JPS62231904A - Optical transmission hose - Google Patents

Optical transmission hose

Info

Publication number
JPS62231904A
JPS62231904A JP61072494A JP7249486A JPS62231904A JP S62231904 A JPS62231904 A JP S62231904A JP 61072494 A JP61072494 A JP 61072494A JP 7249486 A JP7249486 A JP 7249486A JP S62231904 A JPS62231904 A JP S62231904A
Authority
JP
Japan
Prior art keywords
hose
optical transmission
light
transmission
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61072494A
Other languages
Japanese (ja)
Other versions
JP2521710B2 (en
Inventor
Koichi Ishimi
石見 公一
Toshio Naito
内藤 壽夫
Toshio Honda
壽男 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP61072494A priority Critical patent/JP2521710B2/en
Publication of JPS62231904A publication Critical patent/JPS62231904A/en
Application granted granted Critical
Publication of JP2521710B2 publication Critical patent/JP2521710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/032Optical fibres with cladding with or without a coating with non solid core or cladding

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

PURPOSE:To improve the transmission efficiency of light and to enable optical large-capacity and intermediate-distance transmission by setting the surface roughness (Ra representation) of the internal wall surface of a hose below a specific value. CONSTITUTION:The surface roughness (Ra representation) of the internal wall surface 2 of the hose 1 is set to <=0.030mu. The material of a sealed hose body 1 wherein an optical transmission medium 5 is held has a refractive index n2 to the wavelength of transmitted light preferably smaller than the refractive index n1 of the material. This condition need not be satisfied to the overall thickness of the sealed hose 1 and the properties of the internal wall 2 coming into contact with the optical transmission medium 5 are specially important factors. Plastics and elastomer are usable as the material of the sealed hose 1, but thermoplastic resin and elastomer which are flexible and can be molded in a tube shape are specially preferable.

Description

【発明の詳細な説明】 (産業上の利用分野) 異なる屈折率の2種の物質の界面における全反射を利用
して、ルを伝送するシステムは、光通信用途、内視鏡等
のイメージガイドや紫外・可視・赤外各種波長光のライ
トガイド等として産業分野や医療分野等で、広く利用さ
れている。
[Detailed Description of the Invention] (Industrial Application Field) A system that transmits light by utilizing total reflection at the interface between two types of materials with different refractive indexes is used for optical communication purposes, image guides in endoscopes, etc. It is widely used in the industrial and medical fields as a light guide for various wavelengths of light such as ultraviolet, visible, and infrared light.

元の伝送形態面から、これらの特徴をみた場合、光通信
用途は微弱容量光の長距離伝送、イメージガイドとライ
トガイドは、小〜中容量光の短距離伝送としてそれぞれ
分類される。
Looking at these characteristics from the perspective of the original transmission form, optical communication applications are classified as long-distance transmission of weak capacity light, and image guides and light guides are classified as short-distance transmission of small to medium capacity light.

最近これら従来のタイプ方式とは異なる光伝送方式が、
海洋の豊度化を狙いとした海洋牧場構想や都心の生活環
境のよシー膚の快適化を目的としたマンション等の住宅
関連における元利用システム構想等において必要となっ
てきている。
Recently, optical transmission methods different from these conventional types have been developed.
This is becoming necessary in the concept of marine ranches aimed at enriching the ocean, and the concept of ex-utilization systems for housing such as condominiums aimed at making the living environment in the city more comfortable.

ここで必要とされる伝送距離は30m〜100mと中距
離であシ、また必要とされる伝送元量は極めて大きい容
量である。
The transmission distance required here is a medium distance of 30 m to 100 m, and the required transmission source capacity is extremely large.

この観点からこの種の光伝送方式は大容量光・中距離伝
送方式と呼はれるもので、従来の光伝送方式とは全く異
なるタイプのものである。
From this point of view, this type of optical transmission system is called a large-capacity optical medium-distance transmission system, and is of a completely different type from conventional optical transmission systems.

この大容量光・中距離伝送方式の満たすべき具体的要件
は、経済的に大容量の光伝送が可能でちり、かつ伝送距
離的、30mにおける光の減衰割合いが、入射光の1/
1〜1150であることの2点に要約される。
The specific requirements that this large-capacity optical medium-distance transmission method must meet are that it is economically possible to transmit large-capacity light, that it is dust-free, and that the attenuation rate of light at 30 m is 1/1/2 of the incident light.
It can be summarized in two points: 1 to 1150.

(本発明が解決しようとする問題点) 従来の光伝送システムとしては、石英ファイバー系、光
学硝子系、グラスチックファイバー系と液体系が公知で
あるがこの観点からみた場合、残念ながら満足すべき系
は現在まだ見出されていない。
(Problems to be Solved by the Present Invention) As conventional optical transmission systems, quartz fiber systems, optical glass systems, glass fiber systems, and liquid systems are known, but from this point of view, unfortunately, they are not satisfactory. The system has not yet been discovered.

即ち石英ファイバー系は優れた特性は有するものの可撓
性には限界があり、又大容貴光伝送のための大口径化に
は、直径10〜200^程度のファイバーを多数束ねる
必要がある。また如何に高密度に束ねてもファイバー間
には空隙が残るので効率が悪い。また石英系ファイバー
系は比較的高価であり比重も高いのでコスト面での離点
がある。
That is, although the quartz fiber system has excellent properties, its flexibility is limited, and in order to increase the diameter for large-capacity transmission of precious light, it is necessary to bundle a large number of fibers with a diameter of about 10 to 200^. Furthermore, no matter how densely the fibers are bundled, voids remain between the fibers, resulting in poor efficiency. In addition, quartz fibers are relatively expensive and have a high specific gravity, so there is a disadvantage in terms of cost.

