JPS62230978A - Deposited film forming device - Google Patents

Deposited film forming device

Info

Publication number
JPS62230978A
JPS62230978A JP61073104A JP7310486A JPS62230978A JP S62230978 A JPS62230978 A JP S62230978A JP 61073104 A JP61073104 A JP 61073104A JP 7310486 A JP7310486 A JP 7310486A JP S62230978 A JPS62230978 A JP S62230978A
Authority
JP
Japan
Prior art keywords
deposited film
gas
forming
support
gaseous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61073104A
Other languages
Japanese (ja)
Inventor
Naoko Shirai
白井 直子
Tetsuya Takei
武井 哲也
Tatsuyuki Aoike
達行 青池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61073104A priority Critical patent/JPS62230978A/en
Publication of JPS62230978A publication Critical patent/JPS62230978A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes

Abstract

PURPOSE:To efficiently form a deposited film having uniform and good quality at a low cost with a simple device by releasing gas for forming the deposited film from spiral gas releasing pipes provided in a deposited film forming chamber. CONSTITUTION:A cylindrical substrate 103 heated by a halogen lamp 104 to a prescribed temp. in the deposition space 105 of the deposited film forming chamber 101 evacuated to a vacuum through a discharge pipe 106 is rotated by a driving device 110 via a supporter 108 and a revolving shaft 109. The spiral gas releasing pipes 102a, 102b having gas releasing holes are disposed to enclose the substrate 103. The gaseous raw material for forming the deposited film and the gaseous halogen oxidizing agent having the property to make an oxidation effect thereto supplied respectively through gas supply pipes 112, 113 are released from the gas releasing pipes 102a, 102b. The above-mentioned both gases are thereby brought into contact and reaction with each other to form the deposited film on the surface of the substrate 103.

Description

【発明の詳細な説明】 〔発明の屈する分野の説明〕 本発明は1機能性膜、殊に半導体デバイス、電子写真用
の感光デバイス、光学的画像入カ装ご用の光入力センサ
ーデバイス等の電子デバイスの用途に有用な機能性堆積
膜の形成法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Description of the Field of the Invention] The present invention relates to monofunctional films, particularly semiconductor devices, photosensitive devices for electrophotography, optical input sensor devices for optical image input, etc. This invention relates to a method for forming functional deposited films useful for electronic device applications.

〔従来の技術〕[Conventional technology]

従来、機能性膜、殊に非結晶質乃至多結品質の半導体膜
は、所望される物理的特性や用途等の観点から個々に適
した成n々方法が採用されている。
Conventionally, functional films, particularly amorphous or polycrystalline semiconductor films, have been produced using various methods that are individually suited from the viewpoint of desired physical properties, applications, and the like.

例えば、必要に応じて、水素原子(H)やハロゲン原子
(X)等の補償剤で不対電子が補償された非晶質や多結
晶質の非単結晶シリコン(以後rNON −S f (
H、X) J 、!:略記し、その中でも殊に非結晶質
シリコンを示す場合にはrA−3i  (H、X) J
 、多結晶質シリコンを示す場合にはrpoly Si
 (H,X)Jと記す)膜等のシリコン系141積膜(
尚、俗に言う微結晶シリコンは、A−5i(H,X)の
範略にはいることは断るまでもない)の形成には、真空
蒸着法、プラズマCVD法、熱CVD法、反応スパッタ
リング法、イオンブレーティング法、光CVD法などが
試みられている。
For example, if necessary, amorphous or polycrystalline non-single-crystal silicon (rNON-S f (hereinafter referred to as rNON-S f
H, X) J,! :Abbreviated as rA-3i (H,X) J when specifically indicating amorphous silicon.
, rpoly Si to indicate polycrystalline silicon
Silicon-based 141 laminated film (denoted as (H,X)J)
It goes without saying that what is commonly referred to as microcrystalline silicon falls within the category of A-5i (H, Attempts have been made such as the method, ion blating method, and photo-CVD method.

特に、電子写真用の感光デバイスの成膜方法として、プ
ラグ?CVD (Chemi c a IVapor 
 Deposition)法がすでに実用化されている
In particular, as a film formation method for photosensitive devices for electrophotography, plug? CVD
Deposition method has already been put into practical use.

この方法は反応室を高真空に減圧し、原料ガスを反応室
に供給した後グロー放電によって原料ガスを分解し、反
応室内に配芒された基板上に薄膜を形成する方法である
In this method, a reaction chamber is depressurized to a high vacuum, a raw material gas is supplied to the reaction chamber, and then the raw material gas is decomposed by glow discharge to form a thin film on a substrate placed inside the reaction chamber.

この方法でS i H4、S i 2H6等のシランガ
スを原料ガスとして作成した非晶質硅素(A−3i)膜
は非晶質硅素(A−Si)の禁止帯中に存在する局在順
位が比較的少なく、置換型不純物のドーピングにより、
価電子制御が可能であり、電子写真感光体としても優れ
た特性を右するものが得られる成膜方法である。
The amorphous silicon (A-3i) film produced by this method using silane gas such as S i H4 or S i 2H6 as a raw material gas has a localization order existing in the forbidden band of amorphous silicon (A-Si). Due to the relatively low doping of substitutional impurities,
This is a film forming method that allows control of valence electrons and provides excellent properties as an electrophotographic photoreceptor.

第4図は従来のプラズマCVD法の量産型真空成膜装置
の好適な実施態様例の主要部分の基本構成を示したもの
で、これに従って円筒状支持体表面上に成膜処理を行う
場合に就いて簡単に説明する。
Figure 4 shows the basic configuration of the main parts of a preferred embodiment of a mass-produced vacuum film forming apparatus using the conventional plasma CVD method. I'll sit down and give a brief explanation.

図中の402〜406のガスボンベには、堆積膜を形成
するための原料ガスが密封されている。これらのガスを
、バルブ422〜426、流入バルブ412〜416、
マスフローコントローラ407〜411、流出バルブ4
17〜421、補助バルブ432,433を通して反応
室401に導入し、電源440により支持体と同軸円筒
状電極441に高周波電圧を印加して、放電を生じさせ
、437の円筒状支持体表面に堆積膜を形成する。成膜
中は、膜の均一化を計る為に支持体437をモータ43
9で回転させてやるのがよい、434はメインバルブ、
438は支持体加熱ヒーター、436は真空計、427
〜431は出口圧ゲージ、435はリークバルブである
In the gas cylinders 402 to 406 in the figure, raw material gas for forming a deposited film is sealed. These gases are supplied to valves 422 to 426, inflow valves 412 to 416,
Mass flow controllers 407 to 411, outflow valve 4
17 to 421 are introduced into the reaction chamber 401 through the auxiliary valves 432 and 433, and a high frequency voltage is applied to the support and the coaxial cylindrical electrode 441 by the power source 440 to generate discharge, which deposits on the surface of the cylindrical support 437. Forms a film. During film formation, the support 437 is moved by the motor 43 to ensure uniformity of the film.
It is best to rotate it at 9, 434 is the main valve,
438 is a support heater, 436 is a vacuum gauge, 427
431 is an outlet pressure gauge, and 435 is a leak valve.

