JPS62228183A - Method for detecting attitude and orbit of revolving artificial satellite - Google Patents

Method for detecting attitude and orbit of revolving artificial satellite

Info

Publication number
JPS62228183A
JPS62228183A JP61072231A JP7223186A JPS62228183A JP S62228183 A JPS62228183 A JP S62228183A JP 61072231 A JP61072231 A JP 61072231A JP 7223186 A JP7223186 A JP 7223186A JP S62228183 A JPS62228183 A JP S62228183A
Authority
JP
Japan
Prior art keywords
satellite
orbit
attitude
artificial satellite
beacon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61072231A
Other languages
Japanese (ja)
Inventor
Yutaka Maeda
豊 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61072231A priority Critical patent/JPS62228183A/en
Publication of JPS62228183A publication Critical patent/JPS62228183A/en
Pending legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

PURPOSE:To enhance a detection characteristic, by utilizing beacon waves transmitted from a plurality of stationary satellits. CONSTITUTION:Beacon wave transmitters respectively different from each other are mounted on stationary satellites 2A, 2B, 2C arranged on an orbit 21 at an equal interval. RF sensors RF exclusive to three kinds of different beacon waves are mounted on an artificial satellite 1 revolving around the earth 3 on or orbit 11. The satellite 1 receives the beacon wave from the satellite 2A and can detect the own attitude and orbit from the position and altitude preliminarily known with regard to the satellite 2A. By always arranging one of the stationary satellites 2B, 2C, in the visual field of the satellite 1, no blind state is generated because no ground station is used and the attitude and orbit of the satellite 1 are continuously detected with high capacity.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、周回人工衛星の姿勢および軌道を検知する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for detecting the attitude and orbit of an orbiting artificial satellite.

(従来の技術およびその問題点) よく知られているように、地球を周回する人工衛星はそ
れぞれの目的に応じた軌道および姿勢つまり向きを与え
られている。
(Prior Art and its Problems) As is well known, artificial satellites orbiting the earth are given orbits and attitudes, or directions, depending on their respective purposes.

ランドサットのような地形観測用の人工衛星を例にとれ
ば、衛星は観測を行うためには観測地点の上空を通らな
ければならない。また、観測に際しては、例えば望遠鏡
のような観測手段が観測地点に、また、データの回収に
際しては送信アンテナが地上局の方向にそれぞれ正しく
向い−Cいなければならない。また、打上げに際しては
、高度がわずか数キロメートル不足しても衛星の寿命は
著しく縮まる。このように姿勢および軌道に狂いが生じ
ると衛星は所定の性能が発揮できない。そこで、衛星の
軌道修正と姿勢制御が行われる。そのためには、先ず、
衛星の軌道と姿勢を精密に検知することが必要である。
For example, in the case of a topographical observation satellite such as Landsat, the satellite must pass over an observation point in order to conduct an observation. Furthermore, during observation, the observation means such as a telescope must be properly oriented at the observation point, and when collecting data, the transmitting antenna must be properly oriented toward the ground station. Furthermore, when launching a satellite, even a shortfall of just a few kilometers in altitude will significantly shorten the lifespan of the satellite. If the attitude and orbit become erroneous as described above, the satellite will not be able to exhibit its desired performance. There, the satellite's orbit is corrected and its attitude is controlled. To do so, first of all,
It is necessary to precisely detect the orbit and attitude of the satellite.

人工衛星の姿勢を知る方法としては、従来、衛星の向き
を知る基準として太陽を用いる太陽センサおよび地球を
用いる地球センサをともに衛星に搭載し衛星の姿勢を検
知する方法がある。この方法では、衛星が太陽に照′ら
されている間(日照中)は太陽センサを用い、衛星が地
球の影に入ると(日食中)地球センサを用いる。ところ
が太陽に較べて、地球の見かけの角度ははるかに大きい
だけでなく、地平線の輪郭も空気層の影響で明瞭ではな
いから地球センナの精度は太陽センナより本質的に劣る
A conventional method for determining the attitude of an artificial satellite is to detect the attitude of the satellite by mounting both a sun sensor using the sun and an earth sensor using the earth as a reference for determining the orientation of the satellite. This method uses a sun sensor while the satellite is illuminated by the sun (during sunshine) and uses an earth sensor when the satellite enters the Earth's shadow (during a solar eclipse). However, the Earth's apparent angle is much larger than that of the Sun, and the outline of the horizon is not clear due to the influence of the air layer, so the accuracy of the Earth Senna is essentially inferior to that of the Sun Senna.

