JPS62230667A - Manufacture of ceramics - Google Patents

Manufacture of ceramics

Info

Publication number
JPS62230667A
JPS62230667A JP62065893A JP6589387A JPS62230667A JP S62230667 A JPS62230667 A JP S62230667A JP 62065893 A JP62065893 A JP 62065893A JP 6589387 A JP6589387 A JP 6589387A JP S62230667 A JPS62230667 A JP S62230667A
Authority
JP
Japan
Prior art keywords
crystal grains
porcelain
zirconium oxide
tetragonal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62065893A
Other languages
Japanese (ja)
Other versions
JPH0235701B2 (en
Inventor
正 小田切
渡辺 徹男
俊三 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP62065893A priority Critical patent/JPS62230667A/en
Publication of JPS62230667A publication Critical patent/JPS62230667A/en
Publication of JPH0235701B2 publication Critical patent/JPH0235701B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高強度でかつ特定温度領域における長時間使用
による経時劣化の極めて少ないZrO□−Y2O2系の
ジルコニア磁器の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing ZrO□-Y2O2-based zirconia porcelain which has high strength and exhibits extremely little deterioration over time due to long-term use in a specific temperature range.

従来、ZrO□−Y2O,系のジルコニア磁器の製造法
としては、立方晶のみより成る完全安定化ジルコニア磁
器の製造法と、立方晶と単斜晶より成る部分安定化ジル
コニア磁器の製造法が知られており、これらの製造法に
よって得られるジルコニア磁器はいずれも耐熱材料、固
体電解質等として使用されている。このうち完全安定化
ジルコニア磁器は、常温から約1500℃迄の温度範囲
において安定であり長時間使用による経時劣化もほとん
ど無いものであるが、強度が低いので例えば自動車排ガ
ス中の酸素濃度を検出する酸素センサー用固体電解質と
して利用した場合、熱衝撃によって極めて破損しやすい
という欠点があった。一方立方晶と単斜晶よりなる部分
安定化ジルコニア磁器は完全安定化ジルコニア磁器に較
べると強度は大きく耐熱衝撃性もよいものであるが、2
00℃ないし300″Cという特定温度領域における強
度の経時劣化が極めて大きく、該温度で長時間使用した
場合、磁器表面に微細なりランクが多数発生して吸水性
を示すようになり著しく強度が低下し、ついには破損す
るという重大な欠点を有しているものであった。
Conventionally, methods for manufacturing ZrO□-Y2O system zirconia porcelain include a method for manufacturing fully stabilized zirconia porcelain consisting only of cubic crystals, and a method for manufacturing partially stabilized zirconia porcelain consisting of cubic crystals and monoclinic crystals. All of the zirconia porcelains obtained by these manufacturing methods are used as heat-resistant materials, solid electrolytes, etc. Of these, fully stabilized zirconia porcelain is stable in the temperature range from room temperature to approximately 1500°C and hardly deteriorates over time due to long-term use, but its strength is low, so it is used to detect, for example, the oxygen concentration in automobile exhaust gas. When used as a solid electrolyte for oxygen sensors, it has the disadvantage of being extremely susceptible to damage due to thermal shock. On the other hand, partially stabilized zirconia porcelain consisting of cubic and monoclinic crystals has higher strength and better thermal shock resistance than fully stabilized zirconia porcelain.
In the specific temperature range of 00℃ to 300''C, the strength deteriorates significantly over time, and when used for a long time at this temperature, many fine cracks appear on the porcelain surface and it becomes water absorbent, resulting in a significant decrease in strength. However, it had the serious drawback of eventually breaking.

これはZrO,−Y、0.系部分安定化ジルコニア磁器
では約1soo’cの焼成温度において正方晶である結
晶粒子が約1500℃から室温への冷却中に500℃付
近で単斜晶に相変態を起こし、その際生ずる体積変化に
より磁器中に過大な応力が加わりそのため極めて微小な
りランクが結晶粒子内に多数発生し、このクラック20
0℃ないし300℃の特定温度領域に長時間おかれると
拡大しやがて磁器破壊に至るものであると考えられる。
This is ZrO, -Y, 0. In system partially stabilized zirconia porcelain, at a firing temperature of about 1 soo'c, tetragonal crystal grains undergo a phase transformation to monoclinic crystal grains at around 500 °C during cooling from about 1500 °C to room temperature, and the volume change that occurs at this time. As a result, excessive stress is applied to the porcelain, resulting in many extremely small cracks occurring within the crystal grains.
It is thought that if left in a specific temperature range of 0°C to 300°C for a long time, it will expand and eventually lead to porcelain destruction.