〔従来の技術の問題点〕[Problems with conventional technology]

上記の様に従来のプラズマCVD法では、反応室内で円
筒状支持体と同軸円筒状の電極が必要であり、堆積膜は
円筒状支持体と同軸円筒状の両方に同程度の膜厚に堆積
するため、原料ガスのごく一部分が目的とする円筒状支
持体に堆積するだけであった。そのため原料ガスの利用
効率が低く、堆vK膜のコストが高くなるという問題点
があった。
As mentioned above, the conventional plasma CVD method requires a cylindrical support and a coaxial cylindrical electrode in the reaction chamber, and the deposited film is deposited to the same thickness on both the cylindrical support and the coaxial cylinder. Therefore, only a small portion of the raw material gas was deposited on the intended cylindrical support. Therefore, there were problems in that the raw material gas utilization efficiency was low and the cost of the deposited VK film was high.

更に、プラズマCVD法では、原料ガスを外部が導入し
た高周波エネルギーで分解し堆積させるため、高周波エ
ネルギーを効率よく反応室に導入することが難しく、装
置コストが高くなるという問題点があった。
Furthermore, in the plasma CVD method, raw material gas is decomposed and deposited using high frequency energy introduced from the outside, so there is a problem that it is difficult to efficiently introduce high frequency energy into the reaction chamber, and the equipment cost increases.

また同様に、プラズマCVD法では堆積膜の電気的性質
および膜圧を均一にするために、反応室内で円筒状支持
体と同軸円筒状の電極に高周波′心力を導入することが
必要であった。
Similarly, in the plasma CVD method, in order to make the electrical properties and film pressure of the deposited film uniform, it was necessary to introduce high-frequency centripetal force into the cylindrical support and the coaxial cylindrical electrode in the reaction chamber. .

そのため、一つの反応室で同時に1本以上の円筒状支持
体に堆積膜を形成することが困難であり、生産性の向上
に問題があった。
Therefore, it is difficult to simultaneously form a deposited film on one or more cylindrical supports in one reaction chamber, which poses a problem in improving productivity.

〔目的〕〔the purpose〕

本発明の目的は、上述した堆積膜形成法芒の欠点を除去
すると同時に、従来の形成方法によらない新規な堆積膜
形成法を利用した装置を提供するものである。
An object of the present invention is to eliminate the drawbacks of the above-described deposited film forming method and at the same time provide an apparatus that utilizes a novel deposited film forming method that does not rely on conventional forming methods.

本発明の他の目的は、省エネルギー化を計ると同時に膜
品質の管理が容易で大面積に互って均一特性の堆積膜が
得られる堆積膜形成法を提供するものである。
Another object of the present invention is to provide a method for forming a deposited film that saves energy, allows easy control of film quality, and provides a deposited film with uniform characteristics over a large area.

本発明の更に別の目的は、生産性、量産性に優れ、高品
質で電気的、光学的、半導体的等の物理特性に優れた膜
が簡便に得られる堆積膜形成法を提供することでもある
Still another object of the present invention is to provide a method for forming a deposited film that is highly productive and mass-producible, and can easily produce a film with high quality and excellent physical properties such as electrical, optical, and semiconductor properties. be.

〔発明の概要〕[Summary of the invention]

本発明は、堆積膜形成用の気体状原料物質と、該原料物
質に酸化作用をする性質を有する気体状ハロゲン系酸化
剤と、を堆積空間内に導入して化学的に接触させること
で励起状態の前駆体を生成し、該前駆体を堆積膜構成要
素の供給源として堆積空間内にある支持体上に堆積膜を
形成することを見い出したことを支持体としている。
In the present invention, a gaseous raw material for forming a deposited film and a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material are introduced into a deposition space and brought into chemical contact with each other to excite the raw material. The present invention has been made to form a deposited film on a support in a deposition space using the precursor as a source of deposited film components.

本発明の堆積膜形成装置は堆積膜形成用の気体状原料物
質と該原料物質に酸化作用をする性質を有する気体状の
ハロゲン系酸化剤とを接触させ堆積膜を形成する装置に
おいて、堆積膜形成室内に具備された気体状原料物質放
出用のガス放出管とハロゲン系酸化剤放出用のガス放出
管が螺旋状であることを特徴としている。
The deposited film forming apparatus of the present invention is an apparatus for forming a deposited film by bringing a gaseous raw material for forming a deposited film into contact with a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material. It is characterized in that the gas discharge tube for discharging gaseous raw materials and the gas discharge tube for discharging a halogen-based oxidizing agent provided in the forming chamber are spiral-shaped.

上記の本発明の堆積膜形成袋はによれば、堆fa膜の膜
質を保持しながら高速成膜が可能となり、省エネルギー
化と同時に大面積化、膜厚均一性* nQ品質の均一性
を十分満足させて管理の簡素化と量産化を図り、量産装
置に多大な設備投資も必要とせず、またその量産の為の
管理項目もrfJ6?1になり、管理許容幅も広く、装
はの調整も簡単になる。
According to the above-mentioned deposited film forming bag of the present invention, it is possible to form a deposited film at high speed while maintaining the film quality of the deposited film, and at the same time save energy, increase the area, and achieve sufficient uniformity of film thickness* nQ quality. We aim to simplify management and mass production, and do not require large capital investments in mass production equipment.The control items for mass production are RFJ6-1, and the control tolerance is wide, making it possible to adjust equipment. It also becomes easier.

第1図に本発明の堆積膜形成室置の模式的な透視図を示
す。
FIG. 1 shows a schematic perspective view of a deposited film forming chamber according to the present invention.

堆積膜形成室lotは不図示の排気装置より堆積空間1
05の下部に配設された排気口106より排気され、気
体状原料物質は、円筒状支持体103を取り囲み放出孔
を有する螺旋状の放出管102aより、又ハロゲン系酸
化剤は放出管102bより放出される。  。
The deposited film forming chamber lot is supplied with a deposition space 1 by an exhaust device (not shown).
The gaseous raw material is exhausted from a spiral discharge pipe 102a surrounding the cylindrical support 103 and has a discharge hole, and the halogen-based oxidant is discharged from a discharge pipe 102b. released. .

円筒状支持体103は支持体支持具108によって支持
され、駆動装置110により、回転軸109を介して回
転させることができる。
The cylindrical support 103 is supported by a support holder 108 and can be rotated via a rotation shaft 109 by a drive device 110.

支持体加熱用ハロゲンランプ104は、支持体103を
成膜時に適当な温度に加熱したり。
The support heating halogen lamp 104 heats the support 103 to an appropriate temperature during film formation.

或いは、成膜前に支持体103を予備加熱したり、更に
は、成膜後、膜をアニールする為に使用される。
Alternatively, it is used to preheat the support 103 before film formation or to anneal the film after film formation.

支持体加熱用ハロゲンランプ104は、導線111を介
して不図示の電源により電力が供給される。
The support heating halogen lamp 104 is supplied with power via a conductive wire 111 from a power source (not shown).

熱電対116は、支持体温度(Ts)の温度を測定する
為のもので温度表示装匝117に接続されている。
The thermocouple 116 is for measuring the support temperature (Ts) and is connected to the temperature display device 117.

