JPS6223405B2 - - Google Patents

Info

Publication number
JPS6223405B2
JPS6223405B2 JP54152569A JP15256979A JPS6223405B2 JP S6223405 B2 JPS6223405 B2 JP S6223405B2 JP 54152569 A JP54152569 A JP 54152569A JP 15256979 A JP15256979 A JP 15256979A JP S6223405 B2 JPS6223405 B2 JP S6223405B2
Authority
JP
Japan
Prior art keywords
weight
2tio
pbo
catio
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54152569A
Other languages
Japanese (ja)
Other versions
JPS5676107A (en
Inventor
Nobuaki Kikuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP15256979A priority Critical patent/JPS5676107A/en
Publication of JPS5676107A publication Critical patent/JPS5676107A/en
Publication of JPS6223405B2 publication Critical patent/JPS6223405B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は温度補償用誘電体磁器組成物に関する
ものでその目的とするところはCaTiO3
La2O3.2TiO3−PbO.TiO2−Bi2O3.2TiO3
MgTiO3の5成分系の固容体からなるもので、と
もに高い値で組合される誘電率と温度係数が比較
的小さく且つ高周波での損失角が極めて優れた磁
器組成物を提供しようとするものである。 従来より温度補償用誘電体磁器組成物としては
SrTiO3、CaTiO3、MgTiO3、La2O3.2TiO3等の
組成物が用いられているが、これ等は誘電率が20
〜300、温度係数が+100〜−3000×10-6/℃の範
囲にあることは公知の事柄である。 これ等の最大の欠点は常温での誘電率と温度係
数の関係は誘電率が大きくなる程温度係数の値も
大きくなり、温度係数の値を小さくすることはお
のずと誘電率も小さくなるという関係にあつた。 従つて、従来の磁器組成物では温度係数が小さ
くなると高い誘電率は得られなかつた。 最近ではカラーテレビ等のIFT回路で使用する
温度補償用磁器コンデンサとして特に温度係数が
小さく且つ大容量で特に高周波での損失角が小さ
く絶縁破壊電圧の優れた温度補償用コンデンサが
要望されるに至つている。 このように温度係数が小さく且つ大容量のコン
デンサを得るには温度係数の小さい例えば、
CaTiO3−HgTiO3−La2O3.2TiO2系の材料を用
い、更に厚みを薄くする以外に方法はなかつた。 しかしながら厚みを薄くすることが量産工程に
おいては、反りとかワレが発生し歩留りを悪く
し、品質的には耐電圧の低下をきたし、信頼性等
においても不安定な要素となつていた。 本発明はこれ等前述の欠点に着目して改善した
ものであり、それぞれの材料のもつ特性を有効に
組合せ生かすと共に前述の欠点を除去したもので
あり、誘電率が高く、誘電率の温度係数が−1250
〜−700×10-6/℃と比較的小さい値を示し、且
つQが高いことを特徴とする温度補償用磁器組成
物を提供したものであり、 その構成は 「CaTiO3−La2O3.2TiO3−PbO.TiO2
Bi2O3.2TiO3−MgTiO3系磁器組成物で酸化物に
換算して CaO……6.82〜31.50重量% La2O3……0.89〜34.76重量% Bi2O3……1.45〜17.37重量% TiO2……37.14〜51.69重量% PbO……4.60〜30.86重量% MgO……0.16〜3.35重量%の範囲からなる組成物
を主成分とすることを特徴とする温度補償用誘電
体磁器組成物を第1の発明とし、 CaTiO3−La2O3.2TiO3−PbO.TiO2
Bi2O3.2TiO3−MgTiO3系磁器組成物で酸化物に
換算して CaO……6.82〜31.50重量% La2O3……0.89〜34.76重量% Bi2O3……1.45〜17.37重量% TiO2……37.14〜51.69重量% PbO……4.60〜30.86重量% MgO……0.16〜3.35重量%の範囲からなる主成分
とする組成物に対して、副成分としてMn、及び
希土類元素化合物の1種あるいは1種以上含む事
を特徴とする温度補償用誘電体磁器組成物」を第
2の発明とすることを特徴とするものである。 つまりCaTiO3−La2O3.2TiO2−PbO.TiO2
Bi2O3.2TiO3−MgTiO3の5成分の、その成分割
合を変化させることによつて誘電率温度係数を−
1250×10-6/℃〜−700×10-6/℃の範囲で自由
に選択することができ、これ等の磁器は誘電率が
高くQ値も大きい。 また焼成温度が比較的低く、従来のCaTiO3
La2O3.2TiO2−MgTiO3系の1300℃〜1340℃焼成
していたものが約100℃低い1200℃〜1240℃で容
易に焼結が可能である。 以下本発明を実施例に従つて具体的に内容を説