さらに、立方晶と単斜晶より成る部分安定化ジルコニア
磁器は室温から約800℃の間で加熱冷却を繰り返すと
500″C付近で起る単斜晶と正方晶との相変態により
熱膨張曲線が加熱方向と冷却方向で異なるいわゆるヒス
テリシス曲線となり、かつ室温にもどしたときの寸法が
加熱冷却の前後で異なるので高精度の寸法が維持できな
い欠点があった。
Furthermore, when partially stabilized zirconia porcelain consisting of cubic and monoclinic crystals is repeatedly heated and cooled between room temperature and approximately 800°C, the thermal expansion curve changes due to the phase transformation between monoclinic and tetragonal crystals that occurs around 500"C. has a so-called hysteresis curve that differs in the heating direction and the cooling direction, and the dimensions when returned to room temperature are different before and after heating and cooling, so there is a drawback that highly accurate dimensions cannot be maintained.

本発明は、従来のこのような部分安定化ジルコニア磁器
の欠点を解消し、優れた強度を有するとともに200℃
ないし300℃特定温度領域における強度の経時劣化を
著しく改良し、かつ室温から約800℃までの熱膨張曲
線に相変態によるヒステリシス現象がなく、室温におけ
る高い寸法精度を維持できるジルコニア磁器の製造法で
あり、結晶子径が1000Å以下の酸化ジルコニウムま
たは無定形の酸化ジルコニウムとイツトリウム化合物よ
り成り、YJ3/ZrO2のモル比が2/98〜7/9
3の範囲である混合物を70重量%以上と、アルミナ、
シリカ、粘土のうちから選ばれた何れか1種または2種
以上の焼結助剤30重量%以下との混合物の成形体を1
000〜1550℃の温度範囲で焼成して、主として正
方晶の結晶粒子、または正方晶の結晶粒子と立方晶の結
晶粒子とより成り、正方晶の(200)面、立方晶の(
200)面および単斜晶の(IIT)面の各々X線回折
線のピーク強度をT(200) 、C(200)および
M (111)としたとき次式 が成立し、かつ平均結晶粒子径が2μ以下で、200℃
ないし300℃における耐久性に優れているジルコニア
磁器を製造する磁器の製造法である。
The present invention eliminates the drawbacks of conventional partially stabilized zirconia porcelain, has excellent strength, and has a temperature resistance of 200°C.
A manufacturing method for zirconia porcelain that significantly improves the aging deterioration of strength in a specific temperature range of 300 to 300 degrees Celsius, has no hysteresis phenomenon due to phase transformation in the thermal expansion curve from room temperature to about 800 degrees Celsius, and maintains high dimensional accuracy at room temperature. It is made of zirconium oxide or amorphous zirconium oxide and yttrium compound with a crystallite diameter of 1000 Å or less, and the molar ratio of YJ3/ZrO2 is 2/98 to 7/9.
70% by weight or more of a mixture in the range of 3, alumina,
1 molded body of a mixture with 30% by weight or less of a sintering aid of one or more selected from silica and clay.
It is fired in a temperature range of 000 to 1550°C, and is mainly composed of tetragonal crystal grains, or tetragonal crystal grains and cubic crystal grains.
When the peak intensities of the X-ray diffraction lines of the (200) plane and the monoclinic (IIT) plane are respectively T(200), C(200), and M(111), the following formula holds true, and the average crystal grain size is less than 2μ, 200℃
This is a porcelain production method for producing zirconia porcelain that has excellent durability at temperatures ranging from 300°C to 300°C.

すなわち、本発明は200℃〜300″Cの特定温度領
域における強度の経時劣化が極めて少な(、がつ室温〜
800℃の温度領域での加熱冷却による寸法変化のない
ジルコニア磁器としては、yZo3./Zr(hのモル
比が2/98〜7/93であり、各々の結晶粒子の結晶
相が主として正方晶の結晶粒子、または正方晶の結晶粒
子と立方晶の結晶粒子とより成り特定の焼結助剤を30
!I%以下含有し、かつ平均結晶粒子径が2μ以下であ
る、すなわちY2O:l/ Zrozモル比、結晶粒子
の結晶相、焼結助剤、平均結晶粒子径という要件のいず
れも満たすことが大切であることを究明し、そのために
は成形体を構成する酸化ジルコニウムの結晶子径が特定
粒径以下または無定形であることが最も重要であるとと
もに、安定化剤の量および焼成温度等が特定範囲内であ
ることが必要であることを幾多の研究の結果究明したこ
とにもとづくものである。
In other words, the present invention shows extremely little deterioration of strength over time in the specific temperature range of 200°C to 300″C (from room temperature to
As a zirconia porcelain that does not undergo dimensional change due to heating and cooling in a temperature range of 800°C, yZo3. /Zr(h) has a molar ratio of 2/98 to 7/93, and the crystal phase of each crystal grain is mainly composed of tetragonal crystal grains, or tetragonal crystal grains and cubic crystal grains, and has a specific 30 sintering aids
! It is important that the content is 1% or less and the average crystal grain size is 2μ or less, that is, the requirements of Y2O:l/Zroz molar ratio, crystal phase of crystal grains, sintering aid, and average crystal grain size are satisfied. To this end, it is most important that the crystallite size of the zirconium oxide constituting the compact is below a certain particle size or that it is amorphous, and that the amount of stabilizer and firing temperature are specified. This is based on the results of numerous studies that have revealed that it is necessary to be within this range.

