size of the lubricative components dispersed finely in the matrix is regulated to <=8mum. The billet is extruded in >=10 extrusion ratio after it is heat treated to grow the Si grains to 5-12mum. By this method, a bearing alloy having high fatigue resistance and surface lubricity can be manufactured.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、自動車、工作機械、農業機械等の各種機械
装置の構造部品として使用される軸受ならびに摺動部材
用の素材として適する軸受合金に関し、とくに銅系の軸
受材料に比べて軽量であってしかも耐疲労性9表面性能
にすぐれたアルミニウム系の軸受台金に関するものであ
る。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) This invention relates to materials for bearings and sliding members used as structural parts of various mechanical devices such as automobiles, machine tools, and agricultural machinery. The present invention relates to bearing alloys suitable as bearing materials, and particularly to aluminum-based bearing base metals that are lighter than copper-based bearing materials and have excellent fatigue resistance and surface performance.

(従来の技術) 従来、すべり軸受の素材として用いられる合金には、C
u−Pb系、バビット系等が使用目的などに応じて使用
されているが、近年、とくに内燃機関用の軸受台金とし
ては、耐熱#摩耗性、#腐食性、耐疲労性等の点からA
文系の軸受台金が注目されている。なかでも、An−3
n系、AfL−Sn−Pb系の軸受台金は上記性能の点
で他の材質のものに比べてかなりすぐれているため、最
近に至り急速にその使用量が増加している。
(Prior art) Conventionally, alloys used as materials for sliding bearings contain C.
u-Pb series, Babbitt series, etc. are used depending on the purpose of use, etc., but in recent years, especially as bearing base metals for internal combustion engines, from the viewpoint of heat resistance, wear resistance, corrosion resistance, fatigue resistance, etc. A
The bearing base metal of liberal arts is attracting attention. Among them, An-3
N-type and AfL-Sn-Pb type bearing base metals are considerably superior to those made of other materials in terms of the above-mentioned performance, so their usage has been rapidly increasing recently.

しかしながら、内燃機関の小型化による軸受幅の縮小、
高出力化に伴う軸受負荷の増大等の内燃機関の高性能化
により、軸受に課せられる要求はさらに強まり、とりわ
け耐疲労性の面、すなわち軸受台金の亀裂あるいは鋼裏
金からの局部的剥離を抑制すべく改善が望まれているの
が現状である。
However, due to the miniaturization of internal combustion engines, the width of the bearings has decreased,
As the performance of internal combustion engines increases, such as the increase in bearing load associated with higher output, the demands placed on bearings are becoming even stronger. The current situation is that improvements are desired to suppress this problem.

このような内燃機関の高性能化に対応できるAl系の軸
受合金の一例として、本発明者らは特願昭60−268
866号明細書に示すようなAn−Pb−5n系のアト
マイズ合金粉末に押出加工を加えることにより、高い疲
労強度と優れた潤滑性とを合わせ持たせた新しいタイプ
の軸受台金を開発した。
As an example of an Al-based bearing alloy that can meet the high performance of internal combustion engines, the present inventors have proposed
By applying extrusion processing to An-Pb-5n-based atomized alloy powder as shown in the specification of No. 866, we have developed a new type of bearing base metal that has both high fatigue strength and excellent lubricity.

このアルミニウム系軸受合金は、Alを主成分とし、潤
滑成分としてPb、Sn、In、Sb。
This aluminum-based bearing alloy has Al as its main component, and Pb, Sn, In, and Sb as lubricating components.

Biよりなる群から選ばれた1種以上の金属をAnマト
リックスに対する断面積比で0.04超過0.07以下
、硬質成分としてSiを同じく断面積比で0.01以上
0.17以上1強化成分としてCu、Cr、Mg、Mn
、Ni 、Zn。
One or more metals selected from the group consisting of Bi are reinforced with a cross-sectional area ratio of 0.04 to 0.07 to the An matrix, and Si as a hard component is also reinforced with a cross-sectional area ratio of 0.01 to 0.17 to 1. Cu, Cr, Mg, Mn as components
, Ni, Zn.

Feよりなる群から選ばれた1種以上の金属を0.2〜
5,0重量%、必要に応じて微細化成分としてTi 、
B、Zr、V、Ga、REM(Sc、Yを含む希土類元
素の1種以上)よりなる群から選ばれた1種以上の金属
を全合金に対して0.01〜3.0重量%含み、均一微
細に分散した潤滑成分の大きさが8μm以下である合金
粉末から成形したビレットを押出比10以上で押出成形
して成り、Anマトリックス中に分散したSi粒子の大
きさが12μm以下、とくに望ましくは6〜12μm、
常温での引張強さが12kgf/mm2以上、常温での
伸びが11%以上であることを特徴としており、A9.
系の軸受合金そのものとして使用したり、該軸受合金を
鋼板等と直接、あるいはAl、Ni等の密着層を介して
接合した軸受として使用したりすることを特徴としてい
るものである。
One or more metals selected from the group consisting of Fe from 0.2 to
5.0% by weight, Ti as a finer component if necessary,
Contains 0.01 to 3.0% by weight of one or more metals selected from the group consisting of B, Zr, V, Ga, and REM (one or more rare earth elements including Sc and Y) based on the total alloy. , a billet formed from an alloy powder in which the size of lubricating components uniformly and finely dispersed is 8 μm or less is extruded at an extrusion ratio of 10 or more, and the size of Si particles dispersed in the An matrix is 12 μm or less, especially Desirably 6 to 12 μm,
A9.
It is characterized in that it can be used as a bearing alloy itself, or as a bearing in which the bearing alloy is bonded to a steel plate or the like directly or through an adhesive layer of Al, Ni, etc.