明する。出発原料としてCaCO3、TiO2、La2O3
PbO、Bi2O3、MgCO3を市販の工業用原料を用
い、CaTiO3、La2O3.2TiO2、PbO.TiO2
Bi2O3.2TiO3、MgTiO2の形のチタン酸塩として
あらかじめ製造しておき第1表に挙げた成分比率
に調合した。この際、PbO.TiO2、Bi2O3.2TiO2
仮焼なしの生原料PbO、TiO2、Bi2O3、として用
いても同様な特性が得られる。混合は磁器ポツト
ミルで、20時間湿式混合をおこなつた。混合物を
脱水乾燥後、粗粉砕を行ない有機バインダーを加
えポツトミルで20時間湿式粉砕を行ない粒にし
た。成形には16.5φ×0.6=の大きさの円板を約
3t/cm2の圧力で加圧成形して、焼成は1200℃〜
1240℃の温度範囲で2時間保持して焼成をおこな
つた。このようにして得られた円板形の磁器に銀
電極を780℃で焼付けてリード線を半田付けし、
洗浄後各々の混合割合の異なる組成の電気的特性
の測定をおこなつた結果を第一表に示した。 測定条件としては室温が20℃で静電容量及びQ
値はYEW製のQメーター(4043A)を使用し
た。 温度係数はブントン製キヤパシタスブリツジ
(モデル−74D)、 恒温〓はエレクトロプト社製(EW−102)を
使用した。又、本実験の調合において焼成時の還
元性を防止する為、酸化剤としてMnCO3を0.20
重量%を添加せしめた。同時に焼結性を良くする
為に鉱化剤として希土類元素化合物として、
CeO2.La2O3等の添加剤を加えると一層の改良効
果が促進される。 このような製造条件で製造した組成比の異なる
組成物の電気特性値を第1表に示す。 第1表中試料No.
1.8.13.19.29.34.36.41.42.43.45.53は本発明範囲外
のもので比較の為記述した。 次に特許請求の範囲の限定理由を述べる。 本発明の限定理由については第1表に示す通
り、固有の特性を持つ相互の組成比を変化させて
Q値、誘電率(εS)、温度係数(T.C)が多様
に変化するので第1図〜第3図に基づいて説明す
る。
The present invention relates to a dielectric ceramic composition for temperature compensation, and its purpose is to
La 2 O 3 .2TiO 3 −PbO.TiO 2 −Bi 2 O 3 .2TiO 3
The purpose is to provide a ceramic composition consisting of a five-component solid body of MgTiO 3 , which has a relatively small dielectric constant and temperature coefficient, both of which have high values, and an extremely excellent loss angle at high frequencies. be. Conventionally, as a dielectric ceramic composition for temperature compensation,
Compositions such as SrTiO 3 , CaTiO 3 , MgTiO 3 , La 2 O 3 .2TiO 3 are used, but these have a dielectric constant of 20.
~300, and the temperature coefficient is in the range of +100 to -3000×10 -6 /°C. The biggest drawback of these is that the relationship between the dielectric constant and the temperature coefficient at room temperature is that the larger the dielectric constant, the larger the temperature coefficient, and as the temperature coefficient decreases, the dielectric constant also decreases. It was hot. Therefore, with conventional ceramic compositions, a high dielectric constant could not be obtained when the temperature coefficient became small. Recently, there has been a demand for temperature-compensating ceramic capacitors that have particularly small temperature coefficients, large capacitances, small loss angles at high frequencies, and excellent dielectric breakdown voltages as temperature-compensating ceramic capacitors used in IFT circuits such as color televisions. It's on. In order to obtain a large capacity capacitor with a small temperature coefficient, for example,