本発明を以下に詳しく説明する。The invention will be explained in detail below.

本発明において200℃ないし300℃における耐久性
に優れていると称するは200℃ないし300″Cの間
の任意の温度において経時劣化が少ないことを意味する
。具体的な測定手段の一例としては実施例で述べるよう
大気中で200℃ないし300℃の間を10″C/分の
昇降温速度で加熱冷却を繰り返す耐久試験を行い、耐久
前と耐久後の抗折強度あるいは結晶相の変化を測定する
のが良い。耐久時間は長い程劣化の程度が増大するが、
1500時間程時間軸来の立方晶と単斜晶より成る部分
安定化ジルコニア磁器と、また3000時間程度で焼結
助剤を全く含まない主として正方晶の結晶粒子、または
正方晶の結晶粒子と立方晶の結晶粒子とより成るジルコ
ニア磁器との差が明瞭となる。
In the present invention, "excellent durability at 200°C to 300°C" means that there is little deterioration over time at any temperature between 200°C and 300''C. As described in the example, a durability test was conducted in which heating and cooling were repeated between 200°C and 300°C in the air at a heating and cooling rate of 10"C/min, and changes in bending strength or crystal phase were measured before and after durability testing. It's good to do that. The longer the durability time, the greater the degree of deterioration.
Partially stabilized zirconia porcelain consisting of cubic and monoclinic crystals for about 1,500 hours, and mainly tetragonal crystal grains containing no sintering aids, or tetragonal crystal grains and cubic crystals for about 3,000 hours. The difference between the zirconia porcelain and the crystal grains becomes clear.

焼結後のジルコニア磁器が、主として正方晶の結晶粒子
、または正方晶の結晶粒子と立方晶の結晶粒子とより安
定的に成るためには、前述のとおり成形体を構成する酸
化ジルコニウムは特定結晶子径すなわち1000Å以下
又は無定形、好ましくは結晶子径が700人〜300人
であることがよい。
In order for the zirconia porcelain after sintering to be more stable with mainly tetragonal crystal grains, or with tetragonal crystal grains and cubic crystal grains, the zirconium oxide constituting the molded body must be made of specific crystals as described above. It is preferable that the crystallite diameter is 1000 Å or less or amorphous, and preferably the crystallite diameter is 700 to 300 crystallites.

すなわち成形体を構成する酸化ジルコニウムの結晶子径
とジルコニア磁器の結晶相との関係をX線回折強度比で
表わすと、例えば第1図および第2図に示すとおり、結
晶子径が700Å以下の範囲または無定形では主として
正方晶の結晶粒子(H領域)、または正方晶の結晶粒子
と立方晶の結晶粒子(H’領領域とより成っており、7
00〜1000人の範囲では、これらにわずかに単斜晶
の結晶粒子が混入する程度(■領域)であるが1000
人を超えると急激に単斜晶の結晶粒子が増加する( J
 eI域)。
In other words, when the relationship between the crystallite diameter of the zirconium oxide constituting the molded body and the crystalline phase of the zirconia porcelain is expressed as an X-ray diffraction intensity ratio, for example, as shown in Figures 1 and 2, the crystallite diameter is 700 Å or less. In the range or amorphous form, it mainly consists of tetragonal crystal grains (H region), or tetragonal crystal grains and cubic crystal grains (H' region),
In the range of 00 to 1000 people, there are only a few monoclinic crystal particles mixed in (region ■), but 1000
The number of monoclinic crystal grains increases rapidly when the number exceeds that of humans (J
eI area).

なお、結晶粒子がOμとは無定形の酸化ジルコニウムで
あることを示す。ただし無定形の酸化ジルコニウムを用
いる場合は焼成収縮が過大となるため、好ましくは結晶
の酸化ジルコニウムがよい。
Note that the crystal particles Oμ indicate that they are amorphous zirconium oxide. However, if amorphous zirconium oxide is used, the firing shrinkage will be excessive, so crystalline zirconium oxide is preferable.

ここで第1図および第2図中、T(200) 、C(2
00)M (111)はそれぞれ正方晶の(200)面
、立方晶の(200)面、単斜晶の(111)面のX線
回折線強度を示す。
Here, in Figures 1 and 2, T(200), C(2
00)M (111) indicates the X-ray diffraction line intensity of the tetragonal (200) plane, the cubic (200) plane, and the monoclinic (111) plane, respectively.

