JPS62230466A - Mold for high temperature molten metal and production of high temperature molten metal product - Google Patents

Mold for high temperature molten metal and production of high temperature molten metal product

Info

Publication number
JPS62230466A
JPS62230466A JP28502386A JP28502386A JPS62230466A JP S62230466 A JPS62230466 A JP S62230466A JP 28502386 A JP28502386 A JP 28502386A JP 28502386 A JP28502386 A JP 28502386A JP S62230466 A JPS62230466 A JP S62230466A
Authority
JP
Japan
Prior art keywords
cavity
molten metal
mold
gas vent
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28502386A
Other languages
Japanese (ja)
Other versions
JPH084904B2 (en
Inventor
Akio Nakano
昭夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP28502386A priority Critical patent/JPH084904B2/en
Publication of JPS62230466A publication Critical patent/JPS62230466A/en
Publication of JPH084904B2 publication Critical patent/JPH084904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To remove generated gas and wrapped air by forming one side or both sides of one pair of male and female forming molds by ceramics and assembling a porous permeable material having heat resistance in a core part or an insert part to form gas vent passage. CONSTITUTION:In the molding process, molten metal is pressurized by moving the insert 2 to downward as sucking forcedly in a cavity (b) through the porous ceramics 7'a in the female mold a2. At the same time or at a little before time of the pressurize, the sucking is started through the porous ceramics 3a, 3'a of the inserts 2, and by such a forced suction through the porous ceramics 3a, 3'a and 7'a, the gas generated in the cavity (b) and the wrapped air are removed to out of the cavity (b).

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、高温溶湯用の成形型と、この成形型を用い
る高温溶解金属製品の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a mold for high-temperature molten metal and a method for manufacturing high-temperature molten metal products using this mold.

(従来の技術) 従来のダイカスト法、溶湯鋳造法などで使用される成形
型を融点900〜1600℃位の溶解金属の成形に用い
ると、成形型が耐熱性に欠ける為に5000〜1000
0シヨツトで使用出来なくなり、実用性に劣る。
(Prior art) When molds used in conventional die casting methods, molten metal casting methods, etc. are used to mold molten metal with a melting point of about 900 to 1,600 degrees Celsius, the molds lack heat resistance and
It becomes unusable at 0 shots and is less practical.

また、高温溶解金属は、凝固時におけるガス発生mが多
いが、従来の成形型は、孔又は溝にてガス抜き路を形成
しており、回路内に溶湯が流入し、溶湯表面が凝固膜で
覆われた後には、有効なガス抜きが行なわれず、引は巣
やガス巣が発生してしまう問題がある。
In addition, high-temperature molten metals generate a lot of gas during solidification, but conventional molds have holes or grooves to form gas vent passages, so that the molten metal flows into the circuit and the surface of the molten metal becomes a solidified film. After being covered with gas, there is a problem in that effective degassing is not carried out, resulting in the formation of evacuation cavities and gas cavities.

そこで、上記した問題を解決する為に、第3図に示す如
き高温溶湯用成形型が開発された。
Therefore, in order to solve the above-mentioned problems, a mold for high-temperature molten metal as shown in FIG. 3 was developed.

この成形型(八゛)は、入子部(22)中子部(25)
  (25°)を備える雄雌一対の成形型(b+ >(
bz )の一方又は両方をセラミックスにするとともに
両型に加熱及び冷却機構を設【プ、且つ前記入子部(2
2)及び中子部(25)(25’ )に耐熱製を有する
多孔質性通気材を組込んでガス抜き路(23)  (2
7)を形成せしめたものであり、成形時には雄雌両型(
bl)(bl)を型合させて加圧しく第4図)、これと
同時にガス抜き路(23)  (27)からバキューム
機構(C)によって吸引を開始して、凝固中にキャビテ
ィ内で発生するガスや巻込み空気を排除するものである
This mold (8゛) has a nesting part (22), a core part (25)
(25°) A pair of male and female molds (b+ >(
One or both of the molds (bz) are made of ceramic, and both molds are equipped with a heating and cooling mechanism.
2) and the core portions (25) (25') incorporate a heat-resistant porous ventilation material to create a gas vent passage (23) (2).
7), and both male and female molds (
bl) (bl) is molded and pressurized (Fig. 4), and at the same time, suction is started by the vacuum mechanism (C) from the gas vent passages (23) and (27) to remove the gas generated in the cavity during solidification. This eliminates gas and trapped air.

この成形型(八°)は上記した様に、雄型(bl)又は
雌型(bl)の一方又は両方をセラミックから形成した
ものであるから耐熱性が極めてnくなる他に、ガス抜き
路を、耐熱性を有する多孔質性通気材でもって形成した
ので、前記通気材に当った溶湯がそれ以上型外に漏出せ
ず、従来型のように漏出溶湯による凝固膜が形成されず
に成形工程の間、凝固時に発生するガス等を有効に排除
することができるので、ガス巣の極めて少ない製品を作
ることが可能である。
As mentioned above, this mold (8°) has one or both of the male mold (bl) and female mold (bl) made of ceramic, so it has extremely high heat resistance and also has a gas venting path. is made of a heat-resistant porous ventilation material, so the molten metal that hits the ventilation material no longer leaks out of the mold, and molding is possible without forming a coagulated film due to leaked molten metal as in conventional molds. During the process, gases generated during solidification can be effectively eliminated, making it possible to produce products with extremely few gas pockets.

