JPS62232579A - Method for detecting accident point of power cable - Google Patents

Method for detecting accident point of power cable

Info

Publication number
JPS62232579A
JPS62232579A JP7413186A JP7413186A JPS62232579A JP S62232579 A JPS62232579 A JP S62232579A JP 7413186 A JP7413186 A JP 7413186A JP 7413186 A JP7413186 A JP 7413186A JP S62232579 A JPS62232579 A JP S62232579A
Authority
JP
Japan
Prior art keywords
point
accident
shielding layers
cable
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7413186A
Other languages
Japanese (ja)
Other versions
JPH0680434B2 (en
Inventor
Katsuji Ito
伊東 勝二
Yoshihisa Katsuyama
勝山 吉久
Hiromitsu Shigeta
茂田 啓充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7413186A priority Critical patent/JPH0680434B2/en
Publication of JPS62232579A publication Critical patent/JPS62232579A/en
Publication of JPH0680434B2 publication Critical patent/JPH0680434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)

Abstract

PURPOSE:To enhance the detection accuracy of an accident point, by performing the detection of the accidental point using the resistance based on the insulating breakdown at the accidental point of the insulating film layer between two shielding layers. CONSTITUTION:It is assumed that a line accident is generated at the point X of a trouble cable 1A and insulating breakdown is generated in an insulator 4 and an insulating film layer 7 at the point X. In this case, at the terminals d1, d2 of cables 1A, 1B, short-circuit connection is respectively generated between the conductors 2A, 2B of both cables, between the shielding layers 6A, 6B thereof and between the shielding layers 8A, 8B. A series circuit of resistors Ra, Rb and a meter G are respectively connected between the base terminals C1, C2 of the shielding layers 6A, 6B in parallel and a series circuit of a resistor Rc and a DC power source E is connected between the connection point of the resistances Ra, Rb and earth. Herein, if the resistor Rb is made variable to take equilibrium, when the distance from the base terminal to the point X is set to (x) and the total length of each cable is set to L, (x) is calculated from formula I. At this time, the detection of the point X is performed using the resistance generated at the point X by insulating breakdown.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電力ケーブルの事故点を検出する電力り°−
プルの事故点検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention provides a method for detecting fault points in power cables.
The present invention relates to a method for detecting a pull accident point.

(従来技術) 電力ケーブルは、事故が発生ずると、導体と遮蔽層間の
絶縁体がぞの事故点で絶縁破壊され、成る抵抗値をもっ
て導体と遮#1tr4問が短絡され、導体がその事故点
で接地された状態になる。このような事故点の検出を、
従来は抵抗ブリッジ回路を利用したマーレーループ法等
を用いて行っていた。
(Prior art) When an accident occurs in a power cable, the insulator between the conductor and the shielding layer breaks down at the fault point, the conductor and the shield #1tr4 are short-circuited with the resulting resistance value, and the conductor is connected to the fault point. becomes grounded. Detection of such accident points,
Conventionally, this has been done using a Murray loop method using a resistor bridge circuit.

(発明が解決しようとする問題点) しかしながら、絶縁体はその肉厚が大きいので、事故時
における絶縁破壊の状況がその都度大きく異なり、その
結果、事故点における導体と遮蔽層間の抵抗値も事故の
状況に応じて数10MΩ〜数KOと大きく変化し、しか
も抵抗値が不安定のため、事故点の検出が困難となる問
題点があった。
(Problem to be solved by the invention) However, since the thickness of the insulator is large, the situation of dielectric breakdown at the time of an accident differs greatly each time, and as a result, the resistance value between the conductor and the shielding layer at the point of the accident also changes. The resistance value varies greatly from several tens of MΩ to several KO depending on the situation, and the resistance value is unstable, making it difficult to detect the point of failure.

本発明の目的は、事故点の抵抗値を小さくでき、しかも
その抵抗値が従来のように事故の状況に応じて大ぎく変
化することがないようにして事故点の検出を粘度よく行
うことができる電力ケーブルの事故点検出方法を提供す
ることにある。
An object of the present invention is to reduce the resistance value of the accident point, and to detect the accident point with good viscosity by preventing the resistance value from changing significantly depending on the accident situation as in the past. An object of the present invention is to provide a method for detecting a fault point in a power cable.