従って、ジルコニア磁器の結晶相を経時劣化の少ない主
として正方晶の結晶粒子、または正方晶の結晶粒子と立
方晶の結晶粒子とに安定的に維持するためには、成形体
を構成する酸化ジルコニウムは結晶子径が1000Å以
下または無定形でなければならないことが第1図および
第2図よりも明確である。ここで重要なことは特定の結
晶子径をもつ酸化ジルコニウムは酸化イツトリウム等の
安定化剤と固溶していないことである。固溶していない
原料を用いると焼成時に酸化ジルコニウムと安定化剤が
反応焼結を起こす。原料の段階で固溶していると単なる
固相焼結となる。特に本発明の磁器の場合、反応焼結を
起こす固相焼結より焼成温度を下げることができ、磁器
の粒成長を抑制し、結果としてより正方晶の結晶粒子が
安定し、200℃ないし300℃での耐久性が良好とな
る。ここで、原料調製時に例えばジルコニウム化合物と
イツトリウム化合物との混合溶液を共沈によって酸化ジ
ルコニウムと酸化イツトリウムとした原料であっても、
酸化ジルコニウムと酸化イツトリウムが固溶していなけ
れば差しつかえない。
Therefore, in order to stably maintain the crystalline phase of zirconia porcelain as mainly tetragonal crystal grains or tetragonal crystal grains and cubic crystal grains with little deterioration over time, the zirconium oxide constituting the molded body must be It is clearer from FIGS. 1 and 2 that the crystallite diameter must be 1000 Å or less or the crystallite must be amorphous. What is important here is that zirconium oxide having a specific crystallite diameter is not dissolved in solid solution with a stabilizer such as yttrium oxide. If a raw material that is not in solid solution is used, zirconium oxide and the stabilizer will react and sinter during firing. If solid solution is present at the raw material stage, it will simply be solid phase sintering. In particular, in the case of the porcelain of the present invention, the firing temperature can be lowered than that of solid-phase sintering, which causes reaction sintering, and grain growth of the porcelain is suppressed, resulting in more stable tetragonal crystal grains. Good durability at ℃. Here, even if the raw material is prepared by co-precipitating a mixed solution of a zirconium compound and a yttrium compound into zirconium oxide and yttrium oxide,
There is no problem as long as zirconium oxide and yttrium oxide are not in solid solution.

なお、結晶子径が1000Å以下または無定形の酸化ジ
ルコニウムは塩化ジルコニウム、硝酸ジルコニウム等の
熱分解等でも得られるが、好ましくは水酸化ジルコニル
(ZrO(OR)z ・nHzo)を200〜1100
℃の温度より好ましくは500〜1050℃の温度で熱
分解した酸化ジルコニウム粉末がよい。この場合水酸化
ジルコニルの熱分解温度が200℃未満では水酸化ジル
コニル中の水が完全に取れず、また1100℃を超える
と結晶子径は1000人を超えるので好ましくない。
Note that zirconium oxide with a crystallite diameter of 1000 Å or less or amorphous can be obtained by thermal decomposition of zirconium chloride, zirconium nitrate, etc., but preferably zirconyl hydroxide (ZrO(OR)z .nHz) is heated to 200 to 1100 Å.
Zirconium oxide powder thermally decomposed at a temperature of 500 to 1050°C is preferable. In this case, if the thermal decomposition temperature of zirconyl hydroxide is less than 200°C, water in the zirconyl hydroxide cannot be completely removed, and if it exceeds 1100°C, the crystallite size will exceed 1000, which is not preferable.

本発明の製造法においてはまず、酸化ジルコニウムとイ
ツトリウム化合物をYz03/Zr0zのモル比が2/
98〜7/93の範囲内となるように混合する。
In the production method of the present invention, first, zirconium oxide and yttrium compounds are mixed at a molar ratio of Yz03/Zr0z of 2/
Mix so that the ratio is within the range of 98 to 7/93.

この場合酸化ジルコニウムとイツトリウム化合物との混
合比がYzOi /ZrO□のモル比に換算して2/9
8〜7/93の範囲内であることが、経時劣化改善のた
めに極めて重要である。これは2/98未満では経時劣
化改善のための正方晶の結晶粒子の生成が無く、また7
/93を超えても正方晶の結晶粒子がほとんど含まれな
くなり立方晶の結晶粒子のジルコニア磁器となるからで
ある。
In this case, the mixing ratio of zirconium oxide and yttrium compound is 2/9 in terms of molar ratio of YzOi /ZrO□.
It is extremely important that the ratio is within the range of 8 to 7/93 in order to improve aging deterioration. This means that if it is less than 2/98, there will be no formation of tetragonal crystal grains to improve aging deterioration;
This is because even if it exceeds /93, almost no tetragonal crystal grains are contained, resulting in zirconia porcelain having cubic crystal grains.