加えて特性面では石英ファイバー系は長波長赤外域(2
,5μ以上)では10’dB/km以上の高損失を示し
、この波長領域では光伝送体としての価値は低い。また
プラスチックファイバー系は石英ファイバー系に比較し
柔軟性であることやよシ安価なたメ、短距離通信、ディ
スプレーやファイバースコープ等に応用されているが、
反面耐熱性や元の伝送効率が石英系に比べて大巾に劣る
。加えて大口径化にあたり、多数のファイバーを束ねる
必要性がある点では石英ファイバー系と何等変シがない
In addition, in terms of characteristics, the quartz fiber system has excellent properties in the long wavelength infrared region (2
, 5μ or more), it shows a high loss of 10'dB/km or more, and its value as an optical transmission medium is low in this wavelength range. In addition, plastic fibers are more flexible and cheaper than quartz fibers, and are used in short-distance communications, displays, fiberscopes, etc.
On the other hand, its heat resistance and original transmission efficiency are significantly inferior to quartz-based materials. In addition, it is no different from quartz fiber systems in that it is necessary to bundle a large number of fibers when increasing the diameter.

光学硝子系は安価なライトガイドとしてのメリットはあ
るが伝送損失が大きいため、短距離伝送用途に限定され
るはかシでなく、大口径化にあたシ多数のファイバーを
束ねる必要がある点では前2者のタイプと全く同様の欠
点を有している。
Optical glass systems have the advantage of being inexpensive light guides, but they have large transmission losses, so they are not limited to short-distance transmission applications, and require a large number of fibers to be bundled in order to increase the diameter. This type has exactly the same drawbacks as the former two types.

液体系は中空のチューブ内に液体を充填したシステムで
あシ、大口径化は容易であシ、この特徴を生かして紫外
線硬化型の樹脂を硬化きせるための紫外光のガイドとし
て利用されているが、従来のものは元の伝送損失が大き
く、短距離伝送用に使用が限定式れているのが現状であ
る。
A liquid system is a system in which a hollow tube is filled with liquid, and it is easy to increase the diameter. Taking advantage of this feature, it is used as a guide for ultraviolet light to cure ultraviolet curing resin. However, conventional methods have a large original transmission loss, and their use is currently limited to short-distance transmission.

(間組点を解決するための手段) 上記の観点から、本発明者叫は、鋭意研究の結果、常温
で液状の光伝送用媒体と、これを封入するための可撓性
材料よシなるホースとから構成した光伝送体において、
ホース内壁面の粗さが、元の伝送効率に大きい効果があ
ることを突き止め、本発明を完成するに至った。即ち本
発明は常温で液状の物質を光伝送媒体とし、該媒体と、
これを封入するための可撓性材料よシなるホースとから
構成した光伝送体において、該ホースの内壁面の表面粗
さく Ra表示)を0.030μ以下としたことを特徴
とする光伝送ホースに関するものである。
(Means for solving the problem of interlacing points) From the above point of view, the inventors of the present invention, as a result of intensive research, have developed an optical transmission medium that is liquid at room temperature, and a hose made of a flexible material for enclosing the medium. In an optical transmission body composed of
It was discovered that the roughness of the inner wall surface of the hose has a large effect on the original transmission efficiency, and the present invention was completed. That is, the present invention uses a substance that is liquid at room temperature as an optical transmission medium, and the medium and
An optical transmission body composed of a flexible material and a hose for enclosing the optical transmission body, characterized in that the inner wall surface of the hose has a surface roughness (expressed as Ra) of 0.030μ or less. It is related to.

以下に本発明による光伝送ホースに就いて実施た。図1
において1は封入ホース本体、2は封入ホースの内壁、
3は封入ホースの外壁、4は保護被覆層、5は光伝送媒
体、6は末端封止栓、7は末端封止栓の内壁、8は末端
封止栓の外壁、9は保論口金である。
The following tests were conducted on the optical transmission hose according to the present invention. Figure 1
1 is the enclosed hose body, 2 is the inner wall of the enclosed hose,
3 is the outer wall of the sealed hose, 4 is the protective coating layer, 5 is the optical transmission medium, 6 is the end sealing plug, 7 is the inner wall of the end sealing plug, 8 is the outer wall of the end sealing plug, 9 is the base cap. be.

光伝送媒体5を保持する封入ホース本体lの材料は裁送
光の波長に対するその屈折率n2が媒体の屈折′4n1
より小さいことが望ましい。ただこのことは必ずしも封
入ホース1の全厚さ方向にわたって必要ではなく、光伝
送媒体5に接する内壁2の性質が特に重要な因子として
作用する。
The material of the enclosed hose body l holding the optical transmission medium 5 has a refractive index n2 with respect to the wavelength of the transmitted light equal to the refraction of the medium '4n1
Smaller is desirable. However, this is not necessarily necessary throughout the entire thickness of the enclosed hose 1, and the nature of the inner wall 2 in contact with the optical transmission medium 5 acts as a particularly important factor.

封入ホース1の材質としてはプラスチックスやニジスト
マーがあけられるが、可撓性を有しかつ、チューブ状に
成型可能な熱可塑性樹脂やエラストマーが特に好ましい
The material for the enclosed hose 1 may be plastics or nystomers, but thermoplastic resins or elastomers are particularly preferred because they are flexible and can be molded into a tube shape.