また、軌道を検知する方法としては、地上局から衛星に
向けて発射し衛星が中継した電波を地上局が受信するこ
とにより衛星の位置を知る方法がある。この方法では、
低軌道の衛星の場合は特に、1個所の地上局がカバーで
きる軌道上の範囲が狭いから、軌道全域にわたって監視
する必要があれば、軌道に沿って多数の地上局を配置し
なければならない。実際には、地上局の数は限られてい
るから、衛星が地上局から見通しの効く位置にいる時間
より、ブラインドつまり見通しの効かない位置にいる時
間の方が長い。ブラインドにいる間は、衛星に指令を送
ることも、また、衛星に異変が起きた場合これを探知す
ることも従ってコントロールすることもできない。
Further, as a method for detecting the orbit, there is a method in which the position of the satellite is known by the ground station receiving radio waves that are emitted from a ground station toward the satellite and relayed by the satellite. in this way,
Particularly in the case of low-orbit satellites, a single ground station can only cover a narrow range in orbit, so if it is necessary to monitor the entire orbit, many ground stations must be placed along the orbit. In reality, because there are only a limited number of ground stations, the satellite spends more time in a blind position than in a line-of-sight position from a ground station. While blind, you cannot send commands to the satellite, nor can you detect or control any abnormalities that occur to the satellite.

本発明の目的は、上に記したような欠点のない、周回人
工衛星の姿勢および軌道の検知を高い精度で行う方法を
提供することにある。
An object of the present invention is to provide a method for detecting the attitude and orbit of an orbiting artificial satellite with high accuracy, without the above-mentioned drawbacks.

(問題点を解決するための手段) 本発明の方法は、第1図の一実施例が示すように、地球
を周回する人工衛星の姿勢および軌道を検知する方法で
あって、複数個の静止衛星(2A。
(Means for Solving the Problems) As shown in an embodiment in FIG. 1, the method of the present invention is a method for detecting the attitude and orbit of an artificial satellite orbiting the earth. Satellite (2A.

2”12C)に互いに異なったビーコン波の発信器を搭
載するとともに、検知する対象である周回人工衛星1に
、前記ビーコン波のRFセンナを搭載することにより、
前記周回人工衛星lが軌道上を移動しながら、前記静止
衛星(2人12B12G)から発信されるビーコン波を
順次に受信し、そのビーコン波を発信した静止衛星の高
度と位置を基準として自らの姿勢および軌道を知ること
を特徴とする。
By mounting different beacon wave transmitters on the 2"12C) and mounting an RF sensor for the beacon waves on the orbiting artificial satellite 1 which is the object to be detected,
While moving in orbit, the orbiting artificial satellite 1 sequentially receives beacon waves transmitted from the geostationary satellites (2 people 12B12G), and determines its own position based on the altitude and position of the geostationary satellite that transmitted the beacon waves. It is characterized by knowing the attitude and trajectory.

(実絶ρす9 第1図に従って、本発明の詳細な説明する。(Jitsutsu ρsu 9 The present invention will be described in detail with reference to FIG.

ここに挙げた実施例において、用意された静止衛星の数
は3個(2A、  2Bt  2C)であり、それ等は
軌道21上等間隔に配置されている。検知対象の人工衛
星1は地球3を周回する軌道11に乗っている。また、
静止衛星にはそれぞれ異なったビーコン波の発信器が積
んであり、衛星1にはそれら3植類のビーコン波の専用
RFセ/すが1個ずつ計3個積んである。衛星1は静止
衛星2人から発射されるビーコン波を受信し、受信した
ビーコン波の種類からそのビーコン波を発射した静止衛
星が2人であることを知る。予め分っている静止衛星2
Aの位置と高度から自らの姿勢と軌道を検知する。衛星
1は軌道上を移動し次々と視界に現れる静止衛星2B、
  2cからのビーコン波を受信し同様に姿勢および軌
道を検知しながら地球を周回する。
In the embodiment mentioned here, the number of prepared geostationary satellites is three (2A, 2Bt, 2C), and they are arranged at equal intervals on the orbit 21. An artificial satellite 1 to be detected is in an orbit 11 orbiting the earth 3. Also,
Each of the geostationary satellites is equipped with a different beacon wave transmitter, and the satellite 1 is equipped with a total of three RF transmitters for each of the three types of beacon waves. Satellite 1 receives beacon waves emitted from two geostationary satellites, and learns from the type of the received beacon waves that the two geostationary satellites emitted the beacon waves. Geostationary satellite 2 known in advance
Detects its own attitude and trajectory from A's position and altitude. Satellite 1 moves in orbit, and geostationary satellite 2B appears one after another in view.
It orbits the earth while receiving beacon waves from 2c and similarly detecting its attitude and orbit.

