JPS62229025A - Star simulator - Google Patents

Star simulator

Info

Publication number
JPS62229025A
JPS62229025A JP7304586A JP7304586A JPS62229025A JP S62229025 A JPS62229025 A JP S62229025A JP 7304586 A JP7304586 A JP 7304586A JP 7304586 A JP7304586 A JP 7304586A JP S62229025 A JPS62229025 A JP S62229025A
Authority
JP
Japan
Prior art keywords
light source
axis
base
optical
star simulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7304586A
Other languages
Japanese (ja)
Other versions
JPH0378320B2 (en
Inventor
Toyohachi Yokota
横田 豊八
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7304586A priority Critical patent/JPS62229025A/en
Publication of JPS62229025A publication Critical patent/JPS62229025A/en
Publication of JPH0378320B2 publication Critical patent/JPH0378320B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Navigation (AREA)

Abstract

PURPOSE:To accurately obtain a very small displacement, by setting a light source on an independent light source holding base while the light source holding base is displaced finely independent of the light source in two directions orthogonal to each other in a plane perpendicular to the optical axis of an optical system. CONSTITUTION:A light source 1 is set on an independent light source holding base 2, which is fixed on a Y-axis moving base 4. A Y-axis fixing base 5 supporting the Y-axis moving base 4 is fixed on an X-axis moving base 6, which is supported with an X-axis fixing base 7. Displacements between the Y-axis moving base 4 and the Y-axis fixing base 5, and between the X-axis moving base 6 and the X-axis fixing base 7 are made with micrometers 8 and 9 and the Y-axis fixing base 7 is mounted on a mounting pedestal 10. A point R is put as displaced by DELTAgamma from the focus F in a plane P perpendicular to the optical axis of an optical lens L and when an angle is set at between a straight line connecting the center S of the optical lens L and the point F and a straight line RS, DELTAgamma=alphatantheta (alpha: focal length) holds. Thus, the displacement of the Y-axis moving base 4 is obtained in 10mum with the micrometer 8.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、無限遠点から放射される星の光を模擬的に光
学手段により実現するスターシミュレータに関し、特に
出力光の角度方向を微小に変位できる機構を有するもの
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a star simulator that simulates star light emitted from a point at infinity using optical means, and in particular, it relates to a star simulator that uses optical means to simulate star light emitted from a point at infinity. It relates to something that has a mechanism that can be displaced.

本発明は宇宙航行体の制御装置の地上試験装置に利用す
るに適する。
INDUSTRIAL APPLICABILITY The present invention is suitable for use in a ground test device for a control device for a spacecraft.

〔1既要〕 本発明は光源と光源保持台と光学系を備えて、無限遠に
ある星の放射する光を模擬的に実現するスターシミュレ
ータにおいて、 それぞれの光源保持体は光学系の光軸に直交する平面内
に2次元的に微少変位することにより、光源の微少変位
を簡易な構成のもので高精度で実現できるものである。
[1 Already Required] The present invention provides a star simulator that is equipped with a light source, a light source holder, and an optical system to simulate the light emitted by a star at an infinite distance, in which each light source holder is aligned with the optical axis of the optical system. By making a two-dimensional minute displacement within a plane orthogonal to the light source, minute displacement of the light source can be realized with a simple configuration and with high accuracy.

〔従来の技術〕[Conventional technology]

従来この種のスターシミュレータは、単−又はは複数の
星の光を模擬的に出力するが、いずれもその出力光の角
度方向は固定したものとなっていた。
Conventionally, this type of star simulator outputs light from a single star or a plurality of stars in a simulated manner, but the angular direction of the output light is fixed in each case.

〔発明か解決しようとする問題点〕[The problem that the invention attempts to solve]

しかし、出力光の角度を変化したい場合にはスターシミ
ュレータ自体を回転させるかまたは出力光が照射される
被試験体を回転させることが必要である。
However, if it is desired to change the angle of the output light, it is necessary to rotate the star simulator itself or rotate the test object to which the output light is irradiated.

被試験体を微小な角度で回転させるには、高精度で高価
な回転台を使用し、回転する軸をスターシミュレータの
光束の中で変位させなければならない困難がある。
In order to rotate the test object through a minute angle, it is difficult to use a highly accurate and expensive rotating table and to displace the axis of rotation within the light beam of the star simulator.

またスターシミュレータ自体を高精度で微小な角度で回
転させることは、通常のスターシミュレータの重量が数
百kg程度であるので、非常に困難である。
Furthermore, it is extremely difficult to rotate the star simulator itself with high precision at a minute angle because a normal star simulator weighs about several hundred kg.