第2図に本発明の堆積膜形成装置の平面的断面図を示す
0本発明の堆積膜形成装置は1円筒形の堆積膜形成室2
00の中央部に、堆IA膜形成用気体状原料物質放出管
202とハロゲン系酸化剤放出管201とから成るガス
放出管を螺旋状に設置したガス放出手段、このガス放出
手段の周囲にガス放出手段から等距離のところに、この
ガス放出手段を叛り囲むように、円筒形支持体運搬用治
具206を取りつけた円筒形支持体205を設置する円
筒形支持体設置治具(不図示)があり、堆積膜形成室2
00の内壁には、堆a H’J形成室200を所定の内
圧に保持するための排気ポンプ(不図示)に接続する排
気口204と円筒形支持体205加熱用のヒーター20
3とから構成されている。
FIG. 2 shows a planar sectional view of the deposited film forming apparatus of the present invention.
00, a gas release means is provided in a spiral manner with a gas release pipe consisting of a gaseous raw material material release pipe 202 for forming a deposit IA film and a halogenated oxidizer release pipe 201, and a gas release means is provided around the gas release means. A cylindrical support installation jig (not shown) is used to install a cylindrical support 205 equipped with a cylindrical support transport jig 206 at an equal distance from the gas release means so as to surround the gas release means. ), deposited film forming chamber 2
An exhaust port 204 connected to an exhaust pump (not shown) for maintaining the sediment H'J forming chamber 200 at a predetermined internal pressure and a heater 20 for heating the cylindrical support 205 are provided on the inner wall of the chamber 00.
It is composed of 3.

第3図に第2図の堆積膜形成装置の模式的な透視図を示
す。
FIG. 3 shows a schematic perspective view of the deposited film forming apparatus shown in FIG. 2.

堆積膜形成室外には1円筒形支持体回転用のモーター3
01とモーターのコントローラ302があり、モーター
301の動力により堆積膜形成室内の円筒形支持体回転
用ギア304゜303を駆動し円筒形支持体が所定の回
転速度で回転されられる。
A motor 3 for rotating the cylindrical support is installed outside the deposited film forming chamber.
01 and a motor controller 302, the power of the motor 301 drives gears 304 and 303 for rotating the cylindrical support in the deposited film forming chamber, and the cylindrical support is rotated at a predetermined rotational speed.

前記のようにガス放出手段の周囲に同筒型支持体を設置
することで放出された堆積膜形成用気体状原料物質を有
効に利用することができる。
By installing the cylindrical support around the gas emitting means as described above, the emitted gaseous raw material for forming a deposited film can be effectively utilized.

また、本発明では、ガス放出手段の周囲に等距離に堆積
膜形成用支持体が配され、各々自転するため多数本の支
持体上に均一に堆積膜を形成することができる。
Further, in the present invention, the supports for forming a deposited film are arranged at equal distances around the gas emitting means, and each of the supports rotates on its own axis, so that a deposited film can be uniformly formed on a large number of supports.

更に本発明では、原料物質とハロゲン系酸化剤との自発
的な化学反応を利用するため反応を促進するためのエネ
ルギーは不必要であり、堆積膜形成装置は構造が単純と
なり、その結実装置コストは安くなり、量産時の装置の
維持管理が容易である。
Furthermore, since the present invention utilizes a spontaneous chemical reaction between the raw material and the halogen-based oxidizing agent, no energy is required to promote the reaction, and the structure of the deposited film forming apparatus is simple, reducing the cost of the apparatus. It is cheaper and the equipment is easier to maintain and manage during mass production.

堆積空間に導入される堆積膜形成用の気体状原料物質と
気体状ハロゲン系酸化剤の放出状態は、形成される堆積
膜の膜厚、膜質の均一化に大きな影!を与える。反応ガ
ス放出口が堆積空間の一部に集中したりガス放出が支持
体に対して不均一にならないように、ガス放出管を設置
することが望ましい。この為、支持体の周囲に円筒状支
持体の中心軸を螺旋中心軸にしてに螺旋状にガス放出管
を設置し、放出管にあけられた孔からガスを放出するこ
とにより、堆積空間内の支持体に均一に堆積膜を形成す
ることができる。この時、ガス放出管にあけられた孔は
支持体側にむいていても支持体と反対側にむいていても
よい。
The release conditions of the gaseous raw materials for forming the deposited film and the gaseous halogen-based oxidizing agent introduced into the deposition space have a big impact on the uniformity of the thickness and quality of the deposited film that is formed! give. It is desirable to install the gas discharge pipe so that the reaction gas discharge ports are not concentrated in a part of the deposition space and the gas discharge is not uneven with respect to the support. For this purpose, a gas release pipe is installed around the support in a spiral shape with the center axis of the cylindrical support as the center axis of the spiral, and gas is released from the hole drilled in the release pipe to create a gas discharge inside the deposition space. A deposited film can be formed uniformly on the support. At this time, the hole made in the gas discharge tube may face toward the support or toward the opposite side from the support.

又、一つの堆積膜形成室で同時に1本以上の円筒状支持
体に、堆積膜を形成するためにガス放出管の周囲に複数
の支持体を設けることもできる。この場合もガス放出管
にあけられた孔は支持体側をむいていても支持体と反対
側をむいていてもよい。
Further, a plurality of supports may be provided around the gas discharge tube in order to simultaneously form a deposited film on one or more cylindrical supports in one deposited film forming chamber. In this case as well, the holes made in the gas discharge tube may face toward the support or the opposite side from the support.

螺旋状のガス放出管は2種類のガスの使用の為に連結し
た2段になっていても、各々別々の螺旋状になっていて
もよい。
The spiral gas discharge tube may have two stages connected to each other for the use of two types of gas, or each stage may be a separate spiral.

本発明に於いては、螺旋ピッチ及びガス放出孔の孔径、
孔数、孔配列密度は本発明の膜形成法を好適に達成させ
る為の重要な因子群である。
In the present invention, the spiral pitch and the hole diameter of the gas release hole,
The number of pores and the pore arrangement density are important factors for suitably achieving the film forming method of the present invention.

本発明に於いて、これ等の因子の好適な数値条件範囲は
、螺旋ピッチは1〜50mm、孔径は0.05〜0.5
 m m 、孔数は5〜30個/ピッチとされ、螺孔数
はガス導入口側より、線形的、若しくは指数関数的に増
加させると良好な結果が得られる。
In the present invention, the preferred numerical condition ranges for these factors are a helical pitch of 1 to 50 mm, and a hole diameter of 0.05 to 0.5.
m m , the number of holes is 5 to 30 per pitch, and good results can be obtained if the number of screw holes is increased linearly or exponentially from the gas inlet side.

本発明の堆積膜形成装置に於いて、使用される堆積膜形
成用の気体状原料物質及び価電子制御剤となる成分を構
成要素として含む気体状物質(D)は、気体状酸化剤と
の化学的接触により酸化作用をうけるものであり、目的
とする堆積膜の種類、特性、用途等によって所望に従っ
て適宜選択される0本発明に於いては、上記の気体状原
料物質、気体状物質(D)及び気体状酸化剤は、堆積空
間内に導入されて接触をする際に気体状とされるもので
あればよく、通常の場合は、気体でも液体でも固体であ
っても差支光ない。
In the deposited film forming apparatus of the present invention, the gaseous material (D) containing as constituent elements a gaseous raw material for deposited film formation and a component serving as a valence electron control agent is combined with a gaseous oxidizing agent. In the present invention, the above-mentioned gaseous raw materials, gaseous materials ( D) and the gaseous oxidizing agent may be anything as long as it is in a gaseous state when introduced into the deposition space and brought into contact; in normal cases, it makes no difference whether it is a gas, liquid, or solid. .