There was no other way than to use a CaTiO 3 -HgTiO 3 -La 2 O 3 .2TiO 2 material and further reduce the thickness. However, in the mass production process, thinning the thickness causes warping and cracking, which reduces yield, reduces quality, and causes instability in reliability. The present invention focuses on and improves the above-mentioned drawbacks, and eliminates the above-mentioned drawbacks while effectively combining the characteristics of each material. is −1250
The present invention provides a temperature-compensating porcelain composition that exhibits a relatively small value of ~-700×10 -6 /℃ and is characterized by a high Q, and its composition is “CaTiO 3 −La 2 O 3 .2TiO 3 −PbO.TiO 2
Bi 2 O 3 .2TiO 3 −MgTiO 3 based porcelain composition, calculated as oxide CaO...6.82 to 31.50% by weight La 2 O 3 ...0.89 to 34.76% by weight Bi 2 O 3 ...1.45 to 17.37% by weight % TiO2 ...37.14-51.69% by weight PbO...4.60-30.86% by weight MgO...0.16-3.35% by weight A dielectric ceramic composition for temperature compensation, characterized in that the main component is a composition in the range of 0.16-3.35% by weight. is the first invention, CaTiO 3 −La 2 O 3 .2TiO 3 −PbO.TiO 2
Bi 2 O 3 .2TiO 3 −MgTiO 3 based porcelain composition, calculated as oxide CaO...6.82 to 31.50% by weight La 2 O 3 ...0.89 to 34.76% by weight Bi 2 O 3 ...1.45 to 17.37% by weight % TiO2 ...37.14-51.69% by weight PbO...4.60-30.86% by weight MgO...0.16-3.35% by weight, Mn as a subcomponent and a rare earth element compound A second invention is a "temperature-compensating dielectric ceramic composition characterized by containing one or more of the above." In other words, CaTiO 3 −La 2 O 3 .2TiO 2 −PbO.TiO 2
By changing the component ratio of the five components Bi 2 O 3 .2TiO 3 -MgTiO 3 , the dielectric constant temperature coefficient -
It can be freely selected within the range of 1250×10 -6 /°C to -700×10 -6 /°C, and these porcelains have a high dielectric constant and a large Q value. In addition, the firing temperature is relatively low, and compared to conventional CaTiO 3
The La 2 O 3 .2TiO 2 -MgTiO 3 system, which was fired at 1300°C to 1340°C, can be easily sintered at about 100°C lower, at 1200°C to 1240°C. The present invention will be specifically explained below based on examples. CaCO 3 , TiO 2 , La 2 O 3 as starting materials,