その具体例としては、Iリエチレン、ポリプロピレン、
Iリエステル、ポリアミド、シリコンゴム、天然ゴム、
合成ポリイソプレンゴム、ポリプタゾエンゴム、スチレ
ン−ゲタジエン共重合体、EPDM、7”チルがム、ハ
ロrン化プチルコ0ム、クロロプレンゴム、アクリロニ
トリル−ブタジェン共重合体、ハロダン化ポリエチレン
、?リアクリロニトリル、アクリロニトリル−メチルメ
タクリレート共重合体、ポリスチレン、アクリロニトリ
ルスチレン共重合体、ABS 、スチレン−メタクリル
酸メチル共重合体、ポリメタクリル酸メチル、セルロー
ズアセテート、Iリアリレート、Iリカーゲネート、I
り塩化ビニル、Iり塩化ビニリデン、ポリ酢酸ビニルア
イオノマー、エチレン−エチルアクリレート共重合体、
ポリメチルインテン、ポリフルオロイングロビルメタク
リレート、ポリジメチルシロキサン、ポリ酢酸ビニル、
?リテトラフルオロエチレン、ポリアセタール、ポリフ
ッ化ビニル1,1+7フツ化ビニリデン、ポリトリフロ
ロエチレン、ポリフロルトリフミロエチレン、四フフ化
エチレンー六フフ化プロピレン共重合体、四フフ化エチ
レンーパーフルオロアルコキシェチレン共重合体、四フ
ッ化エチレンーエチレン共重合体、ビニリデンフルオラ
イド−へキサフルオロプロピレン共重合体等があけられ
る。中でも低屈折率のものがよシ好ましい材料であシ、
この点では高フツ素含有率のポリマーやシリコン系ポリ
マーが特に優れている。これらのポリマーは、単体又は
ブレンド物として用いられる。また伝送媒体に接する表
面のみを処理したものも用いられる。また用途によシ伝
送体の可撓性が重要視されない場合には、硝子、石英、
アルミナ、マグネシアやチタニア、等のセラミックスや
アルミ、ステンレスや銅等の金属のパイプの伝送媒体と
接触する内表面の粗さを条件を満たすように処理したも
のも使用可能である。
Specific examples include I-lyethylene, polypropylene,
I-lyester, polyamide, silicone rubber, natural rubber,
Synthetic polyisoprene rubber, polyptazoene rubber, styrene-getadiene copolymer, EPDM, 7" chillam, halonized butyl copolymer, chloroprene rubber, acrylonitrile-butadiene copolymer, halodanated polyethylene, ?-reacrylonitrile , acrylonitrile-methyl methacrylate copolymer, polystyrene, acrylonitrile styrene copolymer, ABS, styrene-methyl methacrylate copolymer, polymethyl methacrylate, cellulose acetate, I realylate, I licargenate, I
polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate ionomer, ethylene-ethyl acrylate copolymer,
Polymethylintene, polyfluoroinglovyl methacrylate, polydimethylsiloxane, polyvinyl acetate,
? Ritetrafluoroethylene, polyacetal, polyvinyl fluoride 1,1+7 vinylidene fluoride, polytrifluoroethylene, polyfluorotrifumyloethylene, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-perfluoroalkoxyshetylene Examples include copolymers, tetrafluoroethylene-ethylene copolymers, vinylidene fluoride-hexafluoropropylene copolymers, and the like. Among these, materials with low refractive index are particularly preferred.
In this respect, polymers with high fluorine content and silicone polymers are particularly excellent. These polymers can be used alone or as a blend. Also used are those in which only the surface in contact with the transmission medium is treated. In addition, if the flexibility of the transmitter is not important depending on the application, glass, quartz,
It is also possible to use ceramic pipes such as alumina, magnesia, and titania, and metal pipes such as aluminum, stainless steel, and copper, which have been treated to meet the roughness requirements on the inner surface that comes into contact with the transmission medium.

本発明者等は伝送媒体の封入パイプの内壁2につき本発
明の急所の一つである重要な発見に到達した。
The inventors have made an important discovery regarding the inner wall 2 of the pipe containing the transmission medium, which is one of the key points of the present invention.

即ち触針式表面粗さ計で測定したF/′(壁の表面粗さ
をRa表示で0.OHμ以下とすることによシ我々のヨ
6 目的とする中距離伝送が可能であることを見出した。
In other words, by making the surface roughness of the wall F/' (Ra) measured with a stylus surface roughness meter less than 0.OHμ, it is possible to achieve the desired medium-distance transmission. I found it.

ここでいうRa値とは汎く使用されている表面粗さの表
示法で、波形の中心線から測定した波形プロフィールの
偏差値の幾可平均である。我々はこの測定をTATLO
R−HOBSON社の触針式表面粗さ計によシ行った。
The Ra value here is a widely used method of expressing surface roughness, and is the geometric average of the deviation values of a waveform profile measured from the center line of the waveform. We TATLO this measurement
The measurement was carried out using a stylus type surface roughness meter manufactured by R-HOBSON.

次に被覆t?14は用途によりては不要であるが、外傷
や高温・高湿からの保護やホースの曲けにょるキンク防
止等の目的で設けられる。例示としては、金属・プラス
チック蛇腹管、ラセン状スプリング、カーボンファイバ
ー、有機や無機繊維の織物、例えば、レーヨン、ナイロ
ン、ビニロン、ポリエステル、石綿、グラス等のスパイ
ラル巻き、補強層入シゴム、プラスチック等の手段が講
じられる。
Next is the coating t? 14 is not necessary depending on the application, but is provided for the purpose of protecting the hose from external damage, high temperature and high humidity, and preventing kinks caused by bending the hose. Examples include metal/plastic bellows tubes, helical springs, carbon fibers, organic and inorganic fiber fabrics, spirally wound materials such as rayon, nylon, vinylon, polyester, asbestos, glass, etc., reinforcing layered rubber, plastics, etc. Measures will be taken.

なお図1では示さなかったが、内管材を2重管又は多重
管とし、これを単独又は上記の被覆層との組み合わせで
使用することも可能である。
Although not shown in FIG. 1, the inner tube material may be a double tube or multiple tubes, and this may be used alone or in combination with the above-mentioned coating layer.