そして、上記したアルミニウム系軸受合金を製造するに
あたっては、A文−8〜12重量%Pb−0,4〜1.
8重量%5n−1.0−15重量%5i−0,2〜5.
0重量%(Cu。
In manufacturing the above-mentioned aluminum-based bearing alloy, A-8 to 12% by weight Pb-0.4 to 1.
8% by weight 5n-1.0-15% by weight 5i-0,2-5.
0% by weight (Cu.

Cr、Mg、Mn、Ni 、Zn、Feの1種以J:、
)の合金粉末に350〜550℃で加熱処理を施してS
i粒子を6〜12μmに成長させた後、前記合金粉末に
、A9.−10〜20重量%Sn系あるいはA文−10
〜20重量%5n−1,0〜15重量%5i−0,2〜
5.0重量%(Cu、Cr、Mg、Mn、Ni 、Zn
、Feの1種以上)系等のA見−潤滑成分(pb。
One or more of Cr, Mg, Mn, Ni, Zn, Fe.
) alloy powder was heat-treated at 350-550℃ to form S
After growing the i particles to 6-12 μm, A9. -10 to 20% by weight Sn-based or A-10
~20% by weight 5n-1,0-15% by weight 5i-0,2~
5.0% by weight (Cu, Cr, Mg, Mn, Ni, Zn
, one or more types of Fe)-based lubricating components (pb.

Sn、In、Sb、Biの1種以上)−硬質成分(Si
)−強化成分(Cu t Cr + M g + M 
n +Ni、Zn、Feの1種以上)−微細化成分(T
i 、B、Zr、V、Ga、REMの1種以上)合金粉
末を前記アルミニウム系軸受合金の成分範囲となるよう
に混合し、さらに該混合粉末をビレットに成形した後該
ビレットを押出比10以上で押出成形するようにしたこ
とを特徴としているものである。
one or more of Sn, In, Sb, Bi) - hard component (Si
) - reinforcing component (Cut Cr + M g + M
n + one or more of Ni, Zn, Fe) - refining component (T
i, B, Zr, V, Ga, REM) alloy powders are mixed so as to have the composition range of the aluminum-based bearing alloy, and the mixed powder is formed into a billet, and then the billet is extruded at an extrusion ratio of 10. This is characterized in that the above is extrusion molded.

L記製造法においてSi粒子を6〜124mに成長させ
た理由は、上記アルミニウム系合金を軸受材として用い
た場合にその相罫材が鋳造材であると、この鋳造材の切
削加工時に遊離黒鉛の周囲に微細なパリを生じ、このパ
リが軸受表面を傷つけるため、これを防ぐ意味からSi
粒子の大きさをある程度大きくし、この硬いSi粒子で
パリを取り除く必要があるからである。
The reason why the Si particles were grown to a length of 6 to 124 m in the manufacturing method described in L is that when the above aluminum alloy is used as a bearing material and the interlining material is a cast material, free graphite is generated during cutting of the cast material. Si
This is because it is necessary to increase the size of the particles to a certain extent and remove the particles with these hard Si particles.

また、この合金はPb、Snのような潤滑成分が断面積
比で0.04超過0.07以下と多量であるため、押出
し後に押出材に対して加熱処理を施すという通常の方法
では、Pb、Snのような潤滑成分が表面へしみ出すと
いう現象(Sweat i ng)を生ずるという問題
があったため、上記製造法のように粉末を加熱処理する
方法をとっている。
In addition, this alloy has a large amount of lubricating components such as Pb and Sn in the cross-sectional area ratio of more than 0.04 and less than 0.07, so the usual method of heat-treating the extruded material after extrusion Because of the problem that lubricating components such as , Sn seep out to the surface (sweating), a method of heat-treating the powder as in the above manufacturing method is used.

(発明が解決しようとする問題点) しかしながら、粉末に加熱処理を施すと当該粉末が凝集
するおそれがあること、また成分含有量の異なる2種の
粉末を混合して押出し、その押出し温度が200〜40
0℃と低く、押出し後の熱処理も行わないため、合金元
素の拡散が不十分でSi、Snなどの偏析が生じる可能
性があること、が上記製造法の問題点として残されてい
た。
(Problems to be Solved by the Invention) However, if the powder is heat-treated, there is a risk that the powder will agglomerate, and if two types of powder with different component contents are mixed and extruded, the extrusion temperature is 200 ~40
Since the temperature is as low as 0° C. and no heat treatment is performed after extrusion, there remains a problem with the above manufacturing method that the diffusion of alloying elements is insufficient and segregation of Si, Sn, etc. may occur.