しかし、上述した成形型を用いて製造しても、成形製品
の形状によってどうしてもガス巣が出来てしまうことが
あった。
However, even when the molded product is manufactured using the above-mentioned mold, gas pockets may inevitably be formed depending on the shape of the molded product.

これは、製品の一部に肉厚状の部分が有る場合であって
、この場合肉厚部に流れ込んだ溶湯は、肉薄部分に比較
して凝固するのが遅い為、他の肉薄部分が凝固してガス
抜き路から吸引できなくなった優も肉厚部の材料からガ
スが発生する為に生ずるものである。
This occurs when a part of the product has a thick wall, and in this case, the molten metal that flows into the thick wall solidifies more slowly than the thin wall, so the other thin wall parts solidify. This problem occurs because gas is generated from the material in the thick part of the wall, making it impossible to suction from the gas vent passage.

(技術的課題) 本発明の技術的課題は、一部に肉厚部分が形成される製
品であっても、この肉厚部から発生するガスを排除せし
めることである。
(Technical Problem) A technical problem of the present invention is to eliminate gas generated from the thick part even if the product is partially formed with a thick part.

(技術的課題を解決する為の手段) 第1発明及び第2発明が上記した技術的課題を解決する
為に講する手段を列記する。
(Means for solving the technical problem) The means taken by the first invention and the second invention to solve the above-mentioned technical problem will be listed.

第1発明は、中子部又は入子部を備えるJltfll一
対の成形型の一方又は両方をセラミックスにて形成し、
前記中子部又は入子部に耐熱性を有する多孔質性通気材
を組込んでガス広き路を形成せしめ、且つ、′Mi雌両
型のキャビティ面における所定部分から型外へ抜ける補
助ガス抜き路を設けると共に、該補助ガス抜き路のキャ
ビティ面付近に湯だまり部を形成し、同補助ガス抜き路
出口にはセラミックス、若しくは耐熱性を有する多孔質
性通気材から成るガス抜き栓を抜き差し自在に設けたも
のである。
The first invention is to form one or both of a pair of Jltflll molds including a core part or a nesting part from ceramics,
A heat-resistant porous ventilation material is incorporated into the core part or the nesting part to form a wide gas path, and an auxiliary gas vent that escapes from a predetermined part of the cavity surface of the Mi female and female molds to the outside of the mold. In addition to providing a channel, a hot water pool is formed near the cavity surface of the auxiliary gas vent passage, and a gas vent plug made of ceramics or a heat-resistant porous ventilation material can be freely inserted and removed at the outlet of the auxiliary gas vent passage. It was established in

第2発明は、中子部又は入子部を備える雄健一対の成形
型の一方又は両方をセラミックスにて形成し、前記中子
部又は入子部に耐熱性を有する多孔質性通気材を組込ん
でガス抜き路を形成せしめ、且つ、雄健両型のキャビテ
ィ面に設ける所定部分から型外へ抜ける補助ガス抜き路
を設けると共に、該補助ガス抜き路のキャビティ面付近
に湯だまり部を形成し、同補助ガス抜き路出口にはセラ
ミックス、若しくは耐熱性を有する多孔質性通気材から
成るガス抜き栓を汰き差し自在に設けて構成した高温溶
湯用成形型のキャビティ内に所定量の溶湯を注入し、し
かる後、キャビティ内を加圧せしめ、該キャピテイ内の
溶湯が凝固する過程で発生するガス等を中子部又は入子
部のガス抜き路から吸引して排除すると共に、キャビテ
ィ内の加圧開始から所定のタイミングで補助ガス抜き路
のガス抜き栓を微少吊抜動して、キャビティ内の所定部
分に発生するガスを補助ガス抜き路の湯だまり部へ排出
するものである。
A second aspect of the invention is that one or both of a pair of molds having a core part or a nesting part are made of ceramics, and a porous ventilation material having heat resistance is assembled in the core part or the nesting part. In addition, an auxiliary gas venting path is provided which exits from a predetermined part provided on the cavity surface of the mold to the outside of the mold, and a hot water pool is formed near the cavity surface of the auxiliary gas venting path. A predetermined amount of molten metal is poured into the cavity of a mold for high-temperature molten metal, which has a gas vent plug made of ceramics or heat-resistant porous ventilation material installed at the outlet of the auxiliary gas vent passage. After that, the inside of the cavity is pressurized, and the gas generated during the solidification process of the molten metal in the cavity is sucked out from the gas vent passage of the core part or the insert part, and the inside of the cavity is At a predetermined timing from the start of pressurization, the gas vent plug in the auxiliary gas vent passage is lifted and pulled out slightly to discharge the gas generated in a predetermined portion within the cavity to the pool of water in the auxiliary gas vent passage.

(作用) (1)以上の構成によれば、型合復、キャビティ内で発
生するガスや溶湯の注入時に巻込まれた巻込み空気は、
多孔質性通気材からなるガス抜き路より排除され、また
、凝固の遅れる肉厚部内に発生する内部発生ガスは、ガ
ス抜き栓を扱動せしめることによって、補助ガス抜き路
の湯だまり内に排出される。
(Function) (1) According to the above configuration, the entrained air that is drawn in during mold joining, gas generated in the cavity, and injection of molten metal,
Internally generated gas that is removed from the gas vent passage made of porous ventilation material and that occurs within the thick wall where solidification is delayed can be discharged into the pool of hot water in the auxiliary gas vent passage by operating the gas vent plug. be done.