Using commercially available industrial raw materials for PbO, Bi 2 O 3 and MgCO 3 , CaTiO 3 , La 2 O 3 .2TiO 2 , PbO.TiO 2 ,
Titanates in the form of Bi 2 O 3 .2TiO 3 and MgTiO 2 were prepared in advance and mixed in the component ratios listed in Table 1. At this time, similar characteristics can be obtained even if PbO.TiO 2 and Bi 2 O 3 .2TiO 2 are used as raw raw materials PbO, TiO 2 and Bi 2 O 3 without calcination. The mixture was wet mixed in a porcelain pot mill for 20 hours. After dehydrating and drying the mixture, it was roughly pulverized, an organic binder was added, and wet pulverization was performed in a pot mill for 20 hours to form particles. For molding, a disk with a size of 16.5φ x 0.6= approx.
Pressure molded at a pressure of 3t/cm 2 and fired at 1200℃~
Firing was carried out by holding at a temperature range of 1240°C for 2 hours. Silver electrodes were baked at 780°C on the disc-shaped porcelain obtained in this way, and lead wires were soldered.
After washing, the electrical characteristics of the compositions with different mixing ratios were measured and the results are shown in Table 1. The measurement conditions are room temperature 20℃, capacitance and Q
The value was measured using a Q meter (4043A) manufactured by YEW. For the temperature coefficient, a Bunton capacitor bridge (Model-74D) was used, and for the constant temperature, an Electropt (EW-102) was used. In addition, in the preparation of this experiment, 0.20% of MnCO 3 was added as an oxidizing agent to prevent reducibility during firing.
% by weight was added. At the same time, in order to improve sinterability, rare earth element compounds are used as mineralizers.
Addition of additives such as CeO 2 .La 2 O 3 promotes further improvement effects. Table 1 shows the electrical property values of compositions having different composition ratios manufactured under such manufacturing conditions. Sample No. in Table 1
1.8.13.19.29.34.36.41.42.43.45.53 is outside the scope of the present invention and is described for comparison. Next, the reasons for limiting the scope of the claims will be described. As shown in Table 1, the reason for the limitation of the present invention is that the Q value, dielectric constant (εS), and temperature coefficient (TC) vary in various ways by changing the mutual composition ratio with unique characteristics. 〜Explained based on FIG.