そして、とくに一方の粉末のSn添加量が10〜20重
量%と多いためSnの偏析が生じやすく、これが原因と
なって押出材の表面欠陥の発生や押出材の疲労強度の低
下が生じることもあった。
In particular, since the amount of Sn added to one of the powders is as high as 10 to 20% by weight, Sn segregation tends to occur, which may cause surface defects in the extruded material and a decrease in the fatigue strength of the extruded material. there were.

この発明はこのような従来の問題点に着目してなされた
もので、粉末を単一の完全合金粉末とし、この合金粉末
から成形した理論密度比80〜95%のビレットに35
0〜550℃で加熱処理を施してSi粒子を6〜12I
Lmに成長させた後、当該ビレットを押出比10以上で
押出成形することにより、St、Snなどの偏析を防止
しながら、Si粒子を最適な大きさに成長させて前記問
題点を解決することを目的としている。
This invention was made by focusing on such conventional problems, and the powder is made into a single complete alloy powder, and the billet formed from this alloy powder has a theoretical density ratio of 80 to 95%.
Heat treatment is performed at 0 to 550°C to convert Si particles to 6 to 12I.
After growing to Lm, the billet is extruded at an extrusion ratio of 10 or more to grow Si particles to an optimal size while preventing segregation of St, Sn, etc., thereby solving the above problem. It is an object.

[発明の構成] (問題点を解決するための手段) この発明による軸受台金の製造方法は、Alを主成分と
し、1!I滑成分としてPb、Sn、In。
[Structure of the Invention] (Means for Solving the Problems) A method for manufacturing a bearing base metal according to the present invention includes Al as a main component, and 1! Pb, Sn, and In as lubricant components.

Sb、Biよりなる群から選ばれた1種以上の金属をA
lマトリックスに対する断面積比で0.04以上0.0
7以下、硬質成分としてSiを同じく断面積比で0.0
1以上0.17以下、強化成分としてCu、Cr、Mg
、Mn、Ni 。
A of one or more metals selected from the group consisting of Sb and Bi.
0.04 or more 0.0 in cross-sectional area ratio to l matrix
7 or less, Si as a hard component also has a cross-sectional area ratio of 0.0
1 or more and 0.17 or less, Cu, Cr, Mg as reinforcing components
, Mn, Ni.

Zn 、Feよりなる群から選ばれた1種以上の金属を
0.2〜5.0重量%含み、均一微細に分散した潤滑成
分の大きさが8pm以下であるアルミニウム合金粉末を
圧粉成形し、理論密度比80〜95%のビレットとした
後350〜550 ”Oにて加熱処理を施してSi粒子
を6〜12JLmに成長させ、その後該ビレットを押出
比10以上で押出成形するようにしたことを特徴とする
ものである。
An aluminum alloy powder containing 0.2 to 5.0% by weight of one or more metals selected from the group consisting of Zn and Fe and having lubricating components uniformly and finely dispersed with a size of 8 pm or less is powder-molded. After forming a billet with a theoretical density ratio of 80 to 95%, heat treatment was performed at 350 to 550"O to grow Si particles to 6 to 12 JLm, and then the billet was extruded at an extrusion ratio of 10 or more. It is characterized by this.

以下、それぞれの成分および数値の限定理由について説
明する。
The reasons for limiting each component and numerical value will be explained below.

(1)Pb、Sn、In、Sb、Biは潤滑成分として
有効であり、耐焼付性にすぐれたものである。しかし、
潤滑成分の総量が断面積比(体積比)で0.04未満の
場合は異物埋収性が劣り、また0、07を超えるとマト
リックスの疲労強度不足となり、耐荷重性の点で軸受性
能を満足できなくなる。
(1) Pb, Sn, In, Sb, and Bi are effective as lubricating components and have excellent seizure resistance. but,
If the total amount of lubricating components is less than 0.04 in terms of cross-sectional area ratio (volume ratio), the foreign matter embedding property will be poor, and if it exceeds 0.07, the fatigue strength of the matrix will be insufficient, which will affect the bearing performance in terms of load resistance. You won't be satisfied.

さらに、潤滑成分の粒子径については、粒子径が過大で
あると軸受合金の性能に悪影響を及ぼすので8pm以下
とするのが良い。
Furthermore, the particle size of the lubricating component is preferably 8 pm or less, since excessive particle size will have a negative effect on the performance of the bearing alloy.

(2)Siは硬質成分として添加するものであり、共晶
Siまたは初晶SiとしてAn中に分散し、硬質物質と
して軸受強度の向上および耐摩耗性の向上に寄与する。
(2) Si is added as a hard component, and is dispersed in An as eutectic Si or primary Si, and as a hard substance, contributes to improving bearing strength and wear resistance.

このSiの添加量としては断面積比(体積比)で前記潤
滑成分の1/4から2.5倍程度までの量が望ましく、
多く添加するともろくなり加工性を阻害するので、マト
リックスに対する断面積比を0.01以上0.17以下
とするのが良い。
The amount of Si added is preferably from 1/4 to 2.5 times the amount of the lubricating component in terms of cross-sectional area ratio (volume ratio).
If too much is added, it becomes brittle and impedes workability, so it is preferable that the cross-sectional area ratio to the matrix is 0.01 or more and 0.17 or less.