(2)前記した方法によれば、キャビティ内に溶湯を注
入した後にキャビティ内を加圧すると、キャビティ内で
凝固する過程で溶湯から発生するガスや巻込み空気等は
中子部又は入子部に設けたガス抜き路から吸引して排除
される。
(2) According to the method described above, when the inside of the cavity is pressurized after pouring the molten metal into the cavity, the gases and air entrained in the molten metal generated from the molten metal during the solidification process in the cavity will be absorbed into the core or insert. It is removed by suction through the gas vent passage provided in the.

また、キャビティ内の加圧開始から所定のタイミングで
ガス抜き栓を微岳抜動すると、キャビティ内の所定部分
(凝固が遅れる部分)に流れ込んだ溶湯から発生するガ
スがキャビティ内の圧力によって補助ガス抜き路の湯だ
まり部に押し出された後、凝固が完了する。
In addition, when the gas vent plug is pulled out at a predetermined timing from the start of pressurization inside the cavity, the gas generated from the molten metal that has flowed into a predetermined part of the cavity (the part where solidification is delayed) is released into the auxiliary gas by the pressure inside the cavity. Solidification is completed after being extruded into the pool of water in the outlet channel.

(効果) 第1発明は、以上の如きものであるから、キャビティ内
に溶湯が凝固する過程で発生するガスや溶湯の注入時に
巻込まれた巻込み空気をガス抜き路より排除することが
でき、また、キャビティ内の加圧開始から所定のタイミ
ングでガス抜き栓を抜動することによって、凝固が遅れ
る製品の肉厚部などから発生する内部発生ガスも補助ガ
ス抜き路の湯だまり部に排除することができる。従って
、一部に肉厚状の部分が形成される形状の製品も、肉厚
部にガス巣を残すことなく成形することができる。
(Effects) Since the first invention is as described above, the gas generated during the solidification process of the molten metal in the cavity and the trapped air caught during the injection of the molten metal can be removed from the gas vent passage, In addition, by removing the gas vent plug at a predetermined timing from the start of pressurization inside the cavity, internally generated gas generated from thick parts of the product where solidification is delayed is also removed to the pool of water in the auxiliary gas vent path. be able to. Therefore, even products having a shape in which a thick portion is formed can be molded without leaving gas pockets in the thick portion.

また、雄健両型の一方又は両方をセラミックスから形成
したので、融点900〜1600℃位の高温溶解金属の
成形に必要な耐熱性を備え、長期間にわたる使用にも十
分に耐えることができる。
In addition, since one or both of the Yuken molds is made of ceramics, it has the heat resistance necessary for molding high-temperature molten metal with a melting point of about 900 to 1600°C, and can sufficiently withstand long-term use.

第2発明は、前述した構成の成形型のキャビティに溶湯
を注入し後、該キャビティ内を加圧してキャビティ内の
圧力を高めると共に、中子部又は入子部に設けたガス抜
き路から吸引するから、溶湯凝固中にキャビティ内で発
生するガスのほとんどを上記ガス抜き路から速やかに排
除することができる。
In the second invention, after injecting the molten metal into the cavity of the mold having the above-mentioned configuration, the inside of the cavity is pressurized to increase the pressure inside the cavity, and at the same time suction is carried out from the gas vent passage provided in the core part or the insert part. Therefore, most of the gas generated within the cavity during solidification of the molten metal can be promptly removed from the gas vent passage.

また、キャビティ内の加圧開始から所定のタイミングで
ガス抜き栓を微聞抜動することにより、キャビティ内に
おける所定部分く伯の部分に比べて凝固が遅れる部分)
に発生する内部発生ガスを、同郡がlIi固するまでの
タイミングと、キャビティ内の圧力とを利用して、補助
ガス抜き路の湯だまり内へ有効に排出せしめることが可
能である。
In addition, by slightly withdrawing the gas vent plug at a predetermined timing from the start of pressurization inside the cavity, solidification is delayed at a predetermined portion in the cavity compared to the open portion).
It is possible to effectively discharge the internally generated gas into the pool of water in the auxiliary gas vent path by utilizing the timing until the gas solidifies and the pressure inside the cavity.

而して、製品の形状に関係することなく、キャビティ内
における全ての部分から発生するガスをキャピテイ外へ
残らず排除することができるしのである。
Thus, regardless of the shape of the product, all gas generated from all parts within the cavity can be removed to the outside of the cavity.

(実施例) 以下、本発明の一実施例を図面に基づいて説明する。(Example) Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図及び第2図において成形型(A)は雄型(al)
と、雌型(al)との組からなり、図示の(a’ + 
) (a’ 2 )が型合面である。
In Figures 1 and 2, the mold (A) is the male mold (al).
and a female type (al), as shown in the figure (a' +
) (a' 2 ) is the molding surface.