堆積膜形成用の原料物質、物質(D)あるいは酸化剤が
通常状態の場合に液体又は固体である場合には、A r
 、 He 、 N 2 、 H2等のキャリアーガス
を使用し、必要に応じては熱も加えなから/ヘブリング
を行なって反応空間に堆積膜形成用の原料物質、物質(
D)及び酸化剤を気体状として導入する。
When the raw material for forming a deposited film, substance (D) or oxidizing agent is liquid or solid under normal conditions, Ar
, He, N 2 , H 2 , etc. are used as carrier gases, and if necessary, heat is not added or hebring is performed to deposit raw materials and materials for forming a deposited film in the reaction space.
D) and the oxidizing agent are introduced in gaseous form.

この際、上記気体状原料物質、気体状物質(D’)及び
気体状酸化剤の分圧及び混合比は、キャリアーガスの流
量あるいは堆積膜形成用の原料物質及び気体状酸化剤の
蒸気圧を調節することにより設定される。
At this time, the partial pressure and mixing ratio of the gaseous raw material, the gaseous substance (D'), and the gaseous oxidant are determined by the flow rate of the carrier gas or the vapor pressure of the raw material and the gaseous oxidant for forming the deposited film. It is set by adjusting.

本発明に於いて使用される堆積膜形成室の原料物質とし
ては1例えば、半導体性のシリコン堆積膜やゲルマニウ
ム堆積膜等のテトラヘドラル系の堆積膜を得るのであれ
ば、直鎖状、及び分岐状の鎖状シラン化合物、環状シラ
ン化合物。
The raw material for the deposited film forming chamber used in the present invention is 1. For example, if a tetrahedral deposited film such as a semiconducting silicon deposited film or germanium deposited film is to be obtained, linear or branched deposited films may be used. chain silane compounds, cyclic silane compounds.

鎖状ゲルマニウム化合物等が有効なものとして挙げるこ
とが出来る。
Chain germanium compounds and the like can be cited as effective examples.

具体的には、直鎖状シラン化合物としては5inH2n
+2 (n=1.2,3,4,5゜6.7.8)、分岐
状鎖状シラン化合物としては、5iH3SiH(SiH
3)SiH2SiH3,環状シラン化合物としてはS 
i nH2n(n=3.4,5.6)J鎖状ゲルマン化
合物としては、GemH2m+2 (m= 1.2 。
Specifically, as a linear silane compound, 5inH2n
+2 (n=1.2,3,4,5゜6.7.8), as a branched chain silane compound, 5iH3SiH (SiH
3) SiH2SiH3, S as a cyclic silane compound
As the i nH2n (n=3.4, 5.6) J-chain germane compound, GemH2m+2 (m=1.2).

3 、4 、5)等が挙げられる。これ等の化合物に加
えて、例えばS nH4等の水素化スズを堆積膜形成用
の原料物質として一緒に使用することも出来る。
3, 4, 5), etc. In addition to these compounds, tin hydride, such as SnH4, can also be used together as a source material for forming the deposited film.

勿論、これ等のシリコン系化合物及びゲルマニウム系化
合物は1種のみならず2種以上混合して使用することも
出来る。
Of course, these silicon-based compounds and germanium-based compounds can be used not only alone, but also as a mixture of two or more.

本発明に於いて使用される酸化剤は、堆積空間内に導入
される際気体状とされ、同時に堆積空間内に導入される
堆積膜形成用の気体状原料物質に接触するだけで効果的
に酸化作用をする性質を有するも(Qテ、 F2 、 
CJ12 、 B r2 。
The oxidizing agent used in the present invention is made into a gaseous state when introduced into the deposition space, and is effectively oxidized simply by contacting the gaseous raw material for forming a deposited film, which is simultaneously introduced into the deposition space. Also has the property of oxidizing (Qte, F2,
CJ12, B r2.

12、FCI等のハロゲンガスを有効なものとして挙げ
る事が出来る。又、他の酸化剤1例えば酸素系酸化剤、
窒素系酸化剤、具体的には空気、酸素、オゾン等の酸素
類、N 204. N 203・N20.No等の酸素
の或いは窒素の化合物、H2O2等の過酸化物と併用し
ても良い。
12. Halogen gas such as FCI can be cited as an effective gas. In addition, other oxidizing agents 1 such as oxygen-based oxidizing agents,
Nitrogen-based oxidizing agents, specifically air, oxygen, oxygen such as ozone, N 204. N203・N20. It may be used in combination with an oxygen or nitrogen compound such as No, or a peroxide such as H2O2.

これ等の酸化剤は気体状で、前記の堆積膜形成用の原料
物質の気体及び前記の物質CD)の気体と共に所望の流
量と供給圧を与えられて堆積空間内に導入されて前記原
料物質及び前記物質(D)と混合衝突することで化学反
応を起こし、前記原料物質及び前記の物質CD)に酸化
作用をして励起状態の前駆体を含む複数種の前駆体を効
率的に生成する。生成される励起状態の前駆体及び他の
前駆体は、少なくともそのいずれか1つが形成される堆
積膜の構成要素の供給源として働く。
These oxidizing agents are in a gaseous state, and are introduced into the deposition space together with the gas of the raw material for forming the deposited film and the gas of the substance CD) at a desired flow rate and supply pressure to form the raw material. and the substance (D) causes a chemical reaction by mixing and colliding with the substance (D), oxidizes the raw material substance and the substance CD), and efficiently generates multiple types of precursors including excited state precursors. . The excited state precursors and other precursors that are generated serve as a source of components for the deposited film in which at least one of them is formed.

生成される前駆体は分解して又は反応して別の励起状態
の前駆体又は別の励起状態にある前駆体になって、或い
は必要に応じてエネルギーを放出はするがそのままの形
態で堆積空間に配設された支持体表面に触れることで支
持体表面温度が比較的低い場合には三次元ネットワーク
構造の堆積膜が支持体表面温度が高い場合には結晶質の
堆積膜が作成される。
The generated precursor decomposes or reacts to become a precursor in another excited state or a precursor in another excited state, or releases energy as needed but remains in the deposition space. When the support surface temperature is relatively low, a deposited film having a three-dimensional network structure is created, and when the support surface temperature is high, a crystalline deposited film is created.

本発明に於いては、堆積膜形成プロセスが円滑に進行し
、高品質で所望の物理特性を有する膜が形成される可く
、成膜因子としての、原料物質及びハロゲン系酸化剤の
種類と組み合せ、これ等の混合比、混合時の圧力、流量
、堆積空間内圧、ガスの流型、成膜温度(支持体温度及
び雰囲気温度)が所望に応じて適宜選択される。これ等
の成膜因子は有機的に関連し、単独で決定されるもので
はなく相互関連の下に夫々に応じて決定される。
In the present invention, the type and type of raw material and halogen-based oxidizing agent are selected as film-forming factors so that the deposited film forming process can proceed smoothly and a film with high quality and desired physical properties can be formed. The combination, their mixing ratio, the pressure during mixing, the flow rate, the internal pressure of the deposition space, the gas flow type, and the film forming temperature (support temperature and ambient temperature) are appropriately selected as desired. These film-forming factors are organically related and are not determined independently, but are determined depending on each other in relation to each other.