この際、衛星1の視界の中に、常に少くとも1個の静止
衛星が有るように、幾つかの静止衛星を配置しておけば
、姿勢の制御と軌道の修正とを連続的に行うことができ
る。衛星1に搭載したRFセ/すで姿勢と軌道両方の検
知を行うので、それらの狂いを衛星内で知ることができ
る。従って、搭載したコンピュータをそのようにプログ
ラムしておけば、地上局からの指令によらずに、液体ロ
ケットなどの制御手段を作動させて自ら姿勢制御と軌道
修正をすることができる。
At this time, if several geostationary satellites are placed so that at least one geostationary satellite is always within the field of view of satellite 1, attitude control and orbit correction can be performed continuously. I can do it. Since the RF unit installed on Satellite 1 detects both the attitude and orbit, it is possible to detect any deviations within the satellite. Therefore, if the onboard computer is programmed in this way, it can operate control means such as liquid rockets and perform attitude control and orbit correction by itself without receiving commands from a ground station.

また、衛星lが地上局のブラインドにいる間も、その時
衛星1を視界に捕えている静止衛星を中継すれば、衛星
lに指令を送ることも異変を探知しこれをコントロール
することもできる。
Furthermore, even while satellite 1 is in the blind position of the ground station, if the geostationary satellite that has satellite 1 in its field of view is relayed, it is possible to send commands to satellite 1 and to detect and control abnormalities.

(発明の効果) 本発明の方法は、太陽を基準とする太陽センナや地球を
基準とし精度の劣る地球センサを用いない。従って、日
照や日食の影響を受けないばかりでなく、静止衛星その
ものの位置の制御は別途精密に行われるから、これを基
準として用いる本発明の方法の検知精度は極めて高い。
(Effects of the Invention) The method of the present invention does not use a solar sensor that uses the sun as a reference or an earth sensor that uses the earth as a reference and has poor accuracy. Therefore, not only is it not affected by sunlight or solar eclipse, but also the position of the geostationary satellite itself is precisely controlled separately, so the detection accuracy of the method of the present invention using this as a reference is extremely high.

また、本発明の方法によれば、検知対象の周回人工衛星
を軌道上の大部分または総ての位置で、地上局のコノト
ロール下に置くことができる。
Further, according to the method of the present invention, the orbiting artificial satellite to be detected can be placed under control of the ground station at most or all positions on the orbit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の方法の一実施例を示す配置図である
。 ■・・・周回人工衛星、2人、2B、2C・・・静止衛
星、3・・・地球、11・・・周回軌道、21・・・静
止軌道。 代理人  弁理士  本 庄 伸 介 第1図
FIG. 1 is a layout diagram showing an embodiment of the method of the present invention. ■...Orbiting satellite, 2 people, 2B, 2C...Geostationary satellite, 3...Earth, 11...Orbiting orbit, 21...Geostationary orbit. Agent Patent Attorney Shinsuke Honjo Figure 1

Claims (2)