本発明はこれらの困難性を解消して、光源の微小変位を
而易な構成で実現できるスターシミュレータを提供する
ことを目的とする。
An object of the present invention is to solve these difficulties and provide a star simulator that can realize minute displacement of a light source with a simple configuration.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は光源と、この光源を支持し所定の位置に配置さ
せる光源保持台と、上記光源の光を平行光線に変換する
光学系とを備えたスターシミュレータにおいて、 上記光源は独立した光源保持台上に設置され、上記光源
保持台は上記光源を独立的に上記光学系の光軸に直交す
る平面内の互いに直交する2方向に微少変位させる変位
手段を備えたことを特徴とする。
The present invention provides a star simulator that includes a light source, a light source holder that supports the light source and places it at a predetermined position, and an optical system that converts the light from the light source into parallel rays, wherein the light source is provided on an independent light source holder. The light source holder is provided with a displacement means for independently slightly displacing the light source in two directions perpendicular to each other within a plane perpendicular to the optical axis of the optical system.

変位手段はマイクロメータを含むものであることが好ま
しい。
Preferably, the displacement means includes a micrometer.

〔作用〕[Effect]

各光源の保持台は光軸に直交する平面上を二次元的に微
小変位する。光源から測定部にいたる光軸の距離は1な
いし2mであり、これに直交する微小変位の長さをlO
ミクロン単位のものとすれば、その正接(tan α)
の値は10−6程度となり、角度方向の変化は1秒程度
のものが得られる。
The holder of each light source is slightly displaced two-dimensionally on a plane perpendicular to the optical axis. The distance of the optical axis from the light source to the measurement part is 1 to 2 m, and the length of minute displacement perpendicular to this is 1O
If it is in microns, its tangent (tan α)
The value of is about 10-6, and the change in angular direction is about 1 second.

微小変位手段にマイクロメータを用いれば10ミクロン
単位の微少変位は容易に得られ、またこのマイクロメー
タの回転軸の回転はステップモータで駆動すれば、光源
の変位をプログラム制御することができる。
If a micrometer is used as the minute displacement means, a minute displacement of 10 microns can be easily obtained, and if the rotation shaft of this micrometer is driven by a step motor, the displacement of the light source can be program-controlled.

〔実施例] 次に、本発明の一実施例を図面に基づいて説明する。〔Example] Next, one embodiment of the present invention will be described based on the drawings.

第1図は本発明の一実施例の外観斜視図を示す。FIG. 1 shows an external perspective view of an embodiment of the present invention.

第1図は1個のピンホールを有する光源lは、光源保持
台2に保持されている。この光源lは光学レンズ部3に
よって平行光線となる。本実施例では光源の数は1個と
している。第2図は第1図の光源lと光源保持台2とを
含む部′分の拡大図である。第1図および第2図におい
て、座標軸XYは光学レンズ部3の光軸に直交する平面
で、上下方向のものをY軸、これと直゛交するものをX
軸とする。
In FIG. 1, a light source l having one pinhole is held on a light source holder 2. In FIG. This light source 1 is turned into parallel light by the optical lens section 3. In this embodiment, the number of light sources is one. FIG. 2 is an enlarged view of a portion including the light source 1 and the light source holder 2 shown in FIG. In FIGS. 1 and 2, coordinate axes XY are planes perpendicular to the optical axis of the optical lens section 3, with the vertical direction being the Y axis and the coordinate axis orthogonal to this being the X axis.
Take it as the axis.

ここに本発明の特徴とするところは第2図において、光
源lは独立した光源保持台2に設置され、この光源保持
台2はY軸径動台4に固定されている。このY軸径動台
4を支えるY軸固定台5は、X軸径動台6に固定され、
このX軸径動台6はX軸固定台7により支持されている
。さらにY軸径動台4とY軸固定台5との間およびX軸
径動台6とX軸固定台7との間のそれぞれの変位はマイ
クロメータ8および9により行われ、X軸固定台7は取
付台10に取り付けられたことにある。
Here, the feature of the present invention is that in FIG. 2, the light source 1 is installed on an independent light source holder 2, and this light source holder 2 is fixed to the Y-axis radial table 4. A Y-axis fixed base 5 that supports this Y-axis radial base 4 is fixed to an X-axis radial base 6,
This X-axis radial table 6 is supported by an X-axis fixed table 7. Further, the displacements between the Y-axis radial table 4 and the Y-axis fixed table 5 and between the X-axis radial table 6 and the X-axis fixed table 7 are performed by micrometers 8 and 9, and 7 is attached to the mounting base 10.

つぎに第3図により、本実施例の操作を説明する。Next, the operation of this embodiment will be explained with reference to FIG.

第3図において光学レンズしは焦点距離αの位置に焦点
Fがある。この焦点Fにおいて、光学レンズLの光軸に
直交する平面Pの面内に焦点FよりΔTだけ変位した点
Rをとれば、光学レンズLの中心SとFを結んだ直線と
直線R3とのなす角をθとすれば Δγ=αtanθ となる。
In FIG. 3, the optical lens has a focal point F at a focal length α. At this focal point F, if we take a point R displaced by ΔT from the focal point F within the plane P perpendicular to the optical axis of the optical lens L, the straight line connecting the centers S and F of the optical lens L and the straight line R3 If the angle formed is θ, then Δγ=αtanθ.

通常αは大きな値(1500mm〜2000mm程度)
である。第2図において、Y軸径動台4の変位量はマイ
クロメータ8により10 am i4位のものが得られ
るから =1.4角度秒 となる。すなわち非常に小さな変位量が、正確に得られ
る。またX軸移動台6の変位置はマイクロメータ9によ
り同様にして得られる。
Usually α is a large value (about 1500mm to 2000mm)
It is. In FIG. 2, the amount of displacement of the Y-axis rotary table 4 is approximately 10 am i4, which is obtained by the micrometer 8, so it is equal to 1.4 angular seconds. In other words, a very small amount of displacement can be accurately obtained. Further, the position of the X-axis moving table 6 can be similarly obtained using a micrometer 9.

さらに、マイクロメータの精度を上げれば、たとえば1
 pmとすれば、0.14角度秒の微小変位が得られる
。本実施例は光源が1個の場合のものであるが、これを
複数個配置しても、この複数個のものをそれぞれ同様に
操作することができる。
Furthermore, if the accuracy of the micrometer is increased, for example, 1
pm, a minute displacement of 0.14 angular seconds can be obtained. Although this embodiment deals with the case where there is one light source, even if a plurality of light sources are arranged, each of the plurality of light sources can be operated in the same way.

本発明の他の実施例として各マイクロメータの回転軸の
回転を上位装置の制御信号により駆動制御されるステッ
プモータにより駆動するようにすれば、スターシミュレ
ータのプログラムとあわせて、自動的に変位を制御する
ことができる。
As another embodiment of the present invention, if the rotation of the rotation axis of each micrometer is driven by a step motor that is driven and controlled by a control signal from a host device, the displacement can be automatically controlled in conjunction with the program of the star simulator. can be controlled.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればスターシミュレー
タにおける微小な角度変位を簡単な構成のもので実現で
きる。さらに角度変位の動作の自動制御を容易に行うこ
とができるので、本発明によるスターシミュレータは宇
宙航行体のスターセンサなどの地上試験などに用いれば
高精度かつ高信頼性のある試験が行われる効果がある。
As explained above, according to the present invention, minute angular displacement in a star simulator can be realized with a simple configuration. Furthermore, since automatic control of angular displacement operations can be easily performed, the star simulator according to the present invention can be used for ground tests of star sensors in space vehicles, etc., resulting in highly accurate and reliable tests. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の外観斜視図。 第2図は上記実施例の保持部分の拡大斜視図。 第3図は本発明の操作説明図。 ■・・・光源、2・・・光源保持台、3・・・光学レン
ズ部、4・・・Y1袖軸移動、5・・・Y軸固定台、6
・・・X軸移動台、7・・・X軸固定台、8.9・・・
マイクロメータ、10・・・取付台、F・・・焦点、し
・・・光学レンズ、P・・・光軸に直交する平面、R・
・・焦点Fより変位した点、S・・・光学レンズLの中
心、α・・・焦点距離、Δγ・・・点Rの変位量、θ・
・・角。
FIG. 1 is an external perspective view of one embodiment of the present invention. FIG. 2 is an enlarged perspective view of the holding portion of the above embodiment. FIG. 3 is an explanatory diagram of the operation of the present invention. ■... Light source, 2... Light source holding stand, 3... Optical lens section, 4... Y1 sleeve axis movement, 5... Y-axis fixing stand, 6
...X-axis moving table, 7...X-axis fixed table, 8.9...
Micrometer, 10...Mounting base, F...Focal point,...Optical lens, P...Plane perpendicular to the optical axis, R...
...Point displaced from focal point F, S...Center of optical lens L, α...Focal length, Δγ...Amount of displacement of point R, θ・
··corner.

Claims (2)

【特許請求の範囲】[Claims] (1)光源と、 この光源を支持し所定の位置に配置させる光源保持台と
、 上記光源の光を平行光線に変換する光学系とを備えたス
ターシミュレータにおいて、 上記光源は独立した光源保持台上に設置され、上記光源
保持台は上記光源を独立的に上記光学系の光軸に直交す
る平面内の互いに直交する2方向に微少変位させる変位
手段を備えたこと を特徴とするスターシミュレータ。
(1) In a star simulator that includes a light source, a light source holder that supports the light source and places it in a predetermined position, and an optical system that converts the light from the light source into parallel rays, the light source is provided on an independent light source holder. The star simulator is installed on the star simulator, and the light source holder is equipped with a displacement means for independently slightly displacing the light source in two mutually orthogonal directions within a plane orthogonal to the optical axis of the optical system.
(2)変位手段はマイクロメータを含む特許請求の範囲
第(1)項に記載のスターシミュレータ。
(2) The star simulator according to claim (1), wherein the displacement means includes a micrometer.
JP7304586A 1986-03-31 1986-03-31 Star simulator Granted JPS62229025A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7304586A JPS62229025A (en) 1986-03-31 1986-03-31 Star simulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7304586A JPS62229025A (en) 1986-03-31 1986-03-31 Star simulator

Publications (2)

Publication Number Publication Date
JPS62229025A true JPS62229025A (en) 1987-10-07
JPH0378320B2 JPH0378320B2 (en) 1991-12-13

Family

ID=13507003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7304586A Granted JPS62229025A (en) 1986-03-31 1986-03-31 Star simulator

Country Status (1)

Country Link
JP (1) JPS62229025A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381788C (en) * 2006-08-23 2008-04-16 北京航空航天大学 High precision low cost starlight simulator
CN104197961A (en) * 2014-09-19 2014-12-10 北京仿真中心 Star simulator based on bifocal optical system
CN104267779A (en) * 2014-09-16 2015-01-07 长春理工大学 Vertical type adjusting mechanism
CN105606388A (en) * 2016-02-14 2016-05-25 长春理工大学 Split magnitude adjustable star map variable static star simulator having sky background
CN106768858A (en) * 2016-12-07 2017-05-31 长春理工大学 A kind of background continuously adjustabe asterism continuous variable formula star chart generating means

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100381788C (en) * 2006-08-23 2008-04-16 北京航空航天大学 High precision low cost starlight simulator
CN104267779A (en) * 2014-09-16 2015-01-07 长春理工大学 Vertical type adjusting mechanism
CN104197961A (en) * 2014-09-19 2014-12-10 北京仿真中心 Star simulator based on bifocal optical system
CN104197961B (en) * 2014-09-19 2017-02-15 北京仿真中心 Star simulator based on bifocal optical system
CN105606388A (en) * 2016-02-14 2016-05-25 长春理工大学 Split magnitude adjustable star map variable static star simulator having sky background
CN106768858A (en) * 2016-12-07 2017-05-31 长春理工大学 A kind of background continuously adjustabe asterism continuous variable formula star chart generating means
CN106768858B (en) * 2016-12-07 2019-01-18 长春理工大学 A kind of continuously adjustable asterism continuous variable formula star chart generating device of background

Also Published As

Publication number Publication date
JPH0378320B2 (en) 1991-12-13

Similar Documents

Publication Publication Date Title
CN1829899B (en) Method for checking or calibrating the angle-dependent alignment of a high-precision test piece
US5369490A (en) Contour measuring apparatus
US4714339A (en) Three and five axis laser tracking systems
US3603691A (en) Laser control for automatic alignment of structures
JP2779242B2 (en) Optoelectronic angle measurement system
CN107101712B (en) Multi-direction wide-angle continuous scanning vibration measuring auxiliary machine based on single-point laser vialog
JP2000502176A (en) Dynamically stiff wide bandwidth measurement system for measurement and control of intelligent manufacturing processes
CN114415389A (en) Optical-mechanical system adjustment method with multiple reflectors
JPS62229025A (en) Star simulator
CN109974579A (en) The caliberating device of optics paraboloid of revolution standard array center distance
US4443103A (en) Retro-reflective electro-optical angle measuring system
US6590712B2 (en) Arrangement and method for generating a plurality of optical axes which are oriented in a defined manner relative to one another
JP6738525B2 (en) Reflection target, adjustment tool, and construction method
JP3702733B2 (en) Alignment method and mechanism of optical inspection apparatus
US3060792A (en) Optical alignment instrument
CN110057288A (en) The scaling method of optics paraboloid of revolution standard array center distance
JPH10122863A (en) Method and device for displaying light spot
JPH0752569Y2 (en) Surface three-dimensional shape measuring device
Waldman Alignment test system for AXAF-I's high-resolution mirror assembly
SU1442823A1 (en) Optical method of aligning shaft
SU922673A1 (en) Method and device for directional centering of mounted optical lenses and assemdlies
JPH08141767A (en) Optical axis adjusting device
CN111089608A (en) Seeker performance test system
JPS5928444Y2 (en) optical equipment
JPH0376844B2 (en)