焼結助剤は30重量%を超えると抗折強度を下げる、あ
るいは固体電解質として使う場合、体積抵抗率を上げる
等の影響がある。
If the sintering aid exceeds 30% by weight, it may lower the bending strength or, when used as a solid electrolyte, increase the volume resistivity.

また、イツトリウム化合物としては酸化イツトリウム、
塩化イツトリウム、硝酸イツトリウム、蓚酸イツトリウ
ム等が好ましく、この場合イツトリウム化合物としては
、酸化物に換算して約30モル%以下の例えばYb2O
3、5czO3,Nb2O2、Sm2O3等の希土類元
素酸化物あるいはCaO、MgO等で置換したものでも
よい。次いで、混合物をラバープレス成形、押出成形、
鋳込成形等の成形法により所定の形状に成形し、空気中
で1000〜1550℃の温度範囲内で焼成する。焼成
は1000〜1550℃の温度好ましくは1100〜1
450℃の温度範囲内で最高温度で1〜20時間保持す
る。焼成時間は一般に低温焼成のときほど長くする方が
よい。なお、焼成温度と磁器の結晶相との関係は、焼成
温度が1ooo’c未満あるいは1550℃を超えると
急激に単斜晶の生成が増大するので好ましくなく、10
00〜1550℃の温度範囲内であれば主として正方晶
または正方晶と立方晶の混合相が安定的に生成する。更
にyto。
In addition, yttrium compounds include yttrium oxide,
Yttrium chloride, yttrium nitrate, yttrium oxalate, etc. are preferable, and in this case, as the yttrium compound, for example, Yb2O in an amount of about 30 mol% or less in terms of oxide.
It may be substituted with rare earth element oxides such as 3,5czO3, Nb2O2, Sm2O3, or CaO, MgO, etc. The mixture is then rubber press molded, extruded,
It is molded into a predetermined shape by a molding method such as casting, and fired in air within a temperature range of 1000 to 1550°C. Firing at a temperature of 1000 to 1550°C, preferably 1100 to 1
Hold at maximum temperature within the temperature range of 450°C for 1-20 hours. Generally, it is better to make the firing time longer when firing at a lower temperature. The relationship between the firing temperature and the crystalline phase of porcelain is unfavorable if the firing temperature is less than 100°C or exceeds 1550°C because the formation of monoclinic crystals will rapidly increase.
Within the temperature range of 00 to 1550°C, mainly tetragonal crystals or a mixed phase of tetragonal and cubic crystals are stably produced. Furthermore, yto.

/ZrO2のモル比が好ましくは4/96〜7/93の
範囲では主として正方晶と立方晶より成る磁器が得られ
酸素イオン導電性が高<200℃〜300℃における経
時劣化が少なく固体電解質として好適である。
/ZrO2 molar ratio is preferably in the range of 4/96 to 7/93, a porcelain mainly consisting of tetragonal and cubic crystals is obtained, and the oxygen ion conductivity is high. <Deterioration over time at 200°C to 300°C is small, and it can be used as a solid electrolyte. suitable.

なお、酸化ジルコニウムとイツトリウム化合物との混合
物を200〜1200℃の温度で1〜10時間程時間熱
することによりイツトリウム化合物を熱分解して、さら
に必要に応じてボールミル等で解砕したものを原料とし
て使用すると酸化ジルコニウムと酸化イツトリウムの均
一な混合物が得られ、これを成形し焼成するとより緻密
な磁器ができ好ましいものである。ボールミル等による
解砕後の原料粒度は0.1〜10μ程度である。
Note that the yttrium compound is thermally decomposed by heating a mixture of zirconium oxide and a yttrium compound at a temperature of 200 to 1,200°C for about 1 to 10 hours, and if necessary, the material is crushed using a ball mill or the like. When used as a powder, a homogeneous mixture of zirconium oxide and yttrium oxide is obtained, and when this is molded and fired, a more dense porcelain is produced, which is preferable. The particle size of the raw material after crushing using a ball mill or the like is about 0.1 to 10 μm.

またシナ力、アルミナ、粘土のいずれか1つ以上の焼結
助剤は酸化ジルコニウムとインドリウム化合物の混合物
を成形するまでの任意の工程で添加できる。
Further, one or more sintering aids such as sinter, alumina, and clay can be added at any step before molding the mixture of zirconium oxide and indolium compound.