本発明に於いて、ハロゲン系酸化剤と、酸素系の又は/
及び窒素系の酸化剤の反応空間への導入量の割合は、作
成される堆積膜の種類及び所望される特性に応じて適宜
法められるが、好ましくは、1000/1〜1150、
より好ましくは500/1〜1/20、最適には100
/l〜1/10とされるのが望ましい。
In the present invention, a halogen-based oxidizing agent and an oxygen-based or/
The ratio of the amount of nitrogen-based oxidizing agent introduced into the reaction space is determined as appropriate depending on the type of deposited film to be created and the desired characteristics, but is preferably 1000/1 to 1150,
More preferably 500/1 to 1/20, optimally 100
It is desirable to set it to /l - 1/10.

本発明の方法に於いて1価電子制御剤となる成分を構成
要素として含む物質(D)としては、常温常圧でガス状
態であるか、あるいは少なくとも堆積膜形成条件下で気
体であり、適宜の気化装置で容易に気化し得る化合物を
選択するのが好ましい。
In the method of the present invention, the substance (D) containing a component serving as a monovalent electron control agent is in a gaseous state at room temperature and normal pressure, or at least in a gaseous state under deposited film forming conditions, and may be used as appropriate. Preferably, a compound is selected that can be easily vaporized in a vaporizer.

本発明に於いて使用される物質CD)としては、シリコ
ン系半導体膜及びゲルマニウム系半導体膜の場合には、
p型の価電子制御剤、所謂p型不純物として働く周期率
表m族Aの元素、例えばB、AfL、Ga、In、TI
L等を含む化合物、及びn型の価電子制御剤、所謂n型
不純物として働く周期率表第V族Aの元素1例えばN、
、P、As、Sb、Bi等を含む化合物を挙げることが
出来る。
In the case of silicon-based semiconductor films and germanium-based semiconductor films, the substances CD used in the present invention include:
p-type valence electron control agent, an element of group m A of the periodic table that acts as a so-called p-type impurity, such as B, AfL, Ga, In, TI
Compounds containing L, etc., and n-type valence electron control agents, elements of group V A of the periodic table that act as so-called n-type impurities, such as N,
, P, As, Sb, Bi, and the like.

具体的には、N H3、HN 3 、 N 2 Hs 
N :i 。
Specifically, NH3, HN3, N2Hs
N:i.

N2H4、NR1R2、PH3,P2H4。N2H4, NR1R2, PH3, P2H4.

A s H3、S b H3、B i H3、B 2 
H6。
A s H3, S b H3, B i H3, B 2
H6.

B4H10,B5H9、B5H11,B6H1O。B4H10, B5H9, B5H11, B6H1O.

B6H12,Al(CH3)3  、AI(C2H5)
  3  。
B6H12, Al(CH3)3, AI(C2H5)
3.

Ga (CH3)3 、I n (CH3)3等を有効
なものとして挙げることが出来る。
Ga (CH3)3, In (CH3)3, etc. can be cited as effective examples.

上記物質CD)の気体を堆積空間内に導入するには、予
め前記堆積膜形成用の原料物質と混合して導入するか、
あるいは独立した複数のガス供給源より導入することが
できる。
In order to introduce the gas of the substance CD) into the deposition space, it may be mixed with the raw material for forming the deposited film in advance, or
Alternatively, the gas can be introduced from a plurality of independent gas supply sources.

本発明に於いては、堆積膜形成用プロセスが円滑に進行
し、高品質で所望の物理特性を有する膜が形成される可
く、成膜因子としての堆積膜形成用の、原料物質、物質
(D)及び酸化剤の種類と組み合せ、これ等の混合比混
合時の圧力、流量、堆積空間内圧、ガスの流型、成膜温
度(支持体温度及び雰囲気温度)が所望に応じて適宜選
択される。これ等の成膜因子は有機的に関連し、単独で
決定されるものではなく相互関連の下に夫々に応じて決
定される。本発明に於いて1反応室間に導入される堆積
膜形成用の気体状原料物質と気体状酸化剤との量の割合
は、上記成膜因子の中間速する成膜因子との関係に於い
て適宜所望に従って決められるが、導入流量比で、好ま
しくは、1/20−100/1が適当であり、より好ま
しくは175〜50/lとされるのが望ましい。
In the present invention, the process for forming a deposited film can proceed smoothly and a film having high quality and desired physical properties can be formed, and the raw materials and materials for forming the deposited film as film-forming factors can be used. (D) and the type and combination of the oxidizing agent, the mixing ratio of these, the pressure at the time of mixing, the flow rate, the internal pressure of the deposition space, the gas flow type, and the film forming temperature (support temperature and ambient temperature) are selected as desired. be done. These film-forming factors are organically related and are not determined independently, but are determined depending on each other in relation to each other. In the present invention, the ratio of the amount of the gaseous raw material for forming a deposited film and the gaseous oxidizing agent introduced into one reaction chamber is determined based on the relationship between the above-mentioned film-forming factors and the intermediate speed of the film-forming factors. The introduction flow rate ratio is preferably 1/20 to 100/1, more preferably 175 to 50/l, although it can be determined as desired.

又、気体状物質(D)の導入量の割合は、前記気体状原
料物質の種類及び作成される堆積膜の所望される半導体
特性に応じて適宜所望に従って設定されるが、前記気体
状原料物質に対して、好ましくは1/1000000〜
1/10、より好ましくは1/100000〜l/20
、最適には1/100000 N1150とされるのが
望ましい。
Further, the ratio of the amount of the gaseous material (D) to be introduced is appropriately set as desired depending on the type of the gaseous material and the desired semiconductor characteristics of the deposited film to be created. , preferably 1/1000000~
1/10, more preferably 1/100000 to 1/20
, the optimum value is 1/100000 N1150.

堆積空間に導入される際の混合時の圧力としては前記気
体状原料物質及び気体状物質(D)と前記気体状酸化剤
との化学的接触を確率的により高める為には、より高い
方が良いが、反応性を考慮して適宜所望に応じて最適値
を決定するのが良い。
The pressure at the time of mixing when introduced into the deposition space should be higher in order to increase the probability of chemical contact between the gaseous source material and the gaseous substance (D) and the gaseous oxidizing agent. However, it is better to take reactivity into consideration and determine the optimum value as desired.

前記混合時の圧力としては、上記の様にして決められる
が、夫々の導入時の圧力として、好ましくはl X 1
0−7気圧〜5気圧、より好ましくはlXl0−G気圧
〜2気圧とされるのが望ましい。
The pressure at the time of mixing is determined as described above, but the pressure at the time of each introduction is preferably l x 1
It is desirable that the pressure be 0-7 atm to 5 atm, more preferably lXl0-G atm to 2 atm.

堆積空間内の圧力、即ち、その表面に成膜される基体が
配設されている空間内の圧力は、堆積空間に於いて生成
される励起状態の前駆体(E)及び場合によって該前駆
体(E)より派生的に生ずる前駆体(F)が成膜プロセ
スに効果的に寄与する様に適宜所望に応じて設定される
The pressure in the deposition space, that is, the pressure in the space on which the substrate on which the film is to be deposited is arranged, is the pressure of the excited state precursor (E) generated in the deposition space and, if necessary, of the precursor. The precursor (F) derived from (E) is appropriately set as desired so as to effectively contribute to the film forming process.