雄型(al)はハイクロムモリブデン銅などの耐熱金属
(焼結金属を含む)で形成し、この型(al)内には加
熱機構(1)及び冷却ell IM(1′)を適宜に配
設すると共に中央部には上下方向へ摺動する入子(2)
を設ける。
The male mold (al) is made of a heat-resistant metal (including sintered metal) such as high chromium molybdenum copper, and a heating mechanism (1) and a cooling ell IM (1') are appropriately arranged inside this mold (al). There is a nest (2) in the center that slides vertically.
will be established.

入子(2)は耐熱金属又はセラミックスでもって形成し
、その中心軸線に沿ってポーラスセラミックス(3a)
を貝挿着するとともに外周にポーラスセラミックス(3
’ a)を一体内に被着し、この外周ヒラミックス(3
’ a)の外面を雄型(al)に摺接せしめる。
The insert (2) is made of heat-resistant metal or ceramics, and porous ceramics (3a) are formed along its central axis.
is inserted into the shell and porous ceramics (3
' a) is coated in one piece, and this outer periphery Hiramix (3
' Slide the outer surface of a) onto the male mold (al).

上記ポーラスセラミックス(3a) (3’ a)によ
り雄型(al)のガス抜き路(3)を構成し、該路(3
)の上端をバキュームi構に接続させて強制的に吸気が
行われるようにする。
The porous ceramics (3a) (3'a) constitute a male type (al) gas venting path (3), and the path (3'a)
) is connected to the vacuum i structure to force suction.

そして、上記雄型(a+ )には、キ1?ビティ(b)
面の所定部分から型外へ抜ける補助ガス抜き路(8a)
  (8a)を開設し、回路(8a>  (8a)のキ
ャビティ(b)側に潟すまり部(8b)  (8b)を
設けると共に、路(8a) 、  (8a)の出口には
、耐熱性を有する多孔質性通気材、例えば、ポーラスセ
ラミックスを用いて形成したガス抜き栓(9)(9)を
、気密を保持して抜き差し自在に嵌装し、不図示の駆動
機構によって、嵌装位置より微少吊後退する様に成ず。
And the above male type (a+) has Ki1? Bitty (b)
Auxiliary gas vent path (8a) that exits from a predetermined part of the surface to the outside of the mold
(8a) is opened, and a lagoon (8b) (8b) is provided on the cavity (b) side of the circuit (8a) (8a), and a heat-resistant A gas venting plug (9) (9) formed using a porous ventilation material such as porous ceramics is fitted so that it can be inserted and removed while maintaining airtightness, and is moved to the fitting position by a drive mechanism (not shown). It becomes like a slight suspension retreat.

また、上記補助ガス抜き路(8a> 、  (8a)を
設けるキャビティ(b)面の所定部分とは、溶湯の凝固
が他の部分に比較して遅れ、ガス巣が出来易い部分に面
する部分を差し、具体的には製品の肉厚が部分的に厚く
なっている部分などである。
Further, the predetermined portion of the cavity (b) surface in which the auxiliary gas vent passage (8a>, (8a) is provided) is the portion facing the portion where the solidification of the molten metal is delayed compared to other portions and where gas pockets are likely to form. Specifically, it refers to parts of the product where the wall thickness is partially thick.

尚、ガス抜き栓(9)(9)は、多孔質性通気材にて形
成しているので、前記したガス抜き路(3)、(7)と
同じガス抜き作用を有し、閉栓時にもキャビティ内の圧
力によってキャビティ(b)内のガスが通過するのであ
り、ガス抜き路(3)(7)同様にバキューム機構にて
強制的に吸引しても良いものである。
In addition, since the gas vent plugs (9) and (9) are made of porous ventilation material, they have the same gas venting effect as the gas vent channels (3) and (7) described above, and even when the plugs are closed. The gas in the cavity (b) passes through due to the pressure in the cavity, and it may be forcibly sucked by a vacuum mechanism similarly to the gas vent passages (3) and (7).

雌型(al)はセラミックス型とし、該型に加熱機構(
4)及び冷T!Ig1構(4′)を配設するとともに左
右両側面より夫々側方へ摺動する左右一対の組中子(5
)(5’ )を取付け、それら組中子(5)(5’ )
が成形部内へ進退覆るようになっている。
The female mold (al) is a ceramic mold, and the mold is equipped with a heating mechanism (
4) And cold T! Ig1 structure (4') is arranged, and a pair of left and right assembly cores (5') that slide laterally from both left and right sides, respectively.
) (5'), and assemble the cores (5) (5').
is designed to advance and retreat into the molded part and cover it.

組中子(5)(5’ )は上下に所定間隔をおいて対向
する先端部(5a) (5’ a)を有し、両端部に通
し孔(6a) (e’ a)を同軸上に間口し、鎖孔(
6a) (6°a)に前記入子(2)の下端部が嵌装す
るように構成しである。
The assembly cores (5) (5') have tip parts (5a) (5' a) facing each other at a predetermined distance from above and below, and have through holes (6a) (e' a) coaxially arranged at both ends. It has a frontage and a chain hole (
6a) The lower end of the insert (2) is fitted into (6°a).