(問題点を解決するだめの手段) 上記の目的を達成するための本発明の手段を、実施例に
対応する第1図及び第2図を参照して説明すると、本発
明は化カケープル1に第1.第2の遮蔽層6.8を絶縁
薄膜層7を介して相互に接近させて設け、事故発生時に
おける事故点Xでの前記第1.第2の遮蔽層6.8間で
の前記絶縁薄膜層7の絶縁破壊にもとずく抵抗R7を利
用して該事故点Xの検出を行うことを特徴とする。
(Means for Solving the Problems) The means of the present invention for achieving the above object will be explained with reference to FIGS. 1 and 2, which correspond to embodiments. 1st. The second shielding layers 6.8 are provided close to each other via the insulating thin film layer 7, and the first shielding layers 6.8 are provided at the accident point X when an accident occurs. It is characterized in that the fault point X is detected using the resistance R7 based on the dielectric breakdown of the insulating thin film layer 7 between the second shielding layers 6 and 8.

(作用) このように第1.第2の遮蔽ll!i6.8問における
絶縁層11!117の事故点Xでの抵抗R7を利用して
事故点Xの検出を行うと、第1.第2の遮蔽層6.8n
の絶縁FEW膜層7は導体2と第1の遮蔽層6f21]
の絶縁体4に比べて著しく薄いので、抵抗値も小さくな
り、事故点Xの検出精度を上げることができる。
(Effect) In this way, the first. Second shield! When the fault point X is detected using the resistance R7 of the insulating layer 11!117 at the fault point X in question i6.8, the first. Second shielding layer 6.8n
The insulating FEW film layer 7 includes the conductor 2 and the first shielding layer 6f21]
Since it is significantly thinner than the insulator 4, the resistance value is also reduced, and the detection accuracy of the fault point X can be improved.

(実施例) 以下本発明の実施例を図面を参照して詳細に説明する。(Example) Embodiments of the present invention will be described in detail below with reference to the drawings.

本発明では、事故点の検出精度を上げるため、絶縁体の
外周に第1.第2の遮蔽層を設けた化カケープルを用い
る。その−例を第1図にて説明する。この化カケープル
1は、導体2の外周に内部半導1i層3.絶縁体4.外
部半′S電層5゜第1の遮蔽層6.絶縁薄膜層7.第2
の遮蔽H8゜外部絶縁層9.保護シース10が順次同軸
状に設けられた構造になっている。絶縁層膜層7は、例
えば第1の遮蔽層6又は第2の遮蔽層8のラミネートテ
ープ層として薄り(例えば、ポリエチレンの場合で一例
を示すと100〜500μm程度)形成する。
In the present invention, in order to increase the accuracy of detecting the fault point, a first insulator is placed on the outer periphery of the insulator. A chemical caple provided with a second shielding layer is used. An example thereof will be explained with reference to FIG. This chemical capeple 1 has an internal semiconductor layer 3 on the outer circumference of the conductor 2. Insulator 4. External semi-electrical layer 5. First shielding layer 6. Insulating thin film layer7. Second
Shielding H8° external insulating layer 9. It has a structure in which protective sheaths 10 are sequentially provided coaxially. The insulating layer 7 is formed as a laminate tape layer of the first shielding layer 6 or the second shielding layer 8 to be thin (for example, about 100 to 500 μm in the case of polyethylene).

このような化カケープル1の使用中に、成る点Xで線絡
事故が発生した場合に、事故点Xの検出をマーレールー
プ法で行う場合の例について第2図を参照して説明する
。図において、1Aは事故ケーブル、1Bは健全ケーブ
ル、2Aは事故ケーブル1Aの導体、2Bは健全ケーブ
ル1Bの導体、6Aは事故ケーブル1Aの第1の遮蔽層
、6Bは健全タープル1Bの第1の遮蔽層、8Aは事故
ケーブル1Aの第2のm1層、8Bは健全ケーブル1B
の第2の遮蔽層である。
An example of detecting the fault point X using the Murray loop method when a wire shorting fault occurs at a point X during use of such a capacitor 1 will be described with reference to FIG. In the figure, 1A is the accident cable, 1B is the sound cable, 2A is the conductor of the accident cable 1A, 2B is the conductor of the sound cable 1B, 6A is the first shielding layer of the accident cable 1A, and 6B is the first shield layer of the sound cable 1B. Shielding layer, 8A is the second m1 layer of accident cable 1A, 8B is healthy cable 1B
is the second shielding layer.