本発明における堆積空間内の圧力は、堆積空間に導入さ
れる気体状原料物質と気体状物質(D)と気体状酸化剤
の導入圧力との関係に於いて決められるが、好ましくは
、O,OOITo r r 〜100To r r、よ
り好ましくは0.01To r r 〜30To r 
r、最適には0.05Torr 〜10Torrとされ
るのが望ましい。
The pressure in the deposition space in the present invention is determined based on the relationship between the gaseous source material, gaseous substance (D), and gaseous oxidizing agent introduced into the deposition space, but is preferably O, OOITorr~100Torr, more preferably 0.01Torr~30Torr
It is desirable that r be optimally set to 0.05 Torr to 10 Torr.

成膜時の支持体温度(Ts)としては、使用されるガス
種及び形成される堆a膜の種類と要求される特性に応じ
て、個々に適宜所望に従って設定されるが、非晶質の膜
を得る場合には好ましくは室温から450℃、より好ま
しくは50〜400 ”Oとされるのが望ましい、殊に
半導体性や光導電性等の特性がより良好なシリコン系堆
a膜を形成する場合には、支持体温度(Ts)は70〜
400℃とされるのが望ましい。また、多結晶の膜を得
る場合には、好ましくは200〜650℃、より好マシ
くは300〜700℃とされるのが望ましい。
The support temperature (Ts) during film formation is set as desired depending on the type of gas used, the type of deposited film to be formed, and the required characteristics. When obtaining a film, the temperature is preferably from room temperature to 450°C, more preferably from 50 to 400°C. In particular, a silicon-based deposit film with better properties such as semiconductivity and photoconductivity is formed. In this case, the support temperature (Ts) is 70~
The temperature is preferably 400°C. Further, when obtaining a polycrystalline film, the temperature is preferably 200 to 650°C, more preferably 300 to 700°C.

堆積空間の雰囲気温度(Tat)としては、生成される
前記前駆体(E)及び前記前駆体(F)が成膜に不適当
な化学種に変化せず。
As for the atmospheric temperature (Tat) of the deposition space, the generated precursor (E) and precursor (F) do not change into chemical species unsuitable for film formation.

且つ効率良く前記前駆体(E)が生成される様に支持体
温度(Ts)との関連で適宜所望に応じて決められる。
In addition, it is appropriately determined as desired in relation to the support temperature (Ts) so that the precursor (E) is efficiently produced.

本発明に於いて使用される支持体としては、形成される
堆1N膜の用途に応じて適宜所望に応じて選択されるの
であれば導電性でも電気絶縁性であっても良い。導電性
基体としては、例えば、NiCr、ステンレス、An、
Cr、Mo。
The support used in the present invention may be electrically conductive or electrically insulating, as long as it is appropriately selected depending on the intended use of the 1N film to be formed. Examples of the conductive substrate include NiCr, stainless steel, An,
Cr, Mo.

Au、Ir、Nb、Ta、V、Ti、PL。Au, Ir, Nb, Ta, V, Ti, PL.

Pd等の全屈又はこれ等の合金が挙げられる。Fully flexible materials such as Pd or alloys thereof may be used.

電気絶縁性支持体としては、ポリエステル。Polyester is used as the electrically insulating support.

ポリエチレン、ポリカーボネート、セルローズアセテー
ト、ポリプロピレン、ポリ塩化ビニル。
Polyethylene, polycarbonate, cellulose acetate, polypropylene, polyvinyl chloride.

ポリ塩化ビニリデン、ポリスチレン、ポリアミド等の合
成樹脂のフィルム又はシート、ガラス。
Films or sheets of synthetic resins such as polyvinylidene chloride, polystyrene, polyamide, etc., and glass.

セラミック等が通常使用される。これらの電気絶縁性支
持体は、好適には少なくともその一方の表面が導電処理
され、該導電処理された表面側に他の層が設けられるの
が望ましい。
Ceramics etc. are usually used. Preferably, at least one surface of these electrically insulating supports is subjected to conductive treatment, and another layer is preferably provided on the conductive treated surface side.

例えばガラスであれば、その表面がNiCr。For example, if it is glass, its surface is NiCr.

All、Cr、Mo、Au、Ir、Nb、Ta。All, Cr, Mo, Au, Ir, Nb, Ta.

V、Ti、Pt 、Pd、In2O3,5n02゜I 
T O(I n 203 + S n O2)等の薄膜
を設ける事によって導電処理され、或いはポリエステル
フィルム等の合成樹脂フィルムであれば、NiCr、A
fL、Ag、Pb、Zn、Ni。
V, Ti, Pt, Pd, In2O3,5n02゜I
NiCr, A
fL, Ag, Pb, Zn, Ni.

Au、Cr、Mo、Ir、Nb、Ta、V。Au, Cr, Mo, Ir, Nb, Ta, V.

Ti 、Pt等の金属で真空蒸着、電子ビーム蒸着、ス
パッタリング等で処理し、又は前記金属でラミネート処
理して、その表面が導電処理される。支持体の形状とし
ては、円筒状、ベルト状、板状等、任意の形状とし得、
所望によって、その形状が決定される。
The surface is treated with a metal such as Ti or Pt by vacuum evaporation, electron beam evaporation, sputtering, etc., or laminated with the metal to make the surface conductive. The shape of the support may be any shape such as a cylinder, a belt, a plate, etc.
Its shape is determined by desire.

支持体は、支持体と膜との密着性及び反応性を考慮して
上記の中より選ぶのが好ましい。
The support is preferably selected from the above in consideration of the adhesion and reactivity between the support and the membrane.

更に両者の熱膨張の差が大きいと膜中に多量の歪が生じ
、良品質の膜が得られない場合があるので、両者の熱膨
張の差が近接している気体を選択して使用するのが好ま
しい。
Furthermore, if the difference in thermal expansion between the two is large, a large amount of distortion will occur in the film, and a high-quality film may not be obtained. Therefore, a gas with a close difference in thermal expansion between the two should be selected and used. is preferable.

又、支持体の表面状態は、膜の構造(配向)や錐状組織
の発生に直接関係するので、所望の特性が得られる様な
膜、構造と膜組織となる様に支持体の表面を処理するの
が望ましい。
In addition, the surface condition of the support is directly related to the structure (orientation) of the film and the formation of cone-shaped structures, so the surface of the support should be adjusted to form a film, structure, and structure that will provide the desired properties. It is desirable to process it.

以下、実施例に従って、本発明を具体的に説明する。Hereinafter, the present invention will be specifically explained according to Examples.

実施例1 :51図に示す成膜装置を用いて、次の様にし本発明の
方法による光導電部材を作成した。
Example 1: Using the film forming apparatus shown in Figure 51, a photoconductive member was produced by the method of the present invention in the following manner.

はじめに、第3図に作成した電子写真用光導電部材の層
構成を示す。アルミニウム性支持体300の上に、A−
3iGe (OHFB)から成る非晶質層、p型伝導特
性を有するA−Si(OHFB)から成る非晶質層、光
導電性を有するA−3i(HF)から成る非晶質層、表
面保護層となるA−5iC(HF)から成る非晶質層が
堆積されている。
First, FIG. 3 shows the layer structure of the electrophotographic photoconductive member prepared. On the aluminum support 300, A-
Amorphous layer made of 3iGe (OHFB), amorphous layer made of A-Si (OHFB) with p-type conductivity, amorphous layer made of A-3i(HF) with photoconductivity, surface protection An amorphous layer of A-5iC (HF) is deposited.