又、組中子(5)(5’ )は耐熱金属又はセラミック
スでもって形成し、各側端面よりキャビティ(b)内に
向けてポーラスセラミック(7a) (7’ a)を貝
挿着し、該セラミック(7a)(7’ a)により雌型
(al)のガス抜き路(7)を構成し、このガス抜き路
(7)の各外端をバキューム機構に接続させて強制的に
吸気が行なわれるようにする。
The assembly cores (5) (5') are made of heat-resistant metal or ceramics, and porous ceramics (7a) (7'a) are shell-inserted into the cavity (b) from each side end surface. The ceramics (7a) (7'a) constitute a female type (al) gas venting path (7), and each outer end of this gas venting path (7) is connected to a vacuum mechanism to forcibly draw in air. Let it be done.

そして、雌型(al)にも、補助ガス抜き路(10a)
 (10a)を適宜部分に開設し、該補助ガス抜き路(
10a) (10a)のキャビティ側に湯だまり部(1
0b) (10b)を形成すると共に、回路(10a)
(10a)の出口にはセラミックスから成るガス抜き栓
(9”)(9’ ”)を気密を保って抜き差し自在に嵌
装し、やはり不図示の駆動機構によって嵌装位置より微
少通後退する様になっている。
The female mold (al) also has an auxiliary gas vent passage (10a).
(10a) at appropriate locations, and the auxiliary gas vent passage (
10a) There is a pool part (1) on the cavity side of (10a).
0b) (10b) and the circuit (10a)
A gas vent plug (9'') (9''') made of ceramic is fitted to the outlet of (10a) so that it can be inserted and removed while maintaining airtightness, and is also moved slightly through and back from the fitting position by a drive mechanism (not shown). It has become.

上記したガス抜き栓(9’ )(9’ )はセラミック
スを用いて略円錐形状に形成したものであり、前記、し
たガス抜き栓(9)(9)とは形態を異に成すが、補助
ガス抜き路(8a)及び(10a)内の圧力を所定のタ
イミングにて瞬間的に恢く働きは同じであり、各ガス抜
き路(8a)(10a)には双方の型式のガス抜き栓(
9)(9’)を成形型(A)の様に併用して設けるも、
また、どちらか一方の型式のガス抜き栓(9)。
The gas vent plugs (9') (9') described above are made of ceramics and are formed into a substantially conical shape, and are different in form from the gas vent plugs (9) (9) described above. The function of instantly reducing the pressure in the gas vent passages (8a) and (10a) at a predetermined timing is the same, and each of the gas vent passages (8a) and (10a) is equipped with both types of gas vent plugs (
9) Although (9') is used in combination like mold (A),
Also, one of the types of gas vent plug (9).

(9′)に統一して用いても良いものである。(9') may be used in unison.

上述した雌型(aZ)、入子(2)、中子(5)(5’
)、ガス抜き栓(9’)(9°)それらを作るセラミッ
クスの組成構造を簡単に説明する。
The female mold (aZ), insert (2), core (5) (5'
), gas vent plug (9') (9°) The compositional structure of the ceramics that make them will be briefly explained.

断るセラミックスは、α−5i3N44!ff造をもつ
固溶体で、MX (SL、 M) +2 (0,N )
 +6(上式においてMはMg、Ca、Y等)で示され
るα−サイアロンの粒状晶(α相) 60vo1%をβ
−Si3N4の柱状品(β相) 40vo1%間に焼成
して浸入固溶させた緻密な複合(固溶)組織相からなる
ホットプレスα−サイア0ン質セラミックス或いは常圧
焼結α−サイアロンIItセラミックスであり、α−サ
イアロン粒状晶60vo I%とβ−5i3N+粒状晶
40vo1%との共存する領域゛部分安定化“α−4ノ
イアロン領域とよべる組成範囲において強度、硬度、破
壊靭性値等の機械的特性に優れ、Dつ耐熱1ti撃抵抗
性、耐薬品抵抗性に優れるらのである。
The ceramic I refuse is α-5i3N44! A solid solution with ff structure, MX (SL, M) +2 (0,N)
+6 (in the above formula, M is Mg, Ca, Y, etc.) α-sialon granular crystals (α phase) 60vo1% is β
- Si3N4 columnar product (β phase) Hot-pressed α-sialon ceramics consisting of a dense composite (solid solution) structure phase that is fired between 40vo1% and infiltrated into a solid solution, or pressureless sintered α-sialon IIt It is a ceramic and has mechanical properties such as strength, hardness, and fracture toughness in a composition range called the "partial stabilization" α-4 Neualon region, where 60vo I% of α-sialon granules and 40vo1% β-5i3N+ granules coexist. It has excellent physical properties, heat resistance, shock resistance, and chemical resistance.

次に、上述した成形型<A)を用いた高温溶解金1ii
X製ダイカス1−製品の製造方法を図面に基づいて説明
する。
Next, high-temperature melting gold 1ii using the above-mentioned mold <A)
A method of manufacturing the X die casting 1 product will be explained based on the drawings.

雌型(aZ)の組中子(5)(5’ )を前進させて組
合わせた第1図の型開きの状態から雄型(al)を下降
させて両型(a+ )(aZ)を型合せし、このキャビ
ティ(b)内に融点が900〜1600℃の高温溶解金
属の溶湯を注入し、しかる後、キャピテイ(b)内を加
圧する。
From the mold open state shown in Fig. 1, in which the female mold (aZ) assembly cores (5) (5') are advanced and assembled, the male mold (al) is lowered and both molds (a+) (aZ) are assembled. After matching the molds, a molten metal having a melting point of 900 to 1600° C. is poured into the cavity (b), and then the inside of the cavity (b) is pressurized.