またSi粒子径については、6Jj、m未満であると切
削加工時に生じる相手材の小さなパリを取り除く効果が
薄れ、また12ILmを超えると相手材を傷つけ分散の
面密度が低下し、耐摩耗性が劣化するので6〜12μm
とするのが良い。
Regarding the Si particle size, if it is less than 6Jj,m, the effect of removing small particles of the mating material that occurs during cutting will be weakened, and if it exceeds 12ILm, it will damage the mating material and reduce the areal density of dispersion, resulting in poor wear resistance. 6 to 12 μm due to deterioration
It is better to

(3)Cu、Cr、Mg、Mn、Ni、Zn。(3) Cu, Cr, Mg, Mn, Ni, Zn.

FeはAIマトリックスの強度を高めるのに有効な成分
である。これらのうちCuはクリープ強度すなわち高温
軟化抵抗を高める主要な元素であり、高温摺動下におけ
る耐疲労性に寄与する。しかし、0.2重量%未満では
上記した効果が少なく、5.0重量%を超えると針状の
CuAJlz化合物が多量に析出して脆くなり、#疲労
性の低下を招く。またCu以外にマトリックスの強度を
高める元素として、Cr、Mg、Mn、Ni 。
Fe is an effective component for increasing the strength of the AI matrix. Among these, Cu is a main element that increases creep strength, that is, high-temperature softening resistance, and contributes to fatigue resistance under high-temperature sliding. However, if it is less than 0.2% by weight, the above-mentioned effects will be small, and if it exceeds 5.0% by weight, a large amount of acicular CuAJlz compounds will precipitate and become brittle, leading to a decrease in #fatigue properties. In addition to Cu, other elements that increase the strength of the matrix include Cr, Mg, Mn, and Ni.

Zn 、Feがあり、A1合金展伸材の添加元素として
よく使用されるもので、Cuを含むこれらの元素の1種
以上を0.2〜5.0重量%の範囲で添加してもよい。
Zn and Fe are often used as additive elements for A1 alloy wrought material, and one or more of these elements including Cu may be added in a range of 0.2 to 5.0% by weight. .

(4)前記組成のアルミニウム合金粉末を圧粉成形した
ビレット(圧粉体)の理論密度比については、80%未
満では加熱時に空孔内に偏在する潤滑成分が大きくなり
、押出時に欠陥が発生し、95%超過では潤滑成分が表
面へしみ出すという現象(Swe at i ng)を
生ずるノテ、80〜95%とした。
(4) Regarding the theoretical density ratio of a billet (green compact) obtained by compacting aluminum alloy powder with the above composition, if it is less than 80%, the lubricating components unevenly distributed in the pores will increase during heating, causing defects during extrusion. However, if it exceeds 95%, the lubricating component will seep out to the surface (sweating), so it was set at 80 to 95%.

(5)Si粒子径を6〜12JLmに成長させる加熱温
度は、350℃未満ではSiを成長させるのに極めて長
い時間を必要とするため実用的でなく、また550″C
を超える温度ではSi粒子が粗大になりすぎたり、マト
リックスの結晶粒が粗大化したりするので、加熱温度範
囲は350〜550℃が好ましい。
(5) The heating temperature for growing the Si particle size to 6 to 12 JLm is impractical if it is less than 350°C because it takes an extremely long time to grow Si;
If the temperature exceeds 350°C to 550°C, the Si particles will become too coarse or the crystal grains of the matrix will become coarse. Therefore, the heating temperature range is preferably 350 to 550°C.

(6)押出比については、押出比が10未満であると内
部クラックおよび押出後の軸受台金素材の表面割れを生
じ実用に供しうるちのは得られないため、押出比10以
上が好ましい。
(6) Regarding the extrusion ratio, an extrusion ratio of 10 or more is preferable, since if the extrusion ratio is less than 10, internal cracks and surface cracks of the bearing base metal material after extrusion will occur, making it impossible to obtain a material that can be put to practical use.

なお、この発明における軸受台金の原料粉末中に、A1
合金の結晶粒微細化元素であるTI。
In addition, in the raw material powder of the bearing base metal in this invention, A1
TI is a grain refining element for alloys.

B、Zr、V、Ca、REM(Y、Scを含む希土類元
素の1種以上)などを必要に応じて添加して組織の均一
微細化を図ってもよいことはもちろんである。
Of course, B, Zr, V, Ca, REM (one or more rare earth elements including Y and Sc), etc. may be added as necessary to achieve uniform refinement of the structure.

(実施例1) 重量%で、Pb:12.0%、Sn:3.0%、St 
:4.0%、Cu:0.75%、Cr:0.5%、残部
実質的にAnおよび不純物よりなるアルミニウム合金粉
末を、直径100mm。
(Example 1) In weight%, Pb: 12.0%, Sn: 3.0%, St
: 4.0%, Cu: 0.75%, Cr: 0.5%, and the remainder substantially consists of An and impurities, with a diameter of 100 mm.

長さ100mmc7)円柱形状に2.0tonf/cm
2の静水圧にて冷間静水圧成形し、理論密度比91%の
ビレッi・とじた。
Length 100mmc7) Cylindrical shape 2.0tonf/cm
It was cold isostatically pressed at a hydrostatic pressure of 2 and closed into a billet with a theoretical density ratio of 91%.