まず、円筒状支持体103を堆a膜形成室101内に配
置し、堆積室内を1(16Torr程度に減圧してから
、支持体加熱用ハロゲンランプ104により支持体を2
80℃に加熱した。
First, the cylindrical support 103 is placed in the deposition chamber 101, and the pressure inside the deposition chamber is reduced to approximately 1 (16 Torr).
Heated to 80°C.

次に、バルブ114,115を開け、ガス供給用パイプ
を介して不図示のボンベよりガスを導入し螺旋状ガス放
出管102aよりF 2 / 02/Heの混合ガス(
10secm/10secm730s105eを、ガス
放出管102bよりS iH4/Ge、H4/B2H6
(1%H2稀釈)の混合ガス(20sccm/10se
cm15s105eを8分間放出させ約IILmの、A
−S iGe (OHFB)膜を堆積させた。
Next, the valves 114 and 115 are opened, gas is introduced from a cylinder (not shown) through the gas supply pipe, and a mixed gas of F 2 / 02 / He (
10sec/10sec730s105e from the gas discharge pipe 102b SiH4/Ge, H4/B2H6
(1% H2 dilution) mixed gas (20sccm/10se
cm15s105e was released for 8 minutes and approximately IILm, A
-S iGe (OHFB) film was deposited.

このとき、堆積室105内の圧力は排気バルブ107の
開度を調整して、0.3Torrに保った。堆積速度は
約15久/ s e cであった。
At this time, the pressure inside the deposition chamber 105 was maintained at 0.3 Torr by adjusting the opening degree of the exhaust valve 107. The deposition rate was about 15 k/sec.

又、螺旋状ガス放出管の条件は、螺旋ピッチ。Also, the conditions for the spiral gas discharge pipe are the spiral pitch.

25mm、ijl旋全域幅350mm、孔数120個、
孔径0.2 m mであり、孔の配置は、ガス導入口側
より7個/ピッチから9個/ピッチに線形的に増加させ
た。
25mm, ijl rotation area width 350mm, number of holes 120,
The hole diameter was 0.2 mm, and the hole arrangement was linearly increased from 7 holes/pitch to 9 holes/pitch from the gas inlet side.

以下、第1表に示す成膜条件にて、前記電子写真用光導
電部材を作成した。
The photoconductive member for electrophotography was produced under the film forming conditions shown in Table 1 below.

作成した電子写真用光導電部材について画像特性評価を
行ったところ、従来のA−5i電子写真用光導電部材と
比較して、諸特性は13%以上向上し、画像欠陥の数は
10%以上減少し、実用に耐え得るものであった。
When evaluating the image characteristics of the produced photoconductive member for electrophotography, it was found that the various properties were improved by more than 13% and the number of image defects was reduced by more than 10% compared to the conventional A-5i photoconductive member for electrophotography. It was found to be practical.

実施例2 第2図及び第3図で示す成膜装置を用い、第2表に示す
成膜条件にて実施例1と同様の膜を作成した。以下作成
工程を詳述する。
Example 2 A film similar to that of Example 1 was produced using the film forming apparatus shown in FIGS. 2 and 3 under the film forming conditions shown in Table 2. The creation process will be explained in detail below.

直径80mmのAn製円筒型支持体6木を、1O−3T
orrに排気された堆積膜形成装置へ搬送した0円筒形
支持体6本は、第3図に示すように設置した。その後第
3図に示すモーター301を動作させ、支持体が1回転
/分するようにモーター301を設定した。支持体の回
転が安定した後、ヒータ(不図示)のスイッチを入れ、
支持体温度が250℃を保てるようにヒータの温度を設
定した。支持体温度が安定した後、まず堆積膜、形成用
気体状原料物質放出管4、a +’/ :e 曳t −
N’ フ/ (i u J )−j; J ’y ソH
’ 1(B2H8)と−酸化窒素ガス(NO)ガスの混
合ガス(SiH4:NO:B2H6=10:3:0.0
1)を750secm放出し、気体状ハロゲン系酸化剤
放出管からF2ガスを750secm放出して、40分
間反応させ、An支持体上に、電荷注入阻止層を3Bm
形成した。
6 wooden cylindrical supports made of Ann with a diameter of 80 mm, 1O-3T
The six cylindrical supports transported to the deposited film forming apparatus which was evacuated to orr were installed as shown in FIG. Thereafter, the motor 301 shown in FIG. 3 was operated, and the motor 301 was set so that the support rotated 1 revolution/minute. After the rotation of the support has stabilized, turn on the heater (not shown) and
The temperature of the heater was set so that the support temperature could be maintained at 250°C. After the support temperature is stabilized, first, the deposited film, the gaseous raw material discharge tube 4 for forming, a+'/:e pullt-
N' Fu/ (i u J)-j; J'y SoH
'1 (B2H8) and -nitrogen oxide gas (NO) gas mixture (SiH4:NO:B2H6=10:3:0.0
1) was discharged for 750 seconds, F2 gas was discharged for 750 seconds from the gaseous halogen-based oxidizer discharge tube, and the reaction was carried out for 40 minutes.
Formed.