事故ケーブル1Aは、事故点Xで線絡事故が発生し、そ
の事故点Xで絶縁体4及び絶縁薄WA層7が絶縁破壊し
たとする。この場合、両ケーブル1A、IBの末端di
、d2で両ケーブル1A、1Bの導体2A、2Bの相互
間、第1の遮蔽層6A。
It is assumed that in the accident cable 1A, a wire shorting accident occurs at the accident point X, and the insulator 4 and the thin insulating WA layer 7 break down at the accident point X. In this case, the terminal di of both cables 1A and IB
, d2 between the conductors 2A and 2B of both cables 1A and 1B, and the first shielding layer 6A.

6Bの相互間、第2の遮蔽118A、8B+7)相互間
をそれぞれ短絡接続する。また、これら第1の遮蔽f1
6A、6Bの基端ci、c2間には抵抗Ra。
6B and the second shields 118A and 8B+7) are short-circuited. In addition, these first shields f1
There is a resistance Ra between the base ends ci and c2 of 6A and 6B.

Rbの直列回路とメータGとをそれぞれ並列接続し、抵
抗Ra、 Rbの相互の接続点とアース間には抵抗Rc
と直流11Eとの直列回路を接続する。
The series circuit of Rb and the meter G are connected in parallel, and a resistor Rc is connected between the mutual connection point of resistors Ra and Rb and the ground.
Connect a series circuit of 11E and DC 11E.

このとき直流電源Eのアースは、第2の遮蔽層8Aとア
ース結合する。なお、R4は事故点Xでの絶縁体4の絶
縁破壊により形成された抵抗、R7は事故点Xでの絶縁
薄膜層7の絶縁破壊により形成された抵抗、χは基端か
ら事故点Xまでの距離、LはケーブルIA、IBの各仝
艮である。
At this time, the ground of the DC power supply E is coupled to the second shielding layer 8A. In addition, R4 is the resistance formed by the dielectric breakdown of the insulator 4 at the fault point X, R7 is the resistance formed by the dielectric breakdown of the insulating thin film layer 7 at the fault point X, and χ is the resistance from the base end to the fault point X. , and L is the distance between cables IA and IB.

図示の状態で、抵抗Rbを「程度することによりRa/
Raを調整して平衡をとると、 l’? a / l−< b = (2L−χ)/χZ
=2・Rb−1/(Ra+Rb) より事故点Xまでの距離χを求めることができる。
In the illustrated state, by adjusting the resistance Rb to
If we adjust Ra to achieve equilibrium, l'? a/l−<b=(2L−χ)/χZ
=2.Rb-1/(Ra+Rb) The distance χ to the accident point X can be found.

この場合、事故点Xでの抵抗として、事故ケーブル1A
の事故点Xでの絶縁層膜層7の絶縁破壊による抵抗1<
7を利用しでいるので、従来のような導体2Δと第1の
遮蔽層6A間の絶縁体4の絶縁破壊による抵抗R4に比
べて抵抗値が著しく小さくなり、また抵抗値のバラツキ
も小さくなり、精度よく事故点Xの検出を行うことがで
きる。
In this case, as the resistance at the fault point X, the fault cable 1A
Resistance 1< due to dielectric breakdown of the insulating layer film layer 7 at the accident point X
7, the resistance value is significantly smaller than the conventional resistance R4 due to dielectric breakdown of the insulator 4 between the conductor 2Δ and the first shielding layer 6A, and the variation in resistance value is also reduced. , the accident point X can be detected with high accuracy.

なお、本発明はマーレーループ法以外の公知の方法によ
って事故点Xの検出を(jう方法にも同様に適用できる
ことは勿論である (発明の効果) 以上説明したように本発明では、第1.第2の遮蔽層間
における絶縁薄膜層の絶縁破壊による抵抗値を利用して
事故点の検出を行うので、この抵抗値は絶縁^や膜層が
導体の外周を覆う絶縁体より薄いため、絶縁体の絶縁破
壊による抵抗値に比べて著しく小さくなり、また抵抗値
のバラツキも小さくなり、事故点の検出fa 1.tZ
を上げることができる。更に、本発明では、遮蔽層を利
用して測定を行うので、その抵抗値は導体を利用して測
定を行う場合の導体の抵抗値より高くなり、従ってこの
面でも距離測定精度を向上さけることができる。
It goes without saying that the present invention can be similarly applied to a method of detecting the accident point X using a known method other than the Murray loop method (effects of the invention). .Since the fault point is detected by using the resistance value due to dielectric breakdown of the insulating thin film layer between the second shielding layers, this resistance value is thinner than the insulation^ or the insulator covering the outer periphery of the conductor, so this resistance value is The resistance value is significantly smaller than the resistance value due to dielectric breakdown of the body, and the variation in resistance value is also small, making it possible to detect the fault point fa 1.tZ
can be raised. Furthermore, in the present invention, since measurement is performed using a shielding layer, its resistance value is higher than the resistance value of a conductor when measurement is performed using a conductor. Therefore, it is also possible to improve distance measurement accuracy in this aspect. I can do it.