2重管の外管部の材質としてはグラスチックスやエラス
トマーが一般には用いられる。
Glasstics and elastomers are generally used as the material for the outer tube portion of the double tube.

次に光伝送媒体5について説明する。Next, the optical transmission medium 5 will be explained.

均質で、かつ不純物を可及的に含まない伝送媒体におい
ては、各媒体は元の波長に対し、それぞれ特有の易透過
性波長領域を有している。即ち、媒体の種類によりこの
易透過性波長領域の狭いものもあるし、また広いものも
ある。どの種類の伝送媒体を採用するかは、使用目的に
応じて決める必要がある。
In a transmission medium that is homogeneous and contains as few impurities as possible, each medium has its own unique easily transmittable wavelength region with respect to the original wavelength. That is, depending on the type of medium, some have a narrow wavelength range and others have a wide wavelength range. It is necessary to decide which type of transmission medium to use depending on the purpose of use.

本発明に用いられる光伝送媒体としては、使用温度下で
液体(1〜10 センチポアズ)であればよい。その具
体例としては、無機塩の水溶液、エチレングリコールや
グリセリン等の多価アルコール、ジメチルシロキサンを
はじめとするシリコーン油、ポリニーカル、ポリエステ
ル、流動ノ母ラフイン等の炭化水素、ハロゲン化炭化水
素やポリマーを適当な溶媒で希釈したポリマー溶液があ
げられる。特に広い易透過性波長範囲を必要とする場合
には炭素とハロゲン元素又はこれに更に酸素を含有して
いる一般式(1)〜(XIV)で示される化合物が適し
ている。
The optical transmission medium used in the present invention may be a liquid (1 to 10 centipoise) at the operating temperature. Specific examples include aqueous solutions of inorganic salts, polyhydric alcohols such as ethylene glycol and glycerin, silicone oils such as dimethylsiloxane, hydrocarbons such as polynical, polyester, and fluidized rough-in, halogenated hydrocarbons, and polymers. Examples include polymer solutions diluted with appropriate solvents. In particular, when a wide easily transmittable wavelength range is required, compounds represented by general formulas (1) to (XIV) containing carbon and a halogen element or further oxygen are suitable.

2X2X4 一般式(1)〜(Vl)、において、X1〜X8はすべ
て同種又は異種のハロゲン元素であってもよく、また一
部が他の元素や置換基、例えば水素、アルキル基やアル
コキシ基等で置換されたものであってもよい。この具体
例としてはノクロロメタン、トリブロモモノフロロメタ
ン、ノプロモモノフロロメタン、テトラクロロ−1,2
−ノフロロエタン、1.1.2− )リクロロトリフロ
ロエタン、1,1.1−トリクロロトリフロロエタン、
 1,1.1.2−テトラクロロモノフロロエタン、1
.2−フクロロー1.2−シフロロエタン、1−クロロ
−2,2−ジフロロエタン、1.1−ジクロロジフロロ
エチレン、 1,1.2.2−テトラクロロテトラフロ
ロシクロブタンや1.2.2−トリクロロ−3,3,4
,4−テトラフロロシクロブタン等をあけることができ
る。
2X2X4 In general formulas (1) to (Vl), X1 to X8 may all be the same or different halogen elements, or some may be other elements or substituents, such as hydrogen, alkyl groups, alkoxy groups, etc. It may be replaced with . Specific examples include nochloromethane, tribromomonofluoromethane, nopromomonofluoromethane, tetrachloro-1,2
-nofluoroethane, 1.1.2-)lichlorotrifluoroethane, 1,1.1-trichlorotrifluoroethane,
1,1.1.2-tetrachloromonofluoroethane, 1
.. 2-fuchloro-1,2-cyfluoroethane, 1-chloro-2,2-difluoroethane, 1,1-dichlorodifluoroethylene, 1,1.2.2-tetrachlorotetrafluorocyclobutane and 1.2.2-trichloro- 3, 3, 4
, 4-tetrafluorocyclobutane, etc.

また、テトラフロロエチレンの多量体、ヘキサフロロプ
ロピレンの多量体や下記の一般式(■)〜(XIV)で
水式れる重合体があけられる。
Also available are tetrafluoroethylene polymers, hexafluoropropylene polymers, and polymers represented by the following general formulas (■) to (XIV).

一般式(■)〜(X■)VCオイテ、X1〜X、4はす
べて同種又はA fitのハロrン元素でありてもよく
、また一部が他の元素や置換基、例えば、水素、水酸基
、アルキル基、フェニル基、アルコキシ基、カルMキシ
ル基、エステル基やアミド基等で置換アルキル基、フェ
ニル基や多環式炭化水素基等の二価の残基を示す。n、
〜ガは任意の正の整数を水気qO す。その具体例としては、三7ツ化−塩化エチレン重合
体、メフッ化二塩化エチレン重合体、1,1ニ 一二フフ化エチレン重合体、1,2−ニフッ化エチレン
重合体、−フッ化エチレン重合体、六7ツ化7’ o 
ヒv yH体ヤノe−フルオロアルキル−リエーテル等
があげられる。
General formulas (■) to (X■) VC elements, X1 to X, and 4 may all be the same type or A fit halo element, or some may contain other elements or substituents, such as hydrogen, It represents a divalent residue such as an alkyl group substituted with a hydroxyl group, an alkyl group, a phenyl group, an alkoxy group, a CalM xyl group, an ester group, an amide group, etc., a phenyl group, or a polycyclic hydrocarbon group. n,
~ moth represents any positive integer as water qO. Specific examples thereof include 37t-chlorinated ethylene polymer, mefluorinated ethylene dichloride polymer, 1,1 di-difluorinated ethylene polymer, 1,2-difluorinated ethylene polymer, and fluorinated ethylene polymer. Polymer, hexagonalized 7'o
Examples include yH-yano e-fluoroalkyl riether.