なお、本発明において酸化ジルコニウムの結晶子径はC
uKα線を用いたX線回折法で行ない、式D=0.89
λ/(B−b)cosθにより求めた。ここでDは求め
る酸化ジルコニウムの結晶子径、λはCuKα線の波長
で1.541人、Bは酸化ジルコニウムの単斜晶(II
T)面または正方晶(200)面の回折線の半減値幅(
ラジアン)のうち大きい方の値、bは内部標準として添
加する結晶子径の3000Å以上のα−石英の(101
)面の半減値幅(ラジアン)、θは酸化ジルコニウムの
半減値幅の測定に用いた回折線の回折角2θの1/2の
値である。
In addition, in the present invention, the crystallite diameter of zirconium oxide is C
Performed by X-ray diffraction method using uKα rays, formula D = 0.89
It was determined by λ/(B-b) cos θ. Here, D is the desired crystallite diameter of zirconium oxide, λ is the wavelength of the CuKα ray, which is 1.541, and B is the monoclinic crystal of zirconium oxide (II
T) plane or tetragonal (200) plane diffraction line half-value width (
radians), b is the larger value of α-quartz (101
) plane half-life width (radian), θ is the value of 1/2 of the diffraction angle 2θ of the diffraction line used to measure the half-life width of zirconium oxide.

次に実施例を述べる。Next, an example will be described.

第1表に示すように酸化ジルコニウムとイツトリウム化
合物を表中の組成となるようにボールミル混合した。そ
してその混合物を表中に熱分解の記載のあるものはその
条件で熱分解を行なってから焼結助剤を加えてボールミ
ルにて湿式粉砕し、乾燥した後それぞれの粉末をプレス
成形し、第1表記載の温度条件で焼成した。そして得ら
れた磁器について平均結晶粒子径およびX線回折線によ
る正方晶、立方晶、単斜晶の強度比および抗折強度を測
定した。なお結晶子径は成形体とする混合物を用いて測
定し、磁器のX線回折線強度比の測定は磁器の鏡面研磨
面を用いて行ない立方晶の(200)面、正方晶の(2
00)面および単斜晶の(111)面でのX線回折線ピ
ーク強度の比を求めた。また抗折強度は3.5 X3.
5 X50m+++の棒状に仕上げ3点曲げ法にて求め
た。また第1表中の耐久試験とは200℃ないし300
℃の間を10℃/分の昇降温速度で加熱、冷却を繰り返
した耐久試験であり、1500時間経過後、および30
00時間経過後、抗折強度を測定した。この時抗折強度
測定用のテストピースは耐久試験の前に所定の形状とし
てから耐久試験したものである。更に耐久試験前の抗折
強度に対する耐久試験後の抗折強度の割合をパーセント
で示した。また第1表中rB/AX100」の欄は耐久
試験1500時間後の抗折強度を初期の抗折強度に比較
した割合をパーセントで示し、rC/AX100」の欄
は耐久試験3000時間後の抗折強度を初期の抗折強度
に比較した割合をパーセントで示す。さらに第3図には
磁器の平均結晶粒子径に対するB/AX100の値を示
し、 第4図には磁器の平均結晶粒子径に対するC/A×10
0の値を示す。
As shown in Table 1, zirconium oxide and yttrium compounds were mixed in a ball mill to have the compositions shown in the table. Then, if the mixture is listed as thermally decomposed in the table, it is thermally decomposed under the conditions specified, a sintering aid is added, the mixture is wet-pulverized in a ball mill, and after drying, each powder is press-molded. It was fired under the temperature conditions listed in Table 1. The resulting porcelain was measured for its average crystal grain size, the intensity ratio of tetragonal, cubic, and monoclinic crystals by X-ray diffraction, and the bending strength. The crystallite diameter is measured using the mixture made into a compact, and the X-ray diffraction line intensity ratio of the porcelain is measured using the mirror-polished surface of the porcelain.
The ratio of the X-ray diffraction line peak intensities at the (00) plane and the monoclinic (111) plane was determined. Moreover, the bending strength is 3.5×3.
It was finished into a rod shape of 5 x 50m+++ and was determined by a three-point bending method. In addition, the durability test in Table 1 is 200℃ to 300℃.
This is a durability test in which heating and cooling were repeated between 10°C and 30°C at a rate of temperature rise and fall of 10°C/minute.
After 00 hours, the bending strength was measured. At this time, the test piece for measuring the bending strength was formed into a predetermined shape before the durability test. Furthermore, the ratio of the bending strength after the durability test to the bending strength before the durability test is shown in percentage. In Table 1, the column ``rB/AX100'' shows the ratio of the bending strength after 1500 hours of the durability test to the initial bending strength as a percentage, and the column ``rC/AX100'' shows the resistance after 3000 hours of the durability test. The ratio of the bending strength compared to the initial bending strength is expressed as a percentage. Furthermore, Fig. 3 shows the value of B/AX100 for the average crystal grain size of porcelain, and Fig. 4 shows the value of C/A x 10 for the average crystal grain size of porcelain.
Indicates a value of 0.