【表】【table】

【表】 第1図は本発明の基礎となるCaTiO3
La2O3.2TiO2−PbO.TiO2の領域を示す三元組成
図であり、CaTiO3が90.0mo%以下になると温度
係数(T.C)が大きくなり50.0mo%以下では焼結
が困難となりQ値が悪化する。 又、La2O3.2TiO2は30.0mol%以上では誘電率
が低下し、Q値が悪化し焼結困難となる。 又、20.0mol%以下では温度係数(T.C)が大
きくなりCaTiO3本来の特性に近ずく為に本発明
の意に反する。 更にPbO.TiO2は誘電率が向上する効果を有す
るが5.0mol%以下では誘電率(εS)が低く、
35.0mol%以上では温度係数が大きくなりQ値が
悪化する。 第2図は第1図に示すCaTiO3−La2O3.2TiO2
−PbO.TiO2三成分に対する、Bi2O3.2TiO2の領域
及び効果を示すものである。Bi2O3.2TiO2は温度
特性をあまり変化させないで誘電率を大きくし、
焼成温度を下げる効果を有するが2.0重量%以下
では含有効果がなく、35.0重量%以上ではQ値が
悪化し、更に焼成温度幅が狭くなるので望ましく
ない。 第3図は第2図と同様にMgTiO3の領域及び効
果を示すものである。 MgTiO3は、温度特性をあまり変化させずに誘
電率を大きくする効果があり、0.5重量%以下で
はMgTiO3の効果がなく、15.0重量%以上では誘
電率が低下して実用的でない。 叙上の通り、本発明はCaTiO3−La2O3.2TiO2
−PbO.TiO2−Bi2O3.2TiO3−MgTiO3系の5成分
で構成し、各成分の持つ固有の特性を持つ相互の
組成比を適宜変化させることにより、高い誘電率
でしかも誘電率の温度係数(T.C)が、−1250〜
−700×10-6/℃と極めて優れており、且つQ値
の高い良好な性質を有する 温度補償用誘電体磁器組成物を可能としたもの
である。
[Table] Figure 1 shows CaTiO 3 - which is the basis of the present invention.
This is a ternary composition diagram showing the region of La 2 O 3 .2TiO 2 −PbO.TiO 2 . When CaTiO 3 is below 90.0 mo%, the temperature coefficient (TC) increases, and below 50.0 mo%, sintering becomes difficult. Q value deteriorates. Moreover, if La 2 O 3 .2TiO 2 exceeds 30.0 mol %, the dielectric constant decreases, the Q value deteriorates, and sintering becomes difficult. Moreover, if it is less than 20.0 mol %, the temperature coefficient (TC) becomes large and approaches the original characteristics of CaTiO 3 , which is contrary to the intention of the present invention. Furthermore, PbO.TiO 2 has the effect of improving the dielectric constant, but below 5.0 mol%, the dielectric constant (εS) is low;
If it exceeds 35.0 mol%, the temperature coefficient becomes large and the Q value deteriorates. Figure 2 shows the CaTiO 3 −La 2 O 3 .2TiO 2 shown in Figure 1.
- The area and effect of Bi 2 O 3 .2TiO 2 on the three components of PbO.TiO 2 are shown. Bi 2 O 3 .2TiO 2 increases the dielectric constant without changing the temperature characteristics much,
Although it has the effect of lowering the firing temperature, if the content is less than 2.0% by weight, there is no effect, and if it is more than 35.0% by weight, the Q value deteriorates and the firing temperature range becomes narrower, which is not desirable. Similar to FIG. 2, FIG. 3 shows the area and effects of MgTiO 3 . MgTiO 3 has the effect of increasing the dielectric constant without significantly changing the temperature characteristics. If it is less than 0.5% by weight, MgTiO 3 has no effect, and if it is more than 15.0% by weight, the dielectric constant decreases and is not practical. As mentioned above, the present invention is based on CaTiO 3 −La 2 O 3 .2TiO 2
-PbO.TiO 2 -Bi 2 O 3 .2TiO 3 -MgTiO 3 It is composed of five components, each with its own unique characteristics, and by appropriately changing the mutual composition ratio, it has a high dielectric constant and a dielectric The temperature coefficient (TC) of the rate is −1250 ~
This has made it possible to create a dielectric ceramic composition for temperature compensation which has an extremely excellent property of -700×10 -6 /°C and a high Q value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基礎となるCaTiO3
La2O3.2TiO2−PbO.TiO2の領域を示す三元組成
図である。第2図は第1図に示すCaTiO3
La2O3.2TiO2−PbO.TiO2三成分に対する
Bi2O3.2TiO2の領域と電気特性の関係を示す図で
ある。第3図は第2図と同様MgTiO3の領域と電
気特性の関係を示す図である。
Figure 1 shows CaTiO 3 - which is the basis of the present invention.
It is a ternary composition diagram showing a region of La 2 O 3 .2TiO 2 −PbO.TiO 2 . Figure 2 shows the CaTiO 3 − shown in Figure 1.
La 2 O 3 .2TiO 2 −PbO.TiO 2 for three components
FIG. 2 is a diagram showing the relationship between the Bi 2 O 3 .2TiO 2 region and electrical properties. FIG. 3 is a diagram showing the relationship between the MgTiO 3 region and electrical characteristics, similar to FIG. 2.

Claims (1)