また、これら重合体の混合物でもよいし、上記重合体の
ペースモノマーの共重合体でもよい。1九上述の物質群
において水素の一部又は全部が重水素でjη侠されてい
ても良い。
Further, it may be a mixture of these polymers or a copolymer of a pace monomer of the above polymers. 19. In the above-mentioned substance group, part or all of the hydrogen may be replaced by deuterium.

我々はこれら光伝送媒体に対し光学的純度指数という尺
度を導入規定した。即ちがミや埃を含む低純度の伝送媒
体においては、これらコ0ミや埃が光の散乱点となシ伝
送効率を低下させることは周知である。然しなからある
種の媒体においては高精度の口過技術によってもその見
掛上の透明感にも拘わらず光伝達損失が極めて大きいこ
とを突き止めた。
We have introduced and defined a measure called optical purity index for these optical transmission media. That is, it is well known that in a low-purity transmission medium containing dirt and dust, these dirt and dust become light scattering points and reduce transmission efficiency. However, it has been found that, despite the apparent transparency of certain types of media, even when using high-precision filtering techniques, the optical transmission loss is extremely large.

なお、この種の伝送媒体では、液体の側面より、出力1
mWのH・ハeレーザー光を入射したときK。
In addition, in this type of transmission medium, the output 1
K when mW H/Ha laser light is incident.

ゴミや埃と同様な散乱点を有していることが判った。It was found that it had scattering points similar to dirt and dust.

ま六一方、伝送効率の良好な伝送媒体ではこの様な散乱
点は極めて微少であることも明かになり九これらの知見
をベースに検討を重ねた結果光学的純度指数が0.6以
上であることが光伝送媒体として特に望ましいことを見
出した。
On the other hand, it has become clear that in a transmission medium with good transmission efficiency, such scattering points are extremely small.9 As a result of repeated studies based on these findings, we found that the optical purity index is 0.6 or higher. We have found that certain things are particularly desirable as optical transmission media.

ここで光学的純度指数とけ、出力1mWのHe/N e
レーザー光を媒体の側面から入射し、光路中に認められ
る輝点を写真撮影した時の光路面積から輝点面積を差し
引いた値の光路面積に対する割合で示される。例えば光
路面積1に対し輝点面積が0.5の場合の光学的純度指
数は0.5となる。
Here, the optical purity index is solved, He/N e with an output of 1 mW.
It is expressed as the ratio of the value obtained by subtracting the bright spot area from the light path area to the optical path area when a laser beam is incident on the side of the medium and a bright spot found in the optical path is photographed. For example, when the bright spot area is 0.5 for an optical path area of 1, the optical purity index is 0.5.

なシ、実際に計測する場合にはレーザー光を上下に走査
することによシ光路面積は増大するのでよシ正確力測定
が可能となる。
In actual measurement, by scanning the laser beam up and down, the optical path area increases, making it possible to measure the force more accurately.

また計測すべき輝点は明瞭なものに限定し、曖昧な儂は
除外する必要がある。その理由は容器壁からの反射に基
く再帰照射光が不明瞭な輝点を発生させることがあるた
めである。
In addition, it is necessary to limit the bright spots to be measured to those that are clear, and to exclude those that are ambiguous. The reason for this is that retro-irradiation light based on reflection from the container wall may generate unclear bright spots.

次に末端封止栓、6について説明する。Next, the end sealing plug 6 will be explained.

ホース両端の封止栓6は伝送媒体の保持のため設けられ
る。この形状は液の漏れを防ぐため、各種の工夫、例え
ばチューブ内径よりやや大きく設計する、ヒートシール
する、0リングと組み合せる等の手段が講じられる。こ
の封止栓の材料は伝送光の波長に対し透過性の良いこと
は勿論のことであるが、その内壁7で接触する伝送媒体
とべ化学的に反応しないこと、更には、その外壁8で触
れる大気中のガスや水分等とも化学的に安定であること
が必要である。この封止栓用材料の具体例としては、熔
融石英、ホウ酸硝子、フリント硝子、クラウン硝子、ソ
ーダ硝子、カルコグナイト系硝子、弗化物系硝子、フッ
化リチウム、フッ化ナトリウム、フッ化カルシウム、フ
ッ化−バリウム、塩化ナトリウム、塩化カルシウム、塩
化カリウム、臭化タリウム、沃化カリウム、KH2−5
、KH2−6゜サファイア、氷晶、マグネシア、チタニ
ア、アルミナ、硅素、ゲルマニウム、ポリスチレン(含
ハイインパクト)、アクリロニトリルスチレン共重合体
、AES、スチレンマレイン酸共重合樹脂、メチルメタ
クリレートスチレン共重合樹脂、スチレン無水マレイン
酸系樹脂、メタクリル系樹脂、セルロースアセテート、
ポリエステルカーゴネート、ポリエステル、ポリメチル
ペンテン、ボリアリレート、yl!’)エーテルサルフ
ォン、ポリ:r−−fルエーテルケトン、ポリカーゴネ
ート、ナイロン、ポリスルフォン等があげられ、使用目
的や条件等を考慮して、材料単体での使用に加えて、複
層又は表面処理等の手段も講じられる。
Sealing plugs 6 at both ends of the hose are provided to retain the transmission medium. In order to prevent this shape from leaking, various measures are taken, such as designing it to be slightly larger than the inner diameter of the tube, heat-sealing it, and combining it with an O-ring. It goes without saying that the material of this sealing plug has good transparency for the wavelength of the transmitted light, but also that it does not chemically react with the transmission medium that comes into contact with the inner wall 7, and that it does not chemically react with the transmission medium that comes into contact with the outer wall 8. It is necessary to be chemically stable against gases, moisture, etc. in the atmosphere. Specific examples of the sealing material include fused silica, borate glass, flint glass, crown glass, soda glass, chalcognitic glass, fluoride glass, lithium fluoride, sodium fluoride, calcium fluoride, and fluoride glass. Barium chloride, sodium chloride, calcium chloride, potassium chloride, thallium bromide, potassium iodide, KH2-5
, KH2-6° sapphire, ice crystal, magnesia, titania, alumina, silicon, germanium, polystyrene (including high impact), acrylonitrile styrene copolymer, AES, styrene maleic acid copolymer resin, methyl methacrylate styrene copolymer resin, styrene Maleic anhydride resin, methacrylic resin, cellulose acetate,
Polyester Cargonate, Polyester, Polymethylpentene, Polyarylate, yl! ') Ether sulfone, poly:r--f ether ketone, polycargonate, nylon, polysulfone, etc., and depending on the purpose and conditions of use, in addition to the use of single materials, multilayer or Measures such as surface treatment may also be taken.