ソノ後、S iH4、B2H6、Noガスノ混合ガスを
、SiH4のガスに連続的に切りかえて(不図示の切り
かえ装置によって)SiH4ガスを原料物質放出管から
放出し200分間反応させ、電荷注入阻止層上に感光層
を201Lm形成した。そして、SiH4ガスをS i
 H4ガスとC)(4ガスの混合ガス(S i H4:
 CH4=1:10)に連続的に替えて、750sec
m放出して40分間反応させ、感光層の上に、0゜5p
m表面保護層を形成した。堆積した電子写真用像形成部
材は、均一な膜厚であり、電子写真用像形成部材として
実用に充分な特性を示した。また原料ガスの利用効率は
70%を越えていた。
After sowing, the mixed gas of SiH4, B2H6, and No gas was continuously switched to SiH4 gas (by a switching device not shown), and the SiH4 gas was discharged from the raw material discharge tube and reacted for 200 minutes to form a charge injection blocking layer. A 201 Lm photosensitive layer was formed thereon. Then, SiH4 gas is
H4 gas and C) (mixed gas of 4 gases (S i H4:
CH4=1:10) continuously for 750 seconds
After releasing m and reacting for 40 minutes, apply 0°5p on the photosensitive layer.
A surface protective layer was formed. The deposited electrophotographic image forming member had a uniform thickness and exhibited sufficient characteristics for practical use as an electrophotographic image forming member. In addition, the raw material gas utilization efficiency exceeded 70%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に用いた堆積膜形成装置の模式
的な説明図、第2図は本発明の実施例に用いた複数の円
筒状支持体設置手段を設けた堆積膜形成装置の模式的な
断面図、第3図は第2図の堆積膜形成装置の模式的な透
視図、第4図は従来のプラズマCVDによる電子写真用
感光体製造装置の模式的概略図である。 101−−一−−−−−−−堆積膜形成室102 a−
−−−−−−−ガス放出管102 b−−−−−−−−
ガス放出管103−−−−−−−−−一支持体 104−−−−−−−−−一支持体加熱用ノ\ロゲンラ
ンプ105−−−−−−−−−一堆積空間 106−−−−−−一−−−排気管 107−−−−−−−−−−排気バルブ108−−一−
−−−−−−支持体支持具109−一−−−−−−−−
回転軸 110−−−−−−−−−一駆動装置 111−−−−−−−−m−導線 112.113−−ガス供給パイプ 114.115−−バルブ 116−−−−−−−−−一熱電対 117−−−−−−−−−一温度表示装置200−−−
−−−−−−一堆積膜形成室201−−−−−−−−−
−ガス放出管202−−−−−−−−−−ガス放出管2
03−−−−−−−−−一支持体加熱用ヒーター204
−−−−−−−−−一排気口 205−−−−−−−一−−支持体 206−〜−−−−−−−−支持体支持具301−−−
−一−−−−−支持体回転用モーター302−−−一−
−−−−−モーターコントローラー303 ’−−−−
−−−−−−支持体駆動用ギヤ304−−一−−−−−
−−支持体駆動用ギヤ305−−−−−−−−−一支持
体 306−−−−−−−−−一支持体支持具307−−−
−−−−−−−ガス放出管308−−−−−−−−−一
排気口 309−−−−−−−−−一堆積膜形成室401−−−
−−−−−−一反応室 402〜406−ガスボンベ 407〜411−マスフローコントローラー412〜4
16−流入バルブ 417〜421−流出バルブ 422〜426−バルブ 427〜431−出口圧ゲージ 432.433−一補助バルブ
FIG. 1 is a schematic explanatory diagram of a deposited film forming apparatus used in an example of the present invention, and FIG. 2 is a deposited film forming apparatus provided with a plurality of cylindrical support installation means used in an example of the present invention. FIG. 3 is a schematic perspective view of the deposited film forming apparatus of FIG. 2, and FIG. 4 is a schematic diagram of a conventional electrophotographic photoreceptor manufacturing apparatus using plasma CVD. 101--1-- Deposited film forming chamber 102 a-
----------- Gas discharge pipe 102 b---------
Gas discharge pipe 103 ---------- One support 104 --- One support heating lamp 105 --- One deposition space 106 --- -----1---Exhaust pipe 107------Exhaust valve 108---1-
---------Support support 109-1------
Rotating shaft 110-----Drive device 111-----M-Conducting wire 112, 113--Gas supply pipe 114, 115--Valve 116----- -One thermocouple 117---One temperature display device 200---
---------1 Deposited film forming chamber 201------
-Gas release pipe 202---------Gas release pipe 2
03----------1 Support heating heater 204
----------- Exhaust port 205--------Support body 206--------- Support body support 301----
−1−−−−Support rotation motor 302−−−1−
------Motor controller 303'----
--------Support drive gear 304---1------
--Support drive gear 305---One support 306---One support support 307---
-----------Gas discharge pipe 308------- Exhaust port 309------ Deposited film forming chamber 401---
------One reaction chamber 402-406-Gas cylinder 407-411-Mass flow controller 412-4
16-Inflow valves 417-421-Outflow valves 422-426-Valves 427-431-Outlet pressure gauge 432.433-Auxiliary valve

Claims (3)

【特許請求の範囲】[Claims] (1)堆積膜形成用の気体状原料物質と該原料物質に酸
化作用をする性質を有する気体状のハロゲン系酸化剤と
を接触させ堆積膜を形成する装置において、堆積膜形成
室内に具備された堆積膜形成用のガスを放出するガス放
出管が螺旋状であることを特徴とする堆積膜形成装置。
(1) In an apparatus for forming a deposited film by bringing a gaseous raw material for forming a deposited film into contact with a gaseous halogen-based oxidizing agent having the property of oxidizing the raw material, the device is provided in a deposited film forming chamber. A deposited film forming apparatus characterized in that a gas discharge tube for discharging a gas for forming a deposited film has a spiral shape.
(2)前記気体状原料物質放出用のガス放出管とハロゲ
ン系酸化剤放出用のガス放出管が、堆積膜形成室の中央
に設置した堆積膜形成用支持体設置手段をとりまくよう
に設置された特許請求の範囲第1項に記載の堆積膜形成
装置。
(2) The gas release pipe for releasing the gaseous raw material and the gas release pipe for releasing the halogen-based oxidizing agent are installed so as to surround the deposited film forming support installation means installed in the center of the deposited film forming chamber. A deposited film forming apparatus according to claim 1.
(3)前記気体状原料物質放出用のガス放出管とハロゲ
ン系酸化剤放出用のガス放出管の周囲に、複数の堆積膜
形成用の円筒状支持体設置手段を設けた特許請求の範囲
第1項に記載の堆積膜形成装置。
(3) A plurality of cylindrical support installation means for forming a deposited film are provided around the gas discharge pipe for discharging the gaseous raw material and the gas discharge pipe for discharging the halogenated oxidizing agent. The deposited film forming apparatus according to item 1.
JP61073104A 1986-03-31 1986-03-31 Deposited film forming device Pending JPS62230978A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61073104A JPS62230978A (en) 1986-03-31 1986-03-31 Deposited film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61073104A JPS62230978A (en) 1986-03-31 1986-03-31 Deposited film forming device

Publications (1)

Publication Number Publication Date
JPS62230978A true JPS62230978A (en) 1987-10-09

Family

ID=13508665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61073104A Pending JPS62230978A (en) 1986-03-31 1986-03-31 Deposited film forming device

Country Status (1)

Country Link
JP (1) JPS62230978A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
CN106191990A (en) * 2016-08-30 2016-12-07 上海华力微电子有限公司 A kind of air intake installation of boiler tube

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7992318B2 (en) * 2007-01-22 2011-08-09 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
US8186077B2 (en) 2007-01-22 2012-05-29 Tokyo Electron Limited Heating apparatus, heating method, and computer readable storage medium
CN106191990A (en) * 2016-08-30 2016-12-07 上海华力微电子有限公司 A kind of air intake installation of boiler tube

Similar Documents

Publication Publication Date Title
JPH0651909B2 (en) Method of forming thin film multilayer structure
JPS62152171A (en) Thin-film transistor
US4900694A (en) Process for the preparation of a multi-layer stacked junction typed thin film transistor using seperate remote plasma
JPS62151573A (en) Deposited film forming device
JPS62139876A (en) Formation of deposited film
US4834023A (en) Apparatus for forming deposited film
JPS62156813A (en) Thin film semiconductor element and forming method thereof
JPS62151572A (en) Deposited film forming device
JPS62230978A (en) Deposited film forming device
JPS62158873A (en) Multi-layered structure of thin film and its formation
JPS62151571A (en) Deposited film forming device
JP2531649B2 (en) Deposited film formation method
JPS63234513A (en) Deposition film formation
JPS6296675A (en) Formation of deposited film
JPS6299463A (en) Deposited film formation
JP2547728B2 (en) Deposition film forming equipment
JPS6299465A (en) Deposited film formation
JPH0651907B2 (en) Method of forming thin film multilayer structure
JPS6299466A (en) Deposited film formation
JPS6299464A (en) Deposited film formation
JPH0645892B2 (en) Deposited film formation method
JPS6296674A (en) Formation of deposited film
JPS62163313A (en) Thin-film multilayer structure and forming method thereof
JPS62165321A (en) Device for formation of deposit film
JPS62163319A (en) Forming device for deposit film