【特許請求の範囲】 1 CaTiO3−La2O3.2TiO3−PbO.TiO2
Bi2O3.2TiO3−MgTiO3系磁器組成物で酸化物に
換算して CaO……6.82〜31.50重量% La2O3……0.89〜34.76重量% Bi2O3……1.45〜17.37重量% TiO2……37.14〜51.69重量% PbO……4.60〜30.86重量% MgO……0.16〜3.35重量%の範囲からなる組成物
を主成分とすることを特徴とする温度補償用誘電
体磁器組成物。 2 CaTiO3−La2O3.2TiO3−PbO.TiO2
Bi2O3.2TiO3−MgTiO3系磁器組成物で酸化物に
換算して CaO……6.82〜31.50重量% La2O3……0.89〜34.76重量% Bi2O3……1.45〜17.37重量% TiO2……37.14〜51.69重量% PbO……4.60〜30.86重量% MgO……0.16〜3.35重量%の範囲からなる主成分
とする組成物に対して、副成分としてMn、及び
希土類元素化合物の1種あるいは1種以上含む事
を特徴とする温度補償用誘電体磁器組成物。
[Claims] 1 CaTiO 3 −La 2 O 3 .2TiO 3 −PbO.TiO 2
Bi 2 O 3 .2TiO 3 −MgTiO 3 based porcelain composition, calculated as oxide CaO...6.82 to 31.50% by weight La 2 O 3 ...0.89 to 34.76% by weight Bi 2 O 3 ...1.45 to 17.37% by weight % TiO2 ...37.14-51.69% by weight PbO...4.60-30.86% by weight MgO...0.16-3.35% by weight A dielectric ceramic composition for temperature compensation, characterized in that the main component is a composition in the range of 0.16-3.35% by weight. . 2 CaTiO 3 −La 2 O 3 .2TiO 3 −PbO.TiO 2
Bi 2 O 3 .2TiO 3 −MgTiO 3 based porcelain composition, calculated as oxide CaO...6.82 to 31.50% by weight La 2 O 3 ...0.89 to 34.76% by weight Bi 2 O 3 ...1.45 to 17.37% by weight % TiO2 ...37.14-51.69% by weight PbO...4.60-30.86% by weight MgO...0.16-3.35% by weight, Mn as a subcomponent and a rare earth element compound A dielectric ceramic composition for temperature compensation, characterized in that it contains one or more kinds.
JP15256979A 1979-11-26 1979-11-26 Dielectric porcelain composition for compensating temperature Granted JPS5676107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15256979A JPS5676107A (en) 1979-11-26 1979-11-26 Dielectric porcelain composition for compensating temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15256979A JPS5676107A (en) 1979-11-26 1979-11-26 Dielectric porcelain composition for compensating temperature

Publications (2)

Publication Number Publication Date
JPS5676107A JPS5676107A (en) 1981-06-23
JPS6223405B2 true JPS6223405B2 (en) 1987-05-22

Family

ID=15543337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15256979A Granted JPS5676107A (en) 1979-11-26 1979-11-26 Dielectric porcelain composition for compensating temperature

Country Status (1)

Country Link
JP (1) JPS5676107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777699B2 (en) * 1989-10-07 1995-08-23 エミテック・ゲゼルシャフト・フュア・エミッシオンステクノロジー・ミット・ベシュレンクテル・ハフツング How to assemble shaft

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777699B2 (en) * 1989-10-07 1995-08-23 エミテック・ゲゼルシャフト・フュア・エミッシオンステクノロジー・ミット・ベシュレンクテル・ハフツング How to assemble shaft

Also Published As

Publication number Publication date
JPS5676107A (en) 1981-06-23

Similar Documents

Publication Publication Date Title
US4889837A (en) Semiconductive ceramic composition
JPH0118521B2 (en)
US4820670A (en) Dielectric ceramic composition
JPS5820133B2 (en) Porcelain for semiconductor porcelain capacitors and manufacturing method thereof
JPH0118522B2 (en)
JPS6223405B2 (en)
JPS6348826B2 (en)
JPS5815078A (en) High dielectric constant ceramic dielectric composition
JPH0571538B2 (en)
JPH05345664A (en) High dielectric ceramic composition
JP3303453B2 (en) Dielectric porcelain composition
JP2643197B2 (en) Dielectric porcelain composition
JPH0361287B2 (en)
JPS6049151B2 (en) Method for manufacturing dielectric magnetic composition
JP3333017B2 (en) Dielectric ceramic composition for temperature compensation
JPS6111404B2 (en)
JPH03274606A (en) Dielectric cramic composite
JPH0734415B2 (en) Grain boundary insulation type semiconductor porcelain composition
KR100262459B1 (en) Dielectric composition for ceramic capacitor
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPS6126207B2 (en)
JPS6044816B2 (en) Composition for semiconductor ceramic capacitors
JPS6256102B2 (en)
JPH08726B2 (en) High-permittivity porcelain composition for temperature compensation
JPS6364889B2 (en)