なお第1表には本発明の数値限定範囲外の例を参考例と
して合せ記載した。
Note that Table 1 also lists examples outside the numerically limited range of the present invention as reference examples.

第1表からも明らかなとおり本発明の製造法によるジル
コニア磁器は、主として正方晶の結晶粒子または正方晶
の結晶粒子と立方晶の結晶粒子とより成る平均結晶粒子
径が2μ以下のきわめて高強度で、かつ200℃〜30
0″Cにおける耐久試験後の耐久試験前に対する抗折強
度の変化が少ない磁器であることが確認された。
As is clear from Table 1, the zirconia porcelain manufactured by the manufacturing method of the present invention has extremely high strength and has an average crystal grain size of 2μ or less, which is mainly composed of tetragonal crystal grains or tetragonal crystal grains and cubic crystal grains. And 200℃~30
It was confirmed that the porcelain had little change in bending strength after the durability test at 0''C compared to before the durability test.

以上のべたとおり、本発明は200 ℃〜300℃の特
定温度領域における経時劣化の極めて少ないジルコニア
磁器としてはYzol / Zr0zのモル比が2/9
8〜7/93において結晶相が主として正方晶の結晶粒
子または正方晶の結晶粒子と立方晶の結晶粒子とより成
り、かつ特定の焼結助剤を30重量%以下含みかつ平均
結晶粒子径が2μ以下であることが大切であることを見
出し、そのためには成形体を構成する酸化ジルコニウム
が結晶子径1000Å以下又は無定形でYz01/ Z
rO,モル比が2/98〜7/93でかつ焼成温度が1
000〜1550″Cでなければならないことを究明し
たものであり、本発明の製造法により特定温度領域での
経時劣化が少なく熱処理による寸法変化がない機械的強
度が強いジルコニア磁器が製造できるものであり、それ
らの磁器は例えば耐熱材料、内燃機関構部品、サーミス
タ、切削バイトおよび固体電解質等として使用できるも
のであって、産業上極めて有用な磁器の製造法である。
As described above, the present invention is a zirconia porcelain with very little deterioration over time in a specific temperature range of 200°C to 300°C, with a Yzol/Zr0z molar ratio of 2/9.
8 to 7/93, the crystal phase is mainly composed of tetragonal crystal grains or tetragonal crystal grains and cubic crystal grains, and contains 30% by weight or less of a specific sintering aid, and has an average crystal grain size. We discovered that it is important that the particle size is 2 μ or less, and for this purpose, the zirconium oxide constituting the molded product must have a crystallite diameter of 1000 Å or less or be amorphous and Yz01/Z.
rO, molar ratio is 2/98 to 7/93 and calcination temperature is 1
It was determined that the temperature must be between 000 and 1550"C, and the manufacturing method of the present invention can produce zirconia porcelain with strong mechanical strength that has little deterioration over time in a specific temperature range and no dimensional change due to heat treatment. These porcelains can be used, for example, as heat-resistant materials, internal combustion engine components, thermistors, cutting tools, solid electrolytes, etc., and are an extremely useful method for producing porcelains industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は酸化ジルコニウム粉末の結晶子径
と磁器の結晶相との関係を示す説明図、第3図は磁器の
抗折強度(A)と耐久試験1500時間後の抗折強度(
B)との比(B/AX 100 )と平均結晶粒子径と
の関係を示す特性図、第4図は磁器の抗折強度(A)と
耐久試験3000時間後の抗折強度(C)との比(C/
Ax 100 )と平均結晶粒子径との関係を示す特性
図である。 第1図 第2図 第3図 第4図 乎均銘晶1fL″+径イμ)
Figures 1 and 2 are explanatory diagrams showing the relationship between the crystallite diameter of zirconium oxide powder and the crystal phase of porcelain, and Figure 3 is the flexural strength (A) of porcelain and the flexural strength after 1500 hours of durability test. (
B) A characteristic diagram showing the relationship between the ratio (B/AX 100) and the average crystal grain size. Figure 4 shows the relationship between the bending strength of porcelain (A) and the bending strength after 3000 hours of durability test (C). The ratio (C/
FIG. 2 is a characteristic diagram showing the relationship between Ax 100 ) and average crystal grain size. Figure 1 Figure 2 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、結晶子径が1000Å以下の酸化ジルコニウムまた
は無定形の酸化ジルコニウムとイットリウム化合物より
成り、Y_2O_3/ZrO_2のモル比が2/98〜
7/93の範囲である混合物を70重量%以上と、アル
ミナ、シリカ、粘土のうちから選ばれた何れか1種また
は2種以上の焼結助剤30重量%以下との混合物の成形
体を1000〜1550℃の温度範囲で焼成して、主と
して正方晶の結晶粒子、または正方晶の結晶粒子と立方
晶の結晶粒子とより成り、正方晶の(200)面、立方
晶の(200)面および単斜晶の(11■)面の各々X
線回折線のピーク強度をT(200)、C(200)お
よびM(11■)としたとき次式 (T(200)+C(200))/(T(200)+C
(200)+M(11■))≧0.7が成立し、かつ平
均結晶粒子径が2μ以下で、200℃ないし300℃に
おける耐久性に優れているジルコニア磁器を製造するこ
とを特徴とする磁器の製造法。
[Claims] 1. Consisting of zirconium oxide or amorphous zirconium oxide and yttrium compound with a crystallite diameter of 1000 Å or less, the molar ratio of Y_2O_3/ZrO_2 is from 2/98 to
A molded body of a mixture of 70% by weight or more of a mixture in the range of 7/93 and 30% by weight or less of one or more sintering aids selected from alumina, silica, and clay. By firing at a temperature range of 1000 to 1550°C, the resulting product is mainly composed of tetragonal crystal grains, or tetragonal crystal grains and cubic crystal grains, and the tetragonal (200) plane and the cubic (200) plane. and each of the monoclinic (11■) planes
When the peak intensities of the line diffraction lines are T(200), C(200) and M(11■), the following formula (T(200)+C(200))/(T(200)+C
(200)+M(11■))≧0.7, the average crystal grain size is 2μ or less, and zirconia porcelain is produced which has excellent durability at 200°C to 300°C. manufacturing method.
JP62065893A 1987-03-23 1987-03-23 Manufacture of ceramics Granted JPS62230667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62065893A JPS62230667A (en) 1987-03-23 1987-03-23 Manufacture of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62065893A JPS62230667A (en) 1987-03-23 1987-03-23 Manufacture of ceramics