次に、前記ビレットに対し窒素雰囲気中にて530″C
X8時″間の加熱処理を施し、その後400℃にて押出
しを行って押出成形体を得た。
Next, the billet was heated to 530"C in a nitrogen atmosphere.
A heat treatment was performed for 8 hours, followed by extrusion at 400° C. to obtain an extruded product.

次いで、この押出成形体に対し、押出成形体→圧延前加
熱処理→圧延→アニール→純AL;L板とプレクラッド
→アニール→鋼板とクラッド→アニール→機械加工の工
程で軸受を製作した。
Next, a bearing was manufactured from this extruded body through the following steps: extrusion molded body → pre-rolling heat treatment → rolling → annealing → pure AL; L plate and pre-cladding → annealing → steel plate and cladding → annealing → machining.

(実施例2) 重量%で、Pb:9.6%、Sn:3.0%。(Example 2) In weight%, Pb: 9.6%, Sn: 3.0%.

Si:4.0%、Cu:0.75%、Cr:0.5%、
残部実質的にAllおよび不純物よりなるアルミニウム
合金粉末を、直径100mm。
Si: 4.0%, Cu: 0.75%, Cr: 0.5%,
Aluminum alloy powder with a diameter of 100 mm, the remainder consisting essentially of All and impurities.

長さ100mmの円柱形状に2.0tonf/cm2の
静水圧にて冷間静水圧成形し、理論密度比91%のビレ
ットとした。
It was cold isostatically formed into a cylindrical shape with a length of 100 mm under a hydrostatic pressure of 2.0 tonf/cm 2 to obtain a billet with a theoretical density ratio of 91%.

次に、前記ビレットに対し窒素雰囲気中にて530’O
X8時間の加熱処理を施し、その後350℃にて押出し
を行って押出成形体を得た。
Next, the billet was heated to 530'O in a nitrogen atmosphere.
A heat treatment was performed for 8 hours, followed by extrusion at 350° C. to obtain an extrusion molded product.

次いで、この押出成形体を用いて実施例1と同じ工程で
軸受を製作した。
Next, a bearing was manufactured using this extruded body in the same process as in Example 1.

(実施例3) 重量%で、Pbニア、0%、Sn:6.1%。(Example 3) In weight%, Pb nia: 0%, Sn: 6.1%.

Si:5.6%、Cu:0.53%、残部実質的にAn
および不純物よりなるアルミニウム合金粉末を、直径1
00mm、長さ100mmの円柱形状に2.0tonf
/cm2の静水圧にて冷間静水圧成形し、理論密度比9
2%のビレットとした。
Si: 5.6%, Cu: 0.53%, remainder substantially An
Aluminum alloy powder consisting of aluminum alloy powder and impurities was
00mm, 2.0tonf in a cylindrical shape with a length of 100mm
Cold isostatic pressing was performed at a hydrostatic pressure of /cm2, and the theoretical density ratio was 9.
It was made into a 2% billet.

次に、前記ビレットに対し窒素雰囲気中にて520’0
X12時間の加熱処理を施し、その後320℃にて押出
しを行って押出成形体を得た。
Next, the billet was heated to 520'0 in a nitrogen atmosphere.
A heat treatment was performed for 12 hours, followed by extrusion at 320° C. to obtain an extrusion molded product.

次いで、この押出成形体を用いて実施例1と同じ工程で
軸受を製作した。
Next, a bearing was manufactured using this extruded body in the same process as in Example 1.

(比較例1) 実施例1において用いたアルミニウム合金粉末を直径1
00mm、長さ100mmの円柱形状に2.0tonf
/cm2の静水圧にて冷間静水圧成形し、理論密度比9
1%のビレットとした。
(Comparative Example 1) The aluminum alloy powder used in Example 1 was
00mm, 2.0tonf in a cylindrical shape with a length of 100mm
Cold isostatic pressing was performed at a hydrostatic pressure of /cm2, and the theoretical density ratio was 9.
It was made into a 1% billet.

次に、前記ビレットに加熱処理を施さずに400℃にて
押出しを行って押出成形体を得た。
Next, the billet was extruded at 400° C. without being subjected to heat treatment to obtain an extruded body.

次いで、この押出成形体を用いて実施例1と同じ工程で
軸受を製作した。
Next, a bearing was manufactured using this extruded body in the same process as in Example 1.

(比較例2) 実施例2において用いたアルミニウム合金粉末を直径1
00mm、長さ100mmの円柱形状に2.0tonf
/cm2の静水圧にて冷間静水圧成形し、理論密度比9
1%のビレットとした。
(Comparative Example 2) The aluminum alloy powder used in Example 2 was
00mm, 2.0tonf in a cylindrical shape with a length of 100mm
Cold isostatic pressing was performed at a hydrostatic pressure of /cm2, and the theoretical density ratio was 9.
It was made into a 1% billet.

次に、前記ビレットに対し加熱処理を施さずに350℃
にて押出しを行って押出成形体を得た。
Next, the billet was heated to 350°C without being subjected to heat treatment.
Extrusion was performed to obtain an extrusion molded product.

次いで、この押出成形体を用いて実施例1と同じ工程で
軸受を製作した。
Next, a bearing was manufactured using this extruded body in the same process as in Example 1.