また、内、外壁7,8は、良く研磨され、必要に応じて
反射防止膜や保護膜等を設けるなどの手段を施しても良
い。この反射防止膜はその要求特性を支配する設計ファ
クターとして、その屈折率nはn ” F 、膜厚dは
d = J/4nで与えられる。
In addition, the inner and outer walls 7 and 8 may be well polished and may be provided with an anti-reflection film, a protective film, etc., if necessary. The design factors governing the required characteristics of this antireflection film are that its refractive index n is given by n''F, and its film thickness d is given by d=J/4n.

ここでngは封止栓材質の屈折率で、λは光の波長であ
る。特に広範囲の波長を含む光の反射用としては、多層
コーティングがよシ好ましい。反射防止膜用材料例とし
ては氷晶石、フッ化マグネシウム、フッ化トリウム、フ
ッ化セリウム、−酸化シリコン、ジルコニア、硫化亜鉛
、チタニア、二酸化セリウム、ダルマニウムやテルル化
銅等があり、通常CVD、真空蒸着、イオンブレーティ
ングやスパッタ法等を用いて作製される。
Here, ng is the refractive index of the sealing plug material, and λ is the wavelength of light. Multilayer coatings are particularly preferred for reflecting light containing a wide range of wavelengths. Examples of materials for antireflection coatings include cryolite, magnesium fluoride, thorium fluoride, cerium fluoride, -silicon oxide, zirconia, zinc sulfide, titania, cerium dioxide, dalmanium, and copper telluride. , vacuum evaporation, ion blating, sputtering, etc.

保護金具9はホース末端の保護、加締や他の機器やホー
ス同志間の接続等の目的で設けられるもので、金属やプ
ラスチック等からなり、ホース本体との間にQ IJソ
ングを設けたり或はそれ自体にネジ溝等を設ける等の手
段を講することも出来る。
The protective fitting 9 is provided for the purpose of protecting the end of the hose, crimping it, and connecting other equipment and hoses, and is made of metal, plastic, etc., and may be provided with a QIJ song between the hose body or It is also possible to take measures such as providing a thread groove or the like in the material itself.

またこのホースの末端封止口には必要あればレンズやフ
ィルター等を設けることもできる。
Further, a lens, filter, etc. can be provided at the end sealing port of this hose if necessary.

(実施例) 以下、実施例によシ本発明をより具体的に説明する。(Example) Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 内径5φ、外径6φ、長さ3m内壁面の表面粗さRa 
= 0.015μの四弗化エチレン−六弗化プロピレン
共重合体(屈折率nn=1.338 )の円形チューブ
に純度指数=0.95の流動Aラフインを充填した後、
外径5φ、長さ30mmの石英ロンドによシ両端を封止
し光伝送偉人を作製した。
Example 1 Inner diameter 5φ, outer diameter 6φ, length 3m Surface roughness Ra of inner wall surface
After filling a circular tube of tetrafluoroethylene-hexafluoropropylene copolymer (refractive index nn = 1.338) with = 0.015μ with Flow A rough-in with purity index = 0.95,
A light transmission device was fabricated by sealing both ends of the quartz iron with an outer diameter of 5φ and a length of 30 mm.

次に同一の内、外径で、長さ9mのチューブを用い、同
様にして光伝送体Bを作製した。
Next, an optical transmission body B was produced in the same manner using a tube having the same inner and outer diameters and a length of 9 m.

図甲2はこれら光伝送体A、Bを用い光伝送損失(dB
/m)を測定する方法を説明したもので、1は、白色光
源としてのノ・口rンランプであシ、これを2の銀干渉
フィルター(東芝製KL40〜KL8Q)にて、特定波
長成分光を取り出し、3の光伝送偉人を通過させた。な
お図中の3−1は伝送媒体、3−2は封入用本体、3−
3及び3−3′は末端封止栓である。光伝送体を通過さ
せた光は4の光/ノtワーメーター(カンタムエレクト
ロニクス社製22XLA、センサーヘッド400)にて
、dBm表示で計測した。同様手順を光伝送体Bについ
ても行った。いまある特定波長成分の光伝送体A、及び
Bにおける計測値をX、 、 X、とすればこの波長に
おける光伝送損失は となる。但しここでり、l Llはそれぞれ伝送体A。
Figure A2 shows the optical transmission loss (dB) using these optical transmission bodies A and B.
/m), 1 is a white lamp as a white light source, and 2 is a silver interference filter (Toshiba KL40 to KL8Q) to measure specific wavelength component light. I took it out and passed it through 3's optical transmission great man. In the figure, 3-1 is the transmission medium, 3-2 is the enclosure body, and 3-
3 and 3-3' are end sealing plugs. The light that passed through the optical transmission body was measured in dBm using a 4-light/notor meter (22XLA, sensor head 400 manufactured by Quantum Electronics). The same procedure was performed for optical transmission body B as well. If the measured values of the specific wavelength component in the optical transmission bodies A and B are X, , X, then the optical transmission loss at this wavelength is. However, here, l and l are respectively transmitting bodies A.