Publications (2)

Publication Number Publication Date
JPS62230667A true JPS62230667A (en) 1987-10-09
JPH0235701B2 JPH0235701B2 (en) 1990-08-13

Family

ID=13300098

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62065893A Granted JPS62230667A (en) 1987-03-23 1987-03-23 Manufacture of ceramics

Country Status (1)

Country Link
JP (1) JPS62230667A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108163A (en) * 1987-10-20 1989-04-25 Murata Mfg Co Ltd Solid electrolytic substance
JPH03218967A (en) * 1989-11-06 1991-09-26 Osaka Cement Co Ltd High-strength alumina-zirconia-based ceramics sintered body
US5421560A (en) * 1994-02-15 1995-06-06 Ajf, Inc. Slag control apparatus for molten metal vessels

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108163A (en) * 1987-10-20 1989-04-25 Murata Mfg Co Ltd Solid electrolytic substance
JPH03218967A (en) * 1989-11-06 1991-09-26 Osaka Cement Co Ltd High-strength alumina-zirconia-based ceramics sintered body
US5421560A (en) * 1994-02-15 1995-06-06 Ajf, Inc. Slag control apparatus for molten metal vessels

Also Published As

Publication number Publication date
JPH0235701B2 (en) 1990-08-13

Similar Documents

Publication Publication Date Title
US4360598A (en) Zirconia ceramics and a method of producing the same
KR101094596B1 (en) A Zirconia Sintered Body and a Method for Producing the Same
JPS63139050A (en) Zirconia base ceramics
Kimura et al. Fabrication of grain‐oriented Bi2WO6 ceramics
JPH0352425B2 (en)
JPS6121184B2 (en)
US4690910A (en) Sintered product of zirconia and method of producing the same
JPS6121185B2 (en)
JPS6126562A (en) Zirconia sintered body
JPS62230667A (en) Manufacture of ceramics
JP3736649B2 (en) Zirconia sintered body, method for producing the same, and pulverized component material
JPH0258232B2 (en)
JP2533336B2 (en) Sintered compact made of partially stabilized zirconium oxide and method for producing the same
JPS6186466A (en) Spinel ceramics
JPH01308868A (en) Ceramic of aluminum titanate and production thereof
JPS6051664A (en) Manufacture of lead zirconate titanate ceramic
JPH0230663A (en) Sintered material of zirconia and production thereof
JPH01261267A (en) Solid electrolyte and its production
JP2000095564A (en) Zirconia sintered body, its production and material for pulverizing member
JPS605067A (en) Manufacture of zirconia sintered body
JPS6357383B2 (en)
JPS62108766A (en) Zirconia sintered body
JP2616772B2 (en) Method for producing proton conductive ceramics
Ananthapadmanabhan et al. Destabilization of calcia stabilized zirconia
JP2587704B2 (en) Zirconia sintered body and method for producing the same