その後に型開きするまでのあいだ成形工程に入るが、こ
の工程の初期には加熱機構(1)(4)を作動させて成
形部内を適度に加温し、その後に冷却機構(1’ )(
4’ )を作動させて適面な温度下降を経るようにする
After that, the molding process begins until the mold is opened. At the beginning of this process, the heating mechanisms (1) and (4) are activated to appropriately heat the inside of the molding section, and then the cooling mechanism (1') (
4') to ensure an appropriate temperature drop.

成形工程にあっては雌型(aZ)のポーラスセラミック
ス(7a) (7’ a)によりキャビティ(b)内を
強制的に吸引しながら入子(2)を下動させて溶湯を加
圧し、その加圧と同時又はそれより若干早目に入子(2
)のポーラスセラミックス(3a) (3°a)により
吸引を開始し、このポーラスセラミックス(3a> (
3’ a)及び(7a)(7’ a)の強制的な吸引に
よってキャビティ(b)内に発生するガスや巻込み空気
をキャビティ(b)外に排除する。
In the molding process, the inside of the cavity (b) is forcibly suctioned by the female mold (aZ) of porous ceramics (7a) (7'a) while the insert (2) is moved downward to pressurize the molten metal. At the same time as that pressurization or slightly earlier than that, nesting (2
) suction is started by the porous ceramics (3a) (3°a), and this porous ceramics (3a> (3°a)
3'a) and (7a) (7'a) Gas and entrained air generated in the cavity (b) are expelled from the cavity (b) by forced suction.

一方、キャビティ(b)内の加圧開始から所定のタイミ
ング、正確には溶湯の凝固が他の部分に比較して、遅い
製品の肉厚部の溶湯表面に、内部発生ガスがキャビティ
(b)内の圧力にて抜は出る厚さ程度の″Ii固膜が形
成されるタイミングで各ガス抜き栓(9)(9’ )を
微少量atせしめる。これにより、各補助ガス抜き路 
 −(8a)  (10a)内の圧力を抜き、凝固が遅
れているキャビティ(b)内の肉厚部に発生した内部発
生ガスを、キャビティ(b)内の圧力にて各補助ガス抜
き路(8a)  (10a)の澹だまり部(8b)(1
0b)内に押出して排除する。
On the other hand, at a predetermined timing from the start of pressurization in the cavity (b), more precisely, internally generated gas flows onto the surface of the molten metal in the thick part of the product, where the solidification of the molten metal is slow compared to other parts. Each gas vent plug (9) (9') is slightly attenuated at the timing when a "Ii solid film with a thickness such that it can be vented by the internal pressure is formed. This allows each auxiliary gas vent passage to
- (8a) The pressure inside (10a) is released, and the internally generated gas generated in the thick wall part of the cavity (b) where solidification is delayed is removed by the pressure inside the cavity (b) to each auxiliary gas vent passage ( 8a) (10a) stagnation part (8b) (1
0b) to extrude and eliminate.

上記した様に、各ガス抜き栓(9)(9’ )は微少間
抜動せしめるものであるが、この微少量とは、ガス抜き
栓(9)の場合、キャビティ(b)内の圧力が適度に負
圧になる程度であり、またガス抜き栓(9′)の場合は
、ガス抜き路(10a)内の圧力がごく僅か漏れて、ガ
ス抜き路(10a)内の溶湯がガス抜き栓(9′)周囲
に少司流れ込む程度である。
As mentioned above, each gas venting plug (9) (9') allows the gas to evacuate for a minute, but in the case of the gas venting plug (9), this minute amount means that the pressure inside the cavity (b) is In the case of a gas vent plug (9'), the pressure in the gas vent path (10a) will leak slightly, and the molten metal in the gas vent path (10a) will flow into the gas vent plug (9'). (9') Only a small amount flows into the surrounding area.

上記の如くキャビティ(b)内の溶湯はガスぬき終了後
、冷1J]機構(1°)(4’ )の作動によって温度
降下して凝固する。
As mentioned above, after the gas removal is completed, the temperature of the molten metal in the cavity (b) is lowered and solidified by the operation of the cooling mechanism (1°) (4').

所定時間経過優、雄型(a+ )を上貸させて型聞きし
、雌型(aZ)より成形された製品を取り出す。
After a predetermined period of time has elapsed, the male mold (a+) is placed on top of the mold and the molded product is taken out from the female mold (aZ).

上述した補助ガス抜き路(8a)<10a)を設ける位
置及び設置数は製品の形状や大きざ、これに伴うキャピ
テイ(b)内の温度分布、製品各部の凝固速度などの条
件によって決定するものであり、また雄健両型(a+ 
)(aZ )に設ける加−□熱機構(1)(4)及び冷
却機構(1’ )(4’ )の設定条件も溶解金属の溶
解温度、成分や成形型の型形状などにより適宜に変更す
るものである。
The location and number of the above-mentioned auxiliary gas vent passages (8a) < 10a) to be installed are determined depending on conditions such as the shape and size of the product, the associated temperature distribution in the cavity (b), and the solidification rate of each part of the product. , and Yuken both type (a+
) (aZ ) The setting conditions of heating mechanisms (1) (4) and cooling mechanisms (1') (4') provided in (aZ) are also changed as appropriate depending on the melting temperature of the molten metal, the composition, the shape of the mold, etc. It is something to do.