(比較例3) 実施例3において用いたアルミニウム合金粉末を直径1
00mm、長さ100mmの円柱形状に2.0tonf
/cm2の静水圧にて冷間静水圧成形し、理論密度比9
2%のビレ−/ )とした。
(Comparative Example 3) The aluminum alloy powder used in Example 3 was
00mm, 2.0tonf in a cylindrical shape with a length of 100mm
Cold isostatic pressing was carried out at a hydrostatic pressure of /cm2, and the theoretical density ratio was 9.
2% belay/).

次に、前記ビレットに対し加熱処理を施さずに320 
’Oにて押出しを行って押出成形体を得た。
Next, the billet was heated to 320°C without being subjected to heat treatment.
Extrusion was performed at 'O' to obtain an extrusion molded product.

次いで、この押出成形体を用いて実施例1と同じ工程で
軸受を製作した。
Next, a bearing was manufactured using this extruded body in the same process as in Example 1.

(比較例4) 重量%で、Pb: 12.0%、Sn:1.0%、Si
:5.0%、Cu:0.95%、Cr:0.6%、残部
実質的にAiおよび不純物よりなるアルミニウム合金粉
末に530℃×8時間の加熱処理を施した後、A!;L
−11重量%Snのアルミニウム合金粉末と4:lの重
量比で混合し、実施例2と同組成の混合粉末を得た。
(Comparative Example 4) In weight%, Pb: 12.0%, Sn: 1.0%, Si
: 5.0%, Cu: 0.95%, Cr: 0.6%, and the remainder substantially consists of Al and impurities. After heat treatment at 530° C. for 8 hours, A! ;L
-11 wt % Sn aluminum alloy powder was mixed at a weight ratio of 4:1 to obtain a mixed powder having the same composition as in Example 2.

次に、この混合粉末を直径100 m m 、長さ10
0mmの円柱形状に2.0tonf/cm2の静水圧に
て冷間静水圧成形し、理論密度比90%のビレットとし
た。
Next, this mixed powder was made into a shape with a diameter of 100 mm and a length of 10 mm.
It was cold isostatically pressed into a cylindrical shape with a diameter of 0 mm under a hydrostatic pressure of 2.0 tonf/cm 2 to obtain a billet with a theoretical density ratio of 90%.

次いで、このビレットを350℃にて押出加工して押出
成形体を得たのち、この押出成形体を用いて実施例1と
同じ工程で軸受を製作した。
Next, this billet was extruded at 350° C. to obtain an extruded body, and a bearing was manufactured using this extruded body in the same process as in Example 1.

(比較例5) 重量%で、Pb:lO,0%、Sn:1.0%、Si 
:8.0%、Cu:0.75%、残部実質的にAnおよ
び不純物よりなるアルミニウム合金粉末に520℃×1
2時間の加熱処理を施した後、Al−18i量%Snの
アルミニウム合金粉末と7=3の重量比で混合し、実施
例3と同組成の混合粉末を得た。
(Comparative Example 5) In weight%, Pb: 1O, 0%, Sn: 1.0%, Si
: 8.0%, Cu: 0.75%, and the remainder essentially consists of An and impurities at 520°C x 1
After heat treatment for 2 hours, it was mixed with an aluminum alloy powder of Al-18i content % Sn at a weight ratio of 7=3 to obtain a mixed powder having the same composition as in Example 3.

次に、この混合粉末を直径100mm、長さ100mm
の円柱形状に2.0tonf/cm2の静水圧にて冷間
静水圧成形し、理論密度比92%のビレットとした。
Next, this mixed powder is 100 mm in diameter and 100 mm in length.
It was cold isostatically formed into a cylindrical shape under a hydrostatic pressure of 2.0 tonf/cm2 to obtain a billet with a theoretical density ratio of 92%.

次いで、このビレットを320℃にて押出加工して押出
成形体を得たのち、この押出成形体を用いて実施例1と
同じ工程で軸受を製作した。
Next, this billet was extruded at 320° C. to obtain an extrusion molded body, and then a bearing was manufactured using the extrusion molded body in the same process as in Example 1.

(比較例6) 実施例3において用いたアルミニウム合金粉末を直径1
00mm、長さ100mm(7)円柱形状に3.2to
nf/cm2の静水圧にて冷間静水圧成形し、理論密度
比96%のビレットとした。
(Comparative Example 6) The aluminum alloy powder used in Example 3 was
00mm, length 100mm (7) 3.2to in cylindrical shape
Cold isostatic pressing was performed under a hydrostatic pressure of nf/cm2 to form a billet with a theoretical density ratio of 96%.

次に、窒素雰囲気中にて520℃の加熱処理を施したと
ころ、Pb、Snがビレットの表面にしみ出してしまっ
た。
Next, when heat treatment was performed at 520° C. in a nitrogen atmosphere, Pb and Sn seeped out onto the surface of the billet.

(比較例7) 実施例3において用いたアルミニウム合金粉末を直径1
00mm、長さ100mmの円柱形状に0.7tonf
/Cm2の静水圧にて冷間静水圧成形し、理論密度比7
8%のビレットとした。
(Comparative Example 7) The aluminum alloy powder used in Example 3 was
0.7 tonf in a cylindrical shape with a length of 00 mm and a length of 100 mm.
Cold isostatic pressing at a hydrostatic pressure of /Cm2, theoretical density ratio 7
It was made into an 8% billet.