Bの長さを示す。Indicates the length of B.

結果は図3に示す通りである。この結果から流動・母ラ
フインを光伝送媒体とする光伝送ホースでは波長550
wm近辺に易透過性波長領域を有することが判る。
The results are shown in FIG. From this result, the wavelength of 550 is
It can be seen that there is an easily transmittable wavelength region near wm.

実施例2 伝送媒体を流動A?ラフインから純度指数0.90の三
フッ化−塩化ポリエチレンオリゴマ−(粘度10〜30
センチポアズ(25℃)、屈折率nO== 1.40 
)を用いた以外は実施例1と全く同様にして波長に対す
る伝送ロスを測定した。結果を図4の中の実施例2に示
す。この結果から、この系では易透過性波長領域が著し
く広<400?nm〜−う8005mと可視光全域にわ
たり良く光を透過させることが判る。
Example 2 Is the transmission medium flowing A? Trifluoride-chlorinated polyethylene oligomer with a purity index of 0.90 (viscosity 10-30
Centipoise (25℃), refractive index nO== 1.40
) was used, but the transmission loss with respect to wavelength was measured in exactly the same manner as in Example 1. The results are shown in Example 2 in FIG. From this result, this system has a remarkably wide wavelength range of easy transmission <400? It can be seen that light can be transmitted well over the entire visible light range from nm to 8005 m.

比較例1 内壁面の表面粗さRa=0.31μの円形チューブを用
いた以外は、実施例1と全く同様にして波長に対する伝
送ロスを測定した。結果を図4の比較例IK示す。この
結果および実施例の結果より、伝送ホース内壁面の表面
粗さ如何が、光の透過効率に極めて大きい効果のあるこ
とが判る。
Comparative Example 1 Transmission loss with respect to wavelength was measured in exactly the same manner as in Example 1, except that a circular tube with an inner wall surface roughness Ra=0.31μ was used. The results are shown in Comparative Example IK in FIG. From this result and the results of the examples, it can be seen that the surface roughness of the inner wall surface of the transmission hose has a very large effect on the light transmission efficiency.

(発明の効果) 本発明による光伝送体によシ、これまで問題でありた大
容量光・中距離伝送が可能となりこの長所を活かしての
応用や用途範囲Fiiめで広〈産業界等に与えるインノ
4クトは大きいものと期待される。
(Effects of the Invention) The optical transmission body of the present invention enables large-capacity optical and medium-distance transmission, which has been a problem up until now, and can be applied to a wider range of applications and uses by taking advantage of this advantage. The Inno 4 Act is expected to be large.

例えばロゲット等に装着して紫外〜赤外光(含レーザー
)を伝送して、接着剤、レジストの硬化やパターンニン
グ切断加工、穴あけや化学反応等に(ffl g ) 
          明細書の浄書(内容に変更なし)
応用出来る。また海中、地下室、ビルや=Jl内に太陽
光を伝送し、照明、生物の育成を行うことも可能となる
For example, by attaching it to a loget, etc., and transmitting ultraviolet to infrared light (including laser), it can be used for curing adhesives and resists, patterning cutting, drilling, chemical reactions, etc.
Engraving of the statement (no changes to the contents)
It can be applied. It will also be possible to transmit sunlight into the ocean, basements, buildings, and JL areas, providing lighting and cultivating living things.

更には航空機、自動車や鉄道車輛等に集中光源をおき、
光伝送体によシ各部に分配して利用することもできる。
Furthermore, concentrated light sources are placed on aircraft, automobiles, railway vehicles, etc.
It can also be used by distributing it to various parts of the optical transmission body.

また変った応用分野の一つとして、この伝送体に、外部
からの加圧等によシ変形を与えることにより光伝送容量
を変化させることも可能で、この機能を利用したセンサ
ーとしての用途も期待される。
In addition, as an unusual application field, it is also possible to change the optical transmission capacity by deforming this transmitter by applying external pressure, etc., and it is also possible to change the optical transmission capacity by using this function as a sensor. Be expected.

【図面の簡単な説明】[Brief explanation of drawings]

図1は本発明の光伝送体の模式図、図2は光量の測定方
法と装置、図3と図4は測定結果を示す。 1・・・封入ホース本体 2・・・封入ホースの内壁 3・・・封入ホースの外壁 4・・・保護被覆層 5・・・光伝送媒体 6・・・末端封止栓 7・・・末端封止栓の内壁 8・・・末端封止栓の外壁 9・・・保護口金 図1 1・・・白色光源 2・・・銀干渉フィルター 3・・・光伝送体 3−1・・・伝送媒体 3−2・・・封入用ホース 3−3 、3−3″・・・末端封止栓 4・・・光ノ卆ワーメーター 図2 −波長(mm) −波長(mm) 図4 手続補正書(方式) %式% 1、事件の表示 特願昭61−72494号 2、発明の名称 光伝送ホース 3、補正をする者 事件との関係  特許出願人 住所 東京都中央区京橋−丁目10番1号株式会社ブリ
デストン特許部内 5、補正命令の日付 昭和61年6月4日 (発送日 昭和61年6月24日) 6、補正の対象 明細書の図面の簡単な説明の欄のタイプ浄書7、補正の
内容 明細書の21頁を別紙の通シ補正する。
FIG. 1 is a schematic diagram of the optical transmission body of the present invention, FIG. 2 shows a method and apparatus for measuring the amount of light, and FIGS. 3 and 4 show the measurement results. 1...Enclosed hose body 2...Inner wall of the enclosed hose 3...Outer wall of the enclosed hose 4...Protective coating layer 5...Light transmission medium 6...Terminal sealing plug 7...Terminal Inner wall 8 of the sealing plug...Outer wall 9 of the end sealing plug...Protective cap Figure 1 1...White light source 2...Silver interference filter 3...Light transmission body 3-1...Transmission Medium 3-2... Enclosure hose 3-3, 3-3''... End sealing plug 4... Optical power meter Figure 2 - Wavelength (mm) - Wavelength (mm) Figure 4 Procedure correction Document (method) % formula % 1. Indication of the case Japanese Patent Application No. 61-72494 2. Name of the invention Optical transmission hose 3. Person making the amendment Relationship to the case Patent applicant address 10 Kyobashi-chome, Chuo-ku, Tokyo No. 1 Within the Patent Department of Brideston Co., Ltd. 5. Date of amendment order: June 4, 1985 (Delivery date: June 24, 1985) 6. Type engraving in the column for a brief explanation of the drawings of the specification to be amended 7. , amend page 21 of the statement of contents of the amendment in a separate document.