尚、上記実施例においては高温金属を成形する場合を説
明したが、本発明の成形型及び製造方法を用いて低圧鋳
造、ダイカストなどの従来法を採用することも任意であ
る。
In the above embodiments, the case of molding high-temperature metal has been described, but conventional methods such as low-pressure casting and die casting may be optionally employed using the mold and manufacturing method of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は型閉め前の成形型を示す縦断正面図、第2図は
溶湯を注入し、成形型を型合せした状態を示す縦断正面
図、第3図及び第4図は従来の成形型を示す縦断正面図
である。 図中、(a+ )は雄型、(a2)は雌型、(1)は加
熱機構、(1′)は冷却機構、(2)は入子、(3a)
 (3’ a)はポーラスセラミックス(3)はガス抜
き路、(4)は加熱機構、(4′)は冷却機構、(5)
、(5’ )は組中子、(7a) 、 (7’ a)は
ポーラスセラミックス、(7)はガス抜き路、(8a)
 、  (10a)は補助ガス抜き路、(8b) 、 
 (10b)は湯だまり部、(9)、(9’ )はガス
抜き栓、(m)は溶湯、(b)はキVビティ
Figure 1 is a vertical front view showing the mold before closing, Figure 2 is a front vertical view showing the state in which molten metal is poured and the molds are fitted together, and Figures 3 and 4 are conventional molds. FIG. In the figure, (a+) is the male type, (a2) is the female type, (1) is the heating mechanism, (1') is the cooling mechanism, (2) is the insert, (3a)
(3'a) is porous ceramics (3) is a gas venting path, (4) is a heating mechanism, (4') is a cooling mechanism, (5)
, (5') is a set core, (7a), (7'a) is porous ceramics, (7) is a gas vent path, (8a)
, (10a) is an auxiliary gas vent passage, (8b),
(10b) is the hot water pool, (9) and (9') are the gas vent plugs, (m) is the molten metal, and (b) is the pipe.

Claims (4)

【特許請求の範囲】[Claims] (1)中子部又は入子部を備える雄雌一対の成形型の一
方又は両方をセラミックスにて形成し、前記中子部又は
入子部に耐熱性を有する多孔質性通気材を組込んでガス
抜き路を形成せしめ、且つ、雄雌両型のキャビティ面に
おける所定部分から型外へ抜ける補助ガス抜き路を設け
ると共に、該補助ガス抜き路のキャビティ面付近に湯だ
まり部を形成し、同補助ガス抜き路出口にはセラミック
ス、若しくは耐熱性を有する多孔質性通気材から成るガ
ス抜き栓を抜き差し自在に設けた高温溶湯用成形型。
(1) One or both of a pair of male and female molds each having a core part or a nesting part are made of ceramic, and a heat-resistant porous ventilation material is incorporated into the core part or the nesting part. forming a gas venting path, and providing an auxiliary gas venting path that exits from a predetermined portion of the cavity surface of both the male and female molds to the outside of the mold, and forming a hot water pool near the cavity surface of the auxiliary gas venting path; The mold for high-temperature molten metal is equipped with a degassing plug made of ceramics or heat-resistant porous ventilation material at the outlet of the auxiliary gas venting passage.
(2)上記セラミックスはα−Si_3N_4構造をも
つ固溶体で、M×(Si、Al)_1_2(O、N)_
1_6(上式においてMはMg、Ca、Y等)で示され
るα−サイアロン粒状晶60vol%とβ−Si_3N
_4柱状晶40vol%とが共存する領域“部分安定化
”α−サイアロン領域とよべる緻密な複合組織相からな
るホットプレスα−サイアロン質セラミックス或いは常
圧焼結α−サイアロン質セラミックスである特許請求の
範囲第1項記載の高温溶湯用形成型。
(2) The above ceramic is a solid solution with α-Si_3N_4 structure, M×(Si, Al)_1_2(O, N)_
1_6 (in the above formula, M is Mg, Ca, Y, etc.) α-sialon granular crystals 60 vol% and β-Si_3N
_4 The patent claim is hot-pressed α-sialon ceramics or pressureless sintered α-sialon ceramics consisting of a dense composite structure phase called “partially stabilized” α-sialon region, where 40 vol% of columnar crystals coexist. A forming mold for high-temperature molten metal according to scope 1.
(3)中子部又は入子部を備える雄雌一対の成形型の一
方又は両方をセラミックスにて形成し、前記中子部又は
入子部に耐熱性を有する多孔質性通気材を組込んでガス
抜き路を形成せしめ、且つ、雄雌両型のキャビティ面に
おける所定部分から型外へ抜ける補助ガス抜き路を設け
ると共に、該補助ガス抜き路のキャビティ面付近に湯だ
まり部を形成し、同補助ガス抜き路出口にはセラミック
ス、若しくは耐熱性を有する多孔質性通気材から成るガ
ス抜き栓を抜き差し自在に設けて構成した高温溶湯用成
形型のキャビティ内に所定量の溶湯を注入し、しかる後
、キャビティ内を加圧せしめ、該キャビティ内で発生す
るガス等を中子部又は入子部のガス抜き路から吸引して
排除すると共に、キャビティ内の加圧開始から所定のタ
イミングで補助ガス抜き路のガス抜き栓を微少量抜動さ
せて、キャビティ内の所定部分に発生するガスを補助ガ
ス抜き路の湯だまり部へ排出することを特徴とする高温
溶解金属製品の製造方法。
(3) One or both of a pair of male and female molds each having a core part or a nesting part are made of ceramic, and a heat-resistant porous ventilation material is incorporated into the core part or the nesting part. forming a gas venting path, and providing an auxiliary gas venting path that exits from a predetermined portion of the cavity surface of both the male and female molds to the outside of the mold, and forming a hot water pool near the cavity surface of the auxiliary gas venting path; A predetermined amount of molten metal is injected into the cavity of a mold for high-temperature molten metal, which is configured by providing a degassing plug made of ceramic or a heat-resistant porous ventilation material at the outlet of the auxiliary gas venting passage so that it can be inserted and removed freely. After that, the inside of the cavity is pressurized, and the gas generated inside the cavity is sucked out through the gas vent passage of the core part or the insert part, and assistance is provided at a predetermined timing from the start of pressurization inside the cavity. A method for manufacturing a high-temperature molten metal product, characterized in that a gas vent stopper in a gas vent passage is pulled out by a small amount to discharge gas generated in a predetermined portion within a cavity to a pool of water in an auxiliary gas vent passage.
(4)上記ラセミックスはα−Si_3N_4構造をも
つ固溶体で、M×(Si、Al)_1_2(O、N)_
1_6(上式においてMはMg、Ca、Y等)で示され
るα−サイアロン粒状晶60vol%とβ−Si_3N
_4柱状晶40vol%とが共存する領域“部分安定化
”α−サイアロン領域とよべる緻密な複合組織相からな
るホットプレスα−サイアロン質セラミックス或いは常
圧焼結α−サイアロン質セラミックスである特許請求の
範囲第3項記載の高温溶解金属製品の製造方法。
(4) The above racemics is a solid solution with α-Si_3N_4 structure, M×(Si, Al)_1_2(O, N)_
1_6 (in the above formula, M is Mg, Ca, Y, etc.) α-sialon granular crystals 60 vol% and β-Si_3N
_4 The patent claim is hot-pressed α-sialon ceramics or pressureless sintered α-sialon ceramics consisting of a dense composite structure phase called “partially stabilized” α-sialon region, where 40 vol% of columnar crystals coexist. A method for producing a high-temperature molten metal product according to scope 3.
JP28502386A 1985-11-30 1986-11-28 Mold for high temperature molten metal and method for manufacturing high temperature molten metal product Expired - Fee Related JPH084904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28502386A JPH084904B2 (en) 1985-11-30 1986-11-28 Mold for high temperature molten metal and method for manufacturing high temperature molten metal product