次に、前記ビレットに対して窒素雰囲気中にて520’
0X12時間の加熱処理を施し、その後320″Cにて
押出しを行ったが、押出材に耳割れと表面割れが発生し
た。
Next, the billet was heated for 520' in a nitrogen atmosphere.
Heat treatment was performed for 0×12 hours, and then extrusion was performed at 320″C, but edge cracks and surface cracks occurred in the extruded material.

第1表に、軸受を製造した実施例1〜3.比較例1〜5
の潤滑成分および硬質成分であるSiのAnマトリック
スに対する断面積比とSi粒子の大きさを示した。
Table 1 shows Examples 1 to 3 in which bearings were manufactured. Comparative examples 1 to 5
The cross-sectional area ratio of Si, which is a lubricating component and hard component, to the An matrix and the size of Si particles are shown.

軸受耐疲労性試験 実施例1〜3および比較例1〜5において製作した軸受
に対して第2表に示すような苛酷な軸受耐疲労性試験を
行った。この試験結果を第1図に示す。
Bearing fatigue resistance test The bearings manufactured in Examples 1 to 3 and Comparative Examples 1 to 5 were subjected to a severe bearing fatigue resistance test as shown in Table 2. The test results are shown in FIG.

第1図より明らかなように、本発明による実施例1〜3
の軸受は、比較例1〜5の軸受に比べて優れた耐久性を
有していることがわかる。
As is clear from FIG. 1, Examples 1 to 3 according to the present invention
It can be seen that the bearings have superior durability compared to the bearings of Comparative Examples 1 to 5.

第2表 軸受耐疲労性試験条件 摩擦試験 次に、本発明合金の表面性能を調べるために、実施例2
.比較例2および比較例4の押出後の材料から試料を切
り出し、第3表および第2図に示す条件で摩擦試験を行
った。その結果を第3図に示す。
Table 2 Bearing fatigue resistance test conditions Friction test Next, in order to investigate the surface performance of the alloy of the present invention, Example 2
.. Samples were cut from the extruded materials of Comparative Examples 2 and 4, and friction tests were conducted under the conditions shown in Table 3 and FIG. 2. The results are shown in FIG.

第3表  摩擦試験条件 第3図に示すように、この発明による軸受台金(実施例
2)は従来法による軸受台金(比較例2.4)よりも優
れた表面性能を有していることが明らかである。
Table 3: Friction test conditions As shown in Figure 3, the bearing base according to the present invention (Example 2) has a better surface performance than the bearing base according to the conventional method (Comparative Example 2.4). That is clear.

[発明の効果] 以上説明してきたように、この発明による軸受合金の製
造方法は、AIを主成分とし、潤滑成分としてPb、S
n、In、Sb、Biよりなる群から選ばれた1種以上
の金属をAnマトリクスに対する断面積比で0.04以
上0.07以下、硬質成分としてSiを同じく断面積比
で0.01以上0.17以下、強化成分としてCu、C
r。
[Effects of the Invention] As explained above, the method for producing a bearing alloy according to the present invention contains AI as a main component and Pb and S as lubricating components.
One or more metals selected from the group consisting of n, In, Sb, and Bi with a cross-sectional area ratio of 0.04 to 0.07 with respect to the An matrix, and Si as a hard component with a cross-sectional area ratio of 0.01 or more. 0.17 or less, Cu, C as a reinforcing component
r.

Mg、Mn、Ni 、Zn、Feよりなる群から選ばれ
た1種以上の金属を0.2〜5.0重量%含み、均一微
細に分散した潤滑成分の大きさが8pm以下であるアル
ミニウム合金粉末を圧粉成形し、理論密度比80〜95
%のビレットとした後350〜550℃にて加熱処理を
施してSi粒子を6〜124mに成長させ、その後該ビ
レットを押出比10以上で押出成形するようにしたこと
を特徴とするものであるから、耐疲労性および表面性能
(潤滑性能)という二律背反特性の両方共が従来にない
高い水準をもつ優れた軽量軸受合金を提供することが可
能であり、とくにこの発明の製造方法により製造された
軸受台金は相手材の材質が鋼の場合のみならず鋳鉄の場
合でも同様に優れた特性を示すことから、極めて広い応
用範囲を有するものであるという非常に優れた効果がも
たらされる。
An aluminum alloy containing 0.2 to 5.0% by weight of one or more metals selected from the group consisting of Mg, Mn, Ni, Zn, and Fe, and in which the size of uniformly finely dispersed lubricating components is 8 pm or less The powder is compacted to a theoretical density ratio of 80 to 95.
% billet, heat-treated at 350-550°C to grow Si particles to 6-124 m, and then extrusion-molded the billet at an extrusion ratio of 10 or more. Therefore, it is possible to provide an excellent lightweight bearing alloy that has unprecedentedly high levels of both the antinomic properties of fatigue resistance and surface performance (lubrication performance), and in particular, it is possible to provide an excellent lightweight bearing alloy that has unprecedentedly high levels of both fatigue resistance and surface performance (lubrication performance). The bearing base metal exhibits excellent properties not only when the material of the mating material is steel but also when it is cast iron, so it has an extremely excellent effect that it has an extremely wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は軸受の耐疲労性試験結果を示すグラフ、第2図
は摩擦試験の際の負荷パターンを示す説明図、第3図は
摩擦試験結果を示すグラフである。 特許出願人   日産自動車株式会社 同出願人    工ヌデーシー株式会社代理人弁理士 
 小  塩   豊 第1図 (士も×)1痔 8  目  ;  藁 c5     es     c>     6今jし
避夕
FIG. 1 is a graph showing the fatigue resistance test results of the bearing, FIG. 2 is an explanatory diagram showing the load pattern during the friction test, and FIG. 3 is a graph showing the friction test results. Patent applicant: Nissan Motor Co., Ltd. Patent attorney: NDC Co., Ltd.
Yutaka Ko Shio Figure 1 (Shimo ×) 1 Hemorrhoid 8th; Straw c5 es c> 6 Now and then taking shelter

Claims (1)

【特許請求の範囲】[Claims] (1)Alを主成分とし、潤滑成分として Pb、Sn、In、Sb、Biよりなる群から選ばれた
1種以上の金属をAlマトリックスに対する断面積比で
0.04以上0.07以下、硬質成分としてSiを同じ
く断面積比で0.01以上0.17以下、強化成分とし
てCu、Cr、Mg、Mn、Ni、Zn、Feよりなる
群から選ばれた1種以上の金属を0.2〜5.0重量%
含み、均一微細に分散した潤滑成分の大きさが8μm以
下であるアルミニウム合金粉末を圧粉成形し、理論密度
比80〜95%のビレットとした後350〜550℃に
て加熱処理を施してSi粒子を6〜12μmに成長させ
、その後該ビレットを押出比10以上で押出成形するこ
とを特徴とするアルミニウム系軸受合金の製造方法。
(1) Al is the main component, and one or more metals selected from the group consisting of Pb, Sn, In, Sb, and Bi are used as a lubricating component, with a cross-sectional area ratio of 0.04 to 0.07 to the Al matrix; The hard component is Si with a cross-sectional area ratio of 0.01 or more and 0.17 or less, and the reinforcing component is 0.01 or more of one or more metals selected from the group consisting of Cu, Cr, Mg, Mn, Ni, Zn, and Fe. 2-5.0% by weight
Aluminum alloy powder containing lubricating components uniformly and finely dispersed with a size of 8 μm or less is compacted to form a billet with a theoretical density ratio of 80 to 95%, and then heat treated at 350 to 550°C to form a Si A method for producing an aluminum-based bearing alloy, which comprises growing particles to a size of 6 to 12 μm, and then extruding the billet at an extrusion ratio of 10 or more.
JP7800286A 1986-04-03 1986-04-03 Manufacture of bearing alloy Pending JPS62235438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7800286A JPS62235438A (en) 1986-04-03 1986-04-03 Manufacture of bearing alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7800286A JPS62235438A (en) 1986-04-03 1986-04-03 Manufacture of bearing alloy

Publications (1)

Publication Number Publication Date
JPS62235438A true JPS62235438A (en) 1987-10-15

Family

ID=13649590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7800286A Pending JPS62235438A (en) 1986-04-03 1986-04-03 Manufacture of bearing alloy

Country Status (1)

Country Link
JP (1) JPS62235438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902943A (en) * 1995-05-02 1999-05-11 The University Of Queensland Aluminium alloy powder blends and sintered aluminium alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902943A (en) * 1995-05-02 1999-05-11 The University Of Queensland Aluminium alloy powder blends and sintered aluminium alloys

Similar Documents

Publication Publication Date Title
US4857267A (en) Aluminum base bearing alloy and method of producing same
DE2928004C2 (en)
JP3839740B2 (en) Sliding material
EP0669404B1 (en) Wear-resistant sintered aluminum alloy and method for producing the same
JP2532790B2 (en) Copper-lead alloy bearing with overlay
JPH0684528B2 (en) Graphite-containing lead bronze multilayer sliding material and method for producing the same
JP2769421B2 (en) Copper-lead bearing alloy material excellent in corrosion resistance and method for producing the same
DE102012204967B4 (en) Copper-based sliding material
US6303235B1 (en) Copper-based sliding alloy
US5104444A (en) Aluminum matrix bearing metal alloy
JPS60197832A (en) Self oil supplying sintered bush and manufacture
US6706126B2 (en) Aluminum alloy for sliding bearing and its production method
JPS62235455A (en) Aluminum bearing alloy and its production
JPS62235438A (en) Manufacture of bearing alloy
JPS636215A (en) Bearing
JPH0421735A (en) Aluminum series bearing alloy
US6899844B2 (en) Production method of aluminum alloy for sliding bearing
JPS6237336A (en) Bearing alloy
DE3000772C2 (en) Tin-containing aluminum bearing alloy
JP4422255B2 (en) Aluminum base bearing alloy
JPS6112844A (en) Bearing alloy
JP2574274B2 (en) Aluminum bearing alloy
DE3000773C2 (en) Tin-containing aluminum bearing alloy
DE3000774C2 (en) Tin-containing aluminum bearing alloy
JPS6237337A (en) Bearing alloy