Claims (1)

【特許請求の範囲】[Claims] 常温で液状の物質を光伝送媒体とし、該媒体と、これを
封入するための可撓性材料よりなるホースとから構成し
た光伝送体において、該ホース内壁面の表面粗さ(Ra
表示)を0.030μ以下としたことを特徴とする光伝
送ホース
In an optical transmission body composed of a substance that is liquid at room temperature as an optical transmission medium and a hose made of a flexible material for enclosing the medium, the surface roughness (Ra) of the inner wall surface of the hose is
An optical transmission hose characterized by having a coefficient (indication) of 0.030μ or less.
JP61072494A 1986-04-01 1986-04-01 Optical transmission hose Expired - Lifetime JP2521710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072494A JP2521710B2 (en) 1986-04-01 1986-04-01 Optical transmission hose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072494A JP2521710B2 (en) 1986-04-01 1986-04-01 Optical transmission hose

Publications (2)

Publication Number Publication Date
JPS62231904A true JPS62231904A (en) 1987-10-12
JP2521710B2 JP2521710B2 (en) 1996-08-07

Family

ID=13490931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072494A Expired - Lifetime JP2521710B2 (en) 1986-04-01 1986-04-01 Optical transmission hose

Country Status (1)

Country Link
JP (1) JP2521710B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187505A (en) * 1988-01-22 1989-07-26 Bridgestone Corp Light diffusing tube and its manufacture
EP0618465A1 (en) * 1993-04-01 1994-10-05 Bridgestone Corporation Fluid filled optical waveguide
US5546493A (en) * 1993-12-27 1996-08-13 Bridgestone Corporation Optical waveguide
US5898810A (en) * 1997-04-04 1999-04-27 Minnesota Mining And Manufacturing Company Illumination waveguide and method for producing same
WO2004050335A1 (en) * 2002-11-29 2004-06-17 Fuji Photo Film Co., Ltd. Preform for producing plastic optical components, method of fabricating the preform, and plastic optical fiber
JP2008084869A (en) * 2007-10-17 2008-04-10 Mitsubishi Rayon Co Ltd Optical transmission device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981045A (en) * 1971-11-29 1974-08-05

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4981045A (en) * 1971-11-29 1974-08-05

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01187505A (en) * 1988-01-22 1989-07-26 Bridgestone Corp Light diffusing tube and its manufacture
JP2665664B2 (en) * 1988-01-22 1997-10-22 株式会社ブリヂストン Diffusion tube and method of manufacturing the same
EP0618465A1 (en) * 1993-04-01 1994-10-05 Bridgestone Corporation Fluid filled optical waveguide
JPH06289229A (en) * 1993-04-01 1994-10-18 Bridgestone Corp Light transmission hose
US5546493A (en) * 1993-12-27 1996-08-13 Bridgestone Corporation Optical waveguide
US5898810A (en) * 1997-04-04 1999-04-27 Minnesota Mining And Manufacturing Company Illumination waveguide and method for producing same
WO2004050335A1 (en) * 2002-11-29 2004-06-17 Fuji Photo Film Co., Ltd. Preform for producing plastic optical components, method of fabricating the preform, and plastic optical fiber
JP2008084869A (en) * 2007-10-17 2008-04-10 Mitsubishi Rayon Co Ltd Optical transmission device

Also Published As

Publication number Publication date
JP2521710B2 (en) 1996-08-07

Similar Documents

Publication Publication Date Title
US3740113A (en) Light guide
US4747662A (en) Fiber optics having a liquid core and a fluoroplastic cladding
US5412750A (en) Liquid-core light guide illuminator apparatus
US6314227B1 (en) Coating materials for liquid lightguides
US6163641A (en) Optical waveguide for UV transmission
US20070147752A1 (en) Photonic crystal fibers and systems using photonic crystal fibers
EP0727054B9 (en) Liquid core optical waveguide
JPS5922201B2 (en) lighting equipment
JP3365021B2 (en) Optical transmitter
JPS62231904A (en) Optical transmission hose
US5638480A (en) Optical waveguide hose
JPH1184136A (en) Side face light emitting optical fiber
JP2665664B2 (en) Diffusion tube and method of manufacturing the same
JP3161036B2 (en) Light transmission hose
AU701855B2 (en) Liquid core optical waveguide
JPS63113406A (en) Optical transmission hose
AU703973B2 (en) Optical waveguide for UV transmission
JPH07198947A (en) Optical transmission tube
JP2562033B2 (en) Optical transmission hose
JPH08101315A (en) Uv transmission tube
JPS6226089Y2 (en)
JPH05288948A (en) Optical transmission hose
JP2021081637A (en) Tube and liquid light guide
WO1997025637A1 (en) Optical waveguide for uv transmission
JP2857391B2 (en) Light transmission hose