かつまた、事故点の抵抗値が高くて焼成の必要があると
ぎには、絶縁薄膜層なので焼成エネルギーが少なくてす
む利点がある。
Moreover, when the resistance value at the fault point is high and firing is necessary, the insulating thin film layer has the advantage that less firing energy is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明で使用する電力ケーブルの一例を示す横
断面図、第2図は本発明の方法の実施状態を示1説明図
である。 1・・・電力ケーブル、2・・・導体、4・・・絶縁体
、6・・・第1の遮蔽層、7・・・絶縁源II0層、8
・・・第2の遮蔽層。 第1 図 第2 図
FIG. 1 is a cross-sectional view showing an example of a power cable used in the present invention, and FIG. 2 is an explanatory diagram showing a state in which the method of the present invention is implemented. DESCRIPTION OF SYMBOLS 1... Power cable, 2... Conductor, 4... Insulator, 6... First shielding layer, 7... Insulation source II0 layer, 8
...Second shielding layer. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 電力ケーブルに第1、第2の遮蔽層を絶縁薄膜層を介し
て相互に接近させて設け、事故発生時における事故点で
の前記第1、第2の遮蔽層間での前記絶縁薄膜層の絶縁
破壊にもとずく抵抗を利用して該事故点の検出を行うこ
とを特徴とする電力ケーブルの事故点検出方法。
A power cable is provided with first and second shielding layers close to each other via an insulating thin film layer, and the insulating thin film layer is insulated between the first and second shielding layers at the accident point when an accident occurs. A method for detecting a fault point in a power cable, characterized in that the fault point is detected using resistance based on destruction.
JP7413186A 1986-04-02 1986-04-02 Power cable accident point detection method Expired - Lifetime JPH0680434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7413186A JPH0680434B2 (en) 1986-04-02 1986-04-02 Power cable accident point detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7413186A JPH0680434B2 (en) 1986-04-02 1986-04-02 Power cable accident point detection method

Publications (2)

Publication Number Publication Date
JPS62232579A true JPS62232579A (en) 1987-10-13
JPH0680434B2 JPH0680434B2 (en) 1994-10-12

Family

ID=13538327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7413186A Expired - Lifetime JPH0680434B2 (en) 1986-04-02 1986-04-02 Power cable accident point detection method

Country Status (1)

Country Link
JP (1) JPH0680434B2 (en)

Also Published As

Publication number Publication date
JPH0680434B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
JPS61243375A (en) Deterioration diagnosis for insulator of power cable
US2333532A (en) Insulation testing equipment
JPS62232579A (en) Method for detecting accident point of power cable
JPH07260870A (en) Method for measuring dc leak current of power cable
JPH0565112B2 (en)
JPS63281073A (en) Detecting method for water tree current of cv cable
JPH062518U (en) Power cable with tree detector
JPH11133096A (en) Cable end sealing part abnormality monitor
JPH02156171A (en) Insulation measuring apparatus
JP2750888B2 (en) Power cable insulation resistance measurement method
JPH1078472A (en) Method for diagnosing deterioration of cv cable
JPH02156173A (en) Insulation measuring apparatus
JPH0231881Y2 (en)
JPH03111775A (en) Water-tree-current detecting apparatus for cv cable
JPS59152604A (en) Quenching detection system of superconductive coil
JP2504237B2 (en) Partial discharge measurement method
JPH067150B2 (en) Partial discharge measurement method
JPS5827250Y2 (en) flame detection device
JPS5879763A (en) Optical trigger thyristor
JPH05322964A (en) Device for measuring insulation deterioration of power cable
JPS5933803A (en) Sensor for detecting quenching of superconductive coil
JPH09236630A (en) Partial discharge measurement method
JPS60225074A (en) Partial discharge measuring apparatus of power cable
JPH03252567A (en) Partial discharge measuring instrument
JPS582333B2 (en) flame detection device