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP27048685 1985-11-30
JP60-270486 1985-11-30
JP28502386A JPH084904B2 (en) 1985-11-30 1986-11-28 Mold for high temperature molten metal and method for manufacturing high temperature molten metal product

Publications (2)

Publication Number Publication Date
JPS62230466A true JPS62230466A (en) 1987-10-09
JPH084904B2 JPH084904B2 (en) 1996-01-24

Family

ID=26549240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28502386A Expired - Fee Related JPH084904B2 (en) 1985-11-30 1986-11-28 Mold for high temperature molten metal and method for manufacturing high temperature molten metal product

Country Status (1)

Country Link
JP (1) JPH084904B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105618706A (en) * 2015-11-25 2016-06-01 宁波君灵模具技术有限公司 Core-pulling sliding block for die-casting mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105618706A (en) * 2015-11-25 2016-06-01 宁波君灵模具技术有限公司 Core-pulling sliding block for die-casting mold
CN105618706B (en) * 2015-11-25 2018-02-27 宁波润姚机械有限公司 Die casting mold core sliding block

Also Published As

Publication number Publication date
JPH084904B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US4798237A (en) Molding die for use in casting
JP2013215805A (en) Composite core for casting process, and process of making and using the same
JP2017013091A (en) Wax molding die and lost wax casting method
JPH044961A (en) Die casting method
CN103894547A (en) Precision casting method of blade casting with margin plate
TWI613018B (en) Method and apparatus for forming a liquid-forged article
HU208270B (en) Lose-pattern, pressure precision casting method
US4727922A (en) Mold for high-temperature molten metal and method of producing high-melting metal article
US5348073A (en) Method and apparatus for producing cast steel article
CN109732045A (en) A kind of type core and its manufacturing method and application method
JPS62230466A (en) Mold for high temperature molten metal and production of high temperature molten metal product
JP2016120518A (en) Die cast method
JP5416515B2 (en) Casting method using a core
CN209110156U (en) Shell moulded casting device of the vacuum in conjunction with pressure
JPS6083762A (en) Die casting method
JPS5656756A (en) Mold for precision casting and its production
JPS59309B2 (en) Injection molding method with degassing inside the mold and degassing device for mold
JPH0647149B2 (en) Mold and vacuum casting method using the mold
JPS62230467A (en) Forming mold for casting
JPS632698B2 (en)
JPS6167540A (en) Casting mold
JPS6284863A (en) Injection nozzle for die casting machine
JPH05277699A (en) Method for casting thin casting
JP2007531630A (en) Casting manufacturing method
JPH018324Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees