JPS62228276A - Gene - Google Patents

Gene

Info

Publication number
JPS62228276A
JPS62228276A JP6870086A JP6870086A JPS62228276A JP S62228276 A JPS62228276 A JP S62228276A JP 6870086 A JP6870086 A JP 6870086A JP 6870086 A JP6870086 A JP 6870086A JP S62228276 A JPS62228276 A JP S62228276A
Authority
JP
Japan
Prior art keywords
sequence
region
gene
benzene
catechol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6870086A
Other languages
Japanese (ja)
Other versions
JPH0648984B2 (en
Inventor
Shinji Irie
新司 入江
Seiji Doi
土井 清二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP6870086A priority Critical patent/JPH0648984B2/en
Publication of JPS62228276A publication Critical patent/JPS62228276A/en
Publication of JPH0648984B2 publication Critical patent/JPH0648984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/12Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of two atoms of oxygen into one donor (1.14.12)
    • C12Y114/12003Benzene 1,2-dioxygenase (1.14.12.3)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:A gene of an enzyme, containing four regions respectively coding special amino acid sequences and capable of converting benzene or a derivative thereof into catechol. CONSTITUTION:A genetic region containing at least benzene oxygenase and benzene glycol dehydrogenase genes is isolated from a microorganism, e.g. Pseudomonas sp. 136R-3 (FERM-P No.6970), capable of producing catechol by recombinant DNA to determine the base sequence of the genetic region by an M13 phage.dideoxy method. A region coding a protein is searched among the base sequence to confirm the presence of four regions. Among them, the region (I) is a region having sequential bases from the 617th-619th ATG sequence to the 1,961st-1,963rd TAG sequence and 50,208 molecular weight.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は遺伝子に関し、詳しくはベンゼンまたはその誘
導体からカテコール類を生産しうる微生物の保持する遺
伝子に関する。 [従来の技術とその問題点] 本発明者らは、カテコールの製造に関する研究過程にお
いて、カテコール生産菌、たとえばシュードモナス・エ
スピー136R−3(FERM P−13970)より
ベンゼンオキシゲナーゼおよびベンゼングリコールデヒ
ドロゲナーゼ遺伝子を少なくとも含む遺伝子領域を組換
え体DNAにより単離した(特願昭59−270135
3)。しかし、該遺伝子の詳細な構造などは不明であっ
た。 そこで、さらに研究を重ねた結果、その遺伝子領域のD
NA配列の詳細な構造を特定することに成功したのであ
る。 配列をコードする領域I 、 II 、 mおよび■を
含む遺伝子に関する。 領域工
[Industrial Application Field] The present invention relates to genes, and more particularly to genes carried by microorganisms capable of producing catechols from benzene or its derivatives. [Prior Art and its Problems] In the course of research on the production of catechol, the present inventors isolated at least benzene oxygenase and benzene glycol dehydrogenase genes from catechol-producing bacteria, such as Pseudomonas sp. 136R-3 (FERM P-13970). The gene region containing the gene was isolated using recombinant DNA (Japanese Patent Application No. 59-270135
3). However, the detailed structure of this gene was unknown. As a result of further research, we found that the D
They succeeded in identifying the detailed structure of the NA sequence. It relates to a gene containing the sequence encoding regions I, II, m and ■. area engineering

【遺伝子配列があります】[There is a gene sequence] 【遺伝子配列があります】[There is a gene sequence]

領域II Area II

【遺伝子配列があります】[There is a gene sequence]

領域■ Area■

【遺伝子配列があります】[There is a gene sequence] 【遺伝子配列があります】[There is a gene sequence]

領域■ Area■

【遺伝子配列があります】[There is a gene sequence]

本発明の遺伝子は少なくとも上記4個の領域を含んでい
ればよく、その配列順序は問わない。また、この遺伝子
は第5の領域として下記の酵素蛋白のアミノ酸配列をコ
ードする領域を含むこともある。 領域V
The gene of the present invention only needs to contain at least the above four regions, and the sequence order thereof does not matter. Additionally, this gene may include a region encoding the amino acid sequence of the enzyme protein described below as a fifth region. Area V

【遺伝子配列があります】[There is a gene sequence]

本発明の遺伝子の塩基配列の例を第1図に示す。 こ(7) DNAは、そ(7) DNA釦中に制限酵素
EcaRI。 5alI 、  PstI 、 Hindlllで切断
される個所があり、たとえば5alIによる切断部位は
1829番日のGと1830番日のTの間であり、Ps
tIによる切断部位は2133番日のCと2134番口
のTの間、 4025番1゛lのCと4026番口のT
の間および5269番口のCと5270番IIのTとの
間である。また、Hindmによる切断部位は2172
番口のAと2173番日のAの間である。 本発明の遺伝子は、次のようにして調製することができ
る。ベンゼンオキシゲナーゼおよびベンゼングリコール
デヒドロゲナーゼ遺伝子を右するカテコール類生産閑、
たとえばシュードモナス属に属し、カテコール類の分解
酵素が欠失もしくは低活性化した変異株(たとえばシュ
ードモナス・エスピー138R−3,FERN P−8
970)から上記両遺伝子を含む遺伝子領域を常法(た
とえばJ、 Bacteriol、 89.1085(
1985)など)により取出し、制限酵素Sau 3A
で部分的に切断して必要なりNA断片(分子量約30K
b)を得る。一方、広宿主域プラスミドR5FIOIO
由来のコスミドpMM833(Gene 24.299
(1983))等をプラスミドベクターとして用い、こ
れを制限酵素SmaI、  HpaIで別々に切断し、
混合後、 BamHIで切断し、前記DNA断片と混合
し゛てT4 DNAリガーゼで連結する。 次いで、これを大1揚菌(エシェリヒア・コリ)に感染
するウィルス、ラムダ・ファージの殻に包み込み(in
 vitro packaging) 、大1!!菌に
感染させ、染色体DNAを組込んだコスミドをもつ大腸
菌クローンを取得する(たとえば大1揚菌5I−100
゜FERM P−8007)。 この大腸菌が保持するコスミドpGR300を制限酵素
EcoRIで切断して得たDNA断片を、制限酵素Ec
oRIテ切断したプラスミドplJc 8(Gene 
IJ 259(1982))に連結し、大腸菌JM83
株に形質転換し、カテコール類生産能を保持する大腸菌
を選択する。 この大腸菌形質転換体よりプラスミドを抽出し、種々の
制限酵素による切断解析を行ない、制限酵素地図を作成
する0次いで、これに基づき制限酵素による切断および
エキソヌクレアーゼBa I −31を用いて欠失誘導
体を作成し、各欠失プラスミドを保持する大II!菌J
M83株を用いて目的とする遺伝子を含む領域を求める
。 このようにして得た遺伝子領域の塩基配列をM13ファ
ージ・ジデオキシ法により決定した。 領域工 第617〜619番11のATG配列から第1981−
1!383番目のTGA配列までの配列ベースを有する
分子量50.208 (448アミノ酸)の領域領域!
■ 第2070〜2072番口のATG配列から第2631
〜2633番口のTAG配列までの配列ベースを有する
分子量22.103 (187アミノ酸)の領域領域m 第2963〜2965番口のAτG配列から第4190
〜4192番口の↑GA配列までの配列ベースを有する
分子量42.819 (409アミノ酸)の領域領域■ 第4519〜4521番口のATG配列から第5014
〜5016番口のTGA配列までの配列ベースを有する
分子量17.221 (165アミノ酸)の領域領域V 第2688〜2690番口のATG配列から第2961
〜2963番口のTGA配列までの配列ベースを有する
91アミノ酸の領域 [発明の効果] 上記酵素蛋白のアミノ酸配列をコードする領域1 、 
II 、 mおよび■を少なくとも含む遺伝子は、+u
 IKI伝子を担ったプラスミドを保持する原核生物細
胞(たとえば大腸菌)の造成に用いられ、該細胞を使用
してベンゼン類(ベンゼンのはかアルキル基、置換アル
キル基、カルボキシル基、アルデヒド基、ハロゲン原子
などが導入された置換ベンゼン)からカテコールまたは
その誘導体を製造することができる。このカテコール類
は合成中間体としての利用のほか酸化防止剤、殺菌剤、
消712剤、香料、現像剤1分析用試薬などとして有用
である。 [実施例] 次に、本発明を実施例により説明する。 実施例 (1)ベンゼンオキシゲナーゼおよびベンゼングリコー
ルデヒドロゲナーゼ遺伝子をコードする遺伝子領域の特
定 ベンゼンオキシゲナーゼおよびベンゼングリコールデヒ
ドロゲナーゼ遺伝子を担ったコスミドpGR300(大
1揚菌5I−300,FERN P−8007が保持し
ている)を制限酵素EcoRIで切断した。得られたD
NA断片を、制限酵素EcoRIで切断したプラスミド
pUc 8 (Gene 19.259(1982))
に連結し、大腸菌」MB2株に形質転換し、カテコール
類生産能を保持する大腸菌を選択した。なお、上記制限
酵素切断条件、連結反応条件、形質転換等の組換えDN
A技術は常法(たとえばT、 Maniatis、 E
、 F、 Fr1tsh。 J、 5alIlbrook、 Mo1ecular 
Cloning、 Co1d SpringHarbe
r Laboratory l’lJ 、’ 1982
年)にしたがった。 上記の如くして得られた大11g菌形質転換体よりプラ
スミドを抽出し、種々の制限酵素による切断解析を行な
い、制限酵素地図を作成した。この地図に基いて制限酵
素による切断およびエキソヌクレアーゼBa I −3
1を使用することによって欠失誘導体を作成した(第2
図)。 各欠失プラスミドを保持する大腸菌JM83株を100
μs/aj)のアンピシリンを含むLBJB地10j)
中で37°Cにて12時間培養した。しかる後、集菌し
。 50IIIMリン酸緩衝液(p87.3 )  l r
sl!に懸濁し、ベンゼン0.5%を加え、30°Cで
12時間休体[菌体反応を行ない、蓄積したカテコール
をアミノアンチピリンノ人(Binchem、 J、、
 73. If3(1959))により定入(シた。結
果をド表に示す。 保持プラスミド  蓄積カテコール品(mg/jll)
pGRIO2215 pGR+15        350 plER10B       < 1 paR105< 1 上記の結果よりカテコール生産遺伝子はpGR1!5上
の約5.3Kbに含まれると推定した。 (2)カテコール生産遺伝子の構造解析前記(1)にお
いて特定した遺伝子領域の塩基配列をM13ファージ・
ジデオキシ法(宝酒造株製キット使用)により決定した
。その結果を第1図に示す。 この塩基配列に基づいて酵素蛋白質をコードする遺伝子
領域を検索したところ、少なくともF記の4つの領域の
存在を確認した。 領域工 第617〜619番[1のATC配列から第1981−
1983番口のTCA配列までの配列ベースを有する分
子−一50.208 (448アミノ酸)の領域   
−領域II 第2070〜2072番[1のATG配列から第263
1〜2633番11のTAG配列までの配列ベースをイ
fする分子量、22.103 (+87アミノ酸)の領
域領域■ :1S2963〜2965番1−1のATG配列から第
4190〜4192番11のTGA配列までの配列ベー
スを有する分子量42.8+9 (409アミ/M)の
領域領域■ 第4519〜4521番11のATG配列から第501
4〜5016番[]のTGA配列までの配列ベースを右
する分子量17.221 (IE15アミノ酸)の領域
(3)カテコール生産遺伝子のコードする蛋白質の同定 り記遺伝子を含むプラスミドおよび制限酵素を利用した
欠失誘導体を用いてプラスミドDNAからin v己r
o翻訳系(Amersham社製+ ント)により蛋白
質を合成させ、5IISポリアクリルアミド電気泳動し
1分イー呈4]1j定およびそのブッピングを行なった
。その結果、ド記の如(,11!基配列から推定される
蛋白質コード領域とほぼ一致した。 領     域
An example of the base sequence of the gene of the present invention is shown in FIG. This (7) DNA is (7) The restriction enzyme EcaRI is in the DNA button. There are sites that are cleaved with 5alI, PstI, and Hindll; for example, the cleavage site with 5alI is between G on day 1829 and T on day 1830, and Ps
The cleavage site by tI is between C at 2133rd and T at 2134th, C at 1゛l at 4025th and T at 4026th.
and between Exit 5269 C and Exit 5270 II. In addition, the cleavage site by Hindm is 2172
It is between the number A and the 2173rd day A. The gene of the present invention can be prepared as follows. Catechol production with benzene oxygenase and benzene glycol dehydrogenase genes,
For example, mutant strains belonging to the genus Pseudomonas in which catechol-degrading enzymes are deleted or have low activity (for example, Pseudomonas sp. 138R-3, FERN P-8
970) to the genetic region containing both of the above genes using conventional methods (for example, J, Bacteriol, 89.1085 (
(1985) etc.), and the restriction enzyme Sau 3A
to partially cleave the necessary NA fragment (molecular weight approximately 30K)
b) obtain. On the other hand, broad host range plasmid R5FIOIO
cosmid pMM833 (Gene 24.299
(1983)) etc. as a plasmid vector, which was cut separately with restriction enzymes SmaI and HpaI.
After mixing, it is cut with BamHI, mixed with the DNA fragment, and ligated with T4 DNA ligase. This is then wrapped in the shell of lambda phage, a virus that infects Escherichia coli.
vitro packaging), large 1! ! E. coli clones containing cosmids incorporating chromosomal DNA are obtained by infecting bacteria (for example, E. coli clones containing cosmids containing chromosomal DNA
゜FERM P-8007). The DNA fragment obtained by cutting the cosmid pGR300 held by E. coli with the restriction enzyme EcoRI was digested with the restriction enzyme EcoRI.
Plasmid plJc 8 (Gene
IJ 259 (1982)) and E. coli JM83.
E. coli that retains the ability to produce catechols is selected. A plasmid is extracted from this E. coli transformant, subjected to cleavage analysis with various restriction enzymes, and a restriction enzyme map is created.Next, based on this, deletion derivatives are created using restriction enzyme cleavage and exonuclease Ba I-31. and hold each deletion plasmid. Fungus J
A region containing the gene of interest is determined using the M83 strain. The base sequence of the gene region thus obtained was determined by the M13 phage dideoxy method. 1981- from the ATG array of area engineering No. 617-619 No. 11
1! A region with a molecular weight of 50.208 (448 amino acids) that has a sequence base up to the 383rd TGA sequence!
■ No. 2631 from the ATG array of No. 2070-2072
Region m with a molecular weight of 22.103 (187 amino acids) having a sequence base up to the TAG sequence at positions 2633 and 4190 from the AτG sequence at positions 2963 to 2965
A region with a molecular weight of 42.819 (409 amino acids) that has the sequence base up to the ↑GA sequence at position 4192■ From the ATG sequence at positions 4519 to 4521 to position 5014
Region V with a molecular weight of 17.221 (165 amino acids) having the sequence base up to the TGA sequence at positions 5016 and 2961 from the ATG sequence at positions 2688 to 2690
A region of 91 amino acids having a sequence base up to the TGA sequence at position 2963 [Effects of the invention] Region 1 encoding the amino acid sequence of the above enzyme protein,
The gene containing at least II, m and ■ is +u
It is used to create prokaryotic cells (e.g. E. coli) that carry a plasmid carrying the IKI gene, and the cells are used to generate benzenes (benzene's short alkyl groups, substituted alkyl groups, carboxyl groups, aldehyde groups, halogens). Catechol or its derivatives can be produced from substituted benzene (substituted benzene into which atoms etc. have been introduced). In addition to being used as synthetic intermediates, these catechols are used as antioxidants, bactericidal agents, and
It is useful as a 712 eraser, a fragrance, a reagent for developer 1 analysis, etc. [Example] Next, the present invention will be explained with reference to an example. Example (1) Identification of the gene region encoding benzene oxygenase and benzene glycol dehydrogenase genes Cosmid pGR300 carrying the benzene oxygenase and benzene glycol dehydrogenase genes (held by Da. 1 Yangbacterium 5I-300, FERN P-8007) was cut with the restriction enzyme EcoRI. Obtained D
Plasmid pUc 8 (Gene 19.259 (1982)) in which the NA fragment was cut with the restriction enzyme EcoRI
MB2 strain was transformed into E. coli strain MB2, and E. coli that retained the ability to produce catechols was selected. In addition, the above-mentioned restriction enzyme cleavage conditions, ligation reaction conditions, transformation, etc. of recombinant DNA
A technique is a conventional method (for example, T, Maniatis, E
, F, Fr1tsh. J, 5alIlbrook, Mo1ecular
Cloning, Co1d SpringHarbe
r Laboratory l'lJ,' 1982
year). Plasmids were extracted from the 11g bacterial transformant obtained as described above, and cleavage analysis using various restriction enzymes was performed to create a restriction enzyme map. Based on this map, restriction enzyme cleavage and exonuclease Ba I-3
Deletion derivatives were created by using 1 (second
figure). 100 E. coli JM83 strains carrying each deletion plasmid
LBJB ground 10j) containing ampicillin of μs/aj)
The cells were cultured for 12 hours at 37°C. After that, collect the bacteria. 50IIIM phosphate buffer (p87.3) l r
sl! 0.5% of benzene was added, and the cells were incubated at 30°C for 12 hours.
73. If3 (1959)), the results are shown in Table 1. Retention plasmid Accumulated catechol product (mg/jll)
pGRIO2215 pGR+15 350 plER10B < 1 paR105 < 1 From the above results, it was estimated that the catechol production gene was contained in approximately 5.3 Kb on pGR1!5. (2) Structural analysis of catechol-producing genes The base sequence of the gene region identified in (1) above was analyzed using M13 phage.
Determined by the dideoxy method (using a kit manufactured by Takara Shuzo Co., Ltd.). The results are shown in FIG. When we searched for gene regions encoding enzyme proteins based on this base sequence, we confirmed the existence of at least four regions listed in F. Area engineering No. 617-619 [1981- from ATC array of 1
A region of molecule-150.208 (448 amino acids) having a sequence base up to the TCA sequence at position 1983
- Region II No. 2070 to 2072 [from ATG sequence 1 to No. 263
Molecular weight, 22.103 (+87 amino acids) based on the sequence base of the TAG sequence from No. 1 to No. 2633 (+87 amino acids): 1S ATG sequence from No. 1-1 from No. 2963 to No. 2965 to TGA sequence from No. 4190 to No. 4192 No. 11 A region with a molecular weight of 42.8+9 (409 ami/M) having a sequence base of up to
A region with a molecular weight of 17.221 (IE15 amino acids) that corresponds to the sequence base up to the TGA sequence of numbers 4 to 5016 [ ] (3) Identification of the protein encoded by the catechol production gene Description Using a plasmid containing the gene and a restriction enzyme Deletion derivatives were used to generate in v cells from plasmid DNA.
The protein was synthesized using an o translation system (manufactured by Amersham Inc.), subjected to 5IIS polyacrylamide electrophoresis, and subjected to 1 minute elongation and blotting. The results were almost identical to the protein coding region deduced from the base sequence.

【図面の簡単な説明】 第1図は本発明の遺伝子の塩基配列であり、第2図は欠
失誘導体の制限酵素地図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the base sequence of the gene of the present invention, and FIG. 2 shows a restriction enzyme map of the deletion derivative.

Claims (1)

【特許請求の範囲】[Claims] (1)少なくとも下記の酵素蛋白のアミノ酸配列をコー
ドする領域 I 、II、IIIおよびIVを含む遺伝子。 領域 I 【アミノ酸配列があります】 領域II 【アミノ酸配列があります】 領域III 【アミノ酸配列があります】 領域IV 【アミノ酸配列があります】
(1) A gene containing at least regions I, II, III and IV encoding the amino acid sequences of the following enzyme proteins. Region I [There is an amino acid sequence] Region II [There is an amino acid sequence] Region III [There is an amino acid sequence] Region IV [There is an amino acid sequence]
JP6870086A 1986-03-28 1986-03-28 gene Expired - Lifetime JPH0648984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6870086A JPH0648984B2 (en) 1986-03-28 1986-03-28 gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6870086A JPH0648984B2 (en) 1986-03-28 1986-03-28 gene

Publications (2)

Publication Number Publication Date
JPS62228276A true JPS62228276A (en) 1987-10-07
JPH0648984B2 JPH0648984B2 (en) 1994-06-29

Family

ID=13381301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6870086A Expired - Lifetime JPH0648984B2 (en) 1986-03-28 1986-03-28 gene

Country Status (1)

Country Link
JP (1) JPH0648984B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092247A3 (en) * 2000-05-31 2002-08-01 Maxygen Inc Preparation of 4-hydroxy-3[2h]-furanones
US7541168B2 (en) 2000-07-18 2009-06-02 National Research Council Of Canada Recombinant cyclopentanone monooxygenase [cpmo]

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092247A3 (en) * 2000-05-31 2002-08-01 Maxygen Inc Preparation of 4-hydroxy-3[2h]-furanones
US7541168B2 (en) 2000-07-18 2009-06-02 National Research Council Of Canada Recombinant cyclopentanone monooxygenase [cpmo]

Also Published As

Publication number Publication date
JPH0648984B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
Johnson et al. Two RNA polymerase sigma factors from Bacillus subtilis discriminate between overlapping promoters for a developmentally regulated gene
Kahmann et al. G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor
Yoshihara et al. Cloning and nucleotide sequence analysis of the colH gene from Clostridium histolyticum encoding a collagenase and a gelatinase
Woods et al. Two biochemically distinct classes of fumarase in Escherichia coli
Zukowski et al. Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene.
Wang et al. Phase variation in Xenorhabdus luminescens: cloning and sequencing of the lipase gene and analysis of its expression in primary and secondary phases of the bacterium
Jones et al. Recombination between short direct repeats in a rec A host
Connors et al. Cloning and nucleotide sequencing of genes for three small, acid-soluble proteins from Bacillus subtilis spores
Huber et al. Site-specific DNA inversion is enhanced by a DNA sequence element in cis
Prasad et al. Mutations in the 2-microns circle site-specific recombinase that abolish recombination without affecting substrate recognition.
JPH0665305B2 (en) Method for stabilizing host cell containing recombinant DNA
Eberz et al. Three trans-acting regulatory functions control hydrogenase synthesis in Alcaligenes eutrophus
JPH10229885A (en) New alcohol/aldehyde dehydrogenase
Ishiguro et al. Nucleotide sequence of insertion sequence IS3411, which flanks the citrate utilization determinant of transposon Tn3411
Kaasen et al. Amplified expression of the tag+ and alkA+ genes in Escherichia coli: identification of gene products and effects on alkylation resistance
D'Souza et al. Amino-acylation site mutations in amino acid-activating domains of surfactin synthetase: effects on surfactin production and competence development in Bacillus subtilis
JPS58180499A (en) Novel vector containing gene coding catechol 2,3-oxygenase, obtained enzyme and application
Kanazawa et al. Deletion of seven amino acid residues from the γ subunit of Escherichia coli H+-ATPase causes total loss of F1 assembly on membranes
Jeppson et al. Duplication of a DNA sequence homologous to genes for immunoglobulin receptors and M proteins in Streptococcus pyogenes
JPS62228276A (en) Gene
Bendiak et al. Organization of genes in the four minute region of the Escherichia coli chromosome: evidence that rpsB and tsf are co-transcribed
Frick et al. Cloning of immunity and structural genes for colicin V
Koronakis et al. The traM gene of the resistance plasmid R1: comparison with the corresponding sequence of the Escherichia coli F factor
Sussman et al. Integration and mapping of Bacillus megaterium genes which code for small, acid-soluble spore proteins and their protease
Tait et al. Plant phosphoglucose isomerase genes lack introns and are expressed in Escherichia coli