【特許請求の範囲】[Claims] (1)地球を周回する人工衛星の姿勢および軌道を検知
する方法において、複数個の静止衛星に互いに異なつた
ビーコン波の発信器を搭載するとともに、前記周回人工
衛星に前記ビーコン波のRFセンサを搭載することによ
り、前記周回人工衛星が軌道上を移動しながら、前記静
止衛星から発信されるビーコン波を受信し、そのビーコ
ン波を発信した静止衛星の高度と位置を基準として自ら
の姿勢および軌道を知ることを特徴とする周回人工衛星
の姿勢および軌道の検知方法。
(1) In a method for detecting the attitude and orbit of an artificial satellite orbiting the earth, a plurality of geostationary satellites are equipped with different beacon wave transmitters, and the orbiting artificial satellite is equipped with an RF sensor for the beacon waves. By installing this onboard, the orbiting artificial satellite receives beacon waves transmitted from the geostationary satellite while moving in orbit, and adjusts its own attitude and orbit based on the altitude and position of the geostationary satellite that transmitted the beacon wave. A method for detecting the attitude and orbit of an orbiting artificial satellite, which is characterized by knowing the attitude and orbit of an orbiting artificial satellite.
(2)複数個の静止衛星を配置し、これらの静止衛星の
うちの少なくとも1つが検知対象の周回人工衛星の視界
内に常に存在するように前記静止衛星の相対位置が定め
てあることを特徴とする特許請求の範囲第1項記載の周
回人工衛星の姿勢および軌道の検知方法。
(2) A plurality of geostationary satellites are arranged, and the relative positions of the geostationary satellites are determined so that at least one of the geostationary satellites is always within the field of view of the orbiting artificial satellite to be detected. A method for detecting the attitude and orbit of an orbiting artificial satellite according to claim 1.
JP61072231A 1986-03-28 1986-03-28 Method for detecting attitude and orbit of revolving artificial satellite Pending JPS62228183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61072231A JPS62228183A (en) 1986-03-28 1986-03-28 Method for detecting attitude and orbit of revolving artificial satellite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61072231A JPS62228183A (en) 1986-03-28 1986-03-28 Method for detecting attitude and orbit of revolving artificial satellite

Publications (1)

Publication Number Publication Date
JPS62228183A true JPS62228183A (en) 1987-10-07

Family

ID=13483287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61072231A Pending JPS62228183A (en) 1986-03-28 1986-03-28 Method for detecting attitude and orbit of revolving artificial satellite

Country Status (1)

Country Link
JP (1) JPS62228183A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292480A (en) * 2007-05-18 2008-12-04 Astrium Sas Satellite positioning method and facility of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008292480A (en) * 2007-05-18 2008-12-04 Astrium Sas Satellite positioning method and facility of the same

Similar Documents

Publication Publication Date Title
US4630058A (en) Satellite communication system
US6241192B1 (en) Earth observation method, and system and observation satellite, operating ground system and program for the same
US20230031823A1 (en) Satellite constellation, ground facility, and flying object tracking system
EP1760485B1 (en) Boresight calibration of GPS satellite spot beam antenna using mobile GPS receivers
JP7434649B2 (en) Satellite information transmission system
EP0731401B1 (en) Spacecraft acquisition of orientation by scan of earth sensor field of view
EP0190258A1 (en) Surveying satellite incorporating star-sensing attitude determination subsystem
CN112526227B (en) Method and device for measuring antenna direction characteristics of satellite-borne microwave radiometer
JP3384865B2 (en) Multiple satellite control method and multiple satellite control device
CN113091728B (en) Method and system for acquiring ground multi-target access window by satellite
US6978966B2 (en) Reflector deployment error estimation
JPS62228183A (en) Method for detecting attitude and orbit of revolving artificial satellite
US20230339625A1 (en) Satellite constellation, flying object monitoring system, artificial satellite, inclined orbit satellite system, inclined orbit satellite, and hybrid constellation
RU2775095C1 (en) Method for viewing the geostationary region for detecting and observing space debris from a spacecraft
Scott et al. Combined space-based observations of geostationary satellites
US6695262B2 (en) Spacecraft methods and structures for enhanced service-attitude accuracy
WO2023062731A1 (en) Flying object tracking method, flying object tracking system, satellite constellation, and ground system
US20240217676A1 (en) Communication satellite, satellite constellation, inter-satellite communication method, artificial satellite, and ground facility
Guelman et al. The Israeli microsatellite TECHSAT for scientific and technological research: Development and in-orbit testing
Buckley Obtaining Data from Space
Steinbacher et al. Mariner 9 mission profile and project history
Ostwald Balloon platform for extended-life astronomy research
CN115783312A (en) All-day-area sun vector autonomous capture control method of analog sun sensor
BOULDER PAPER 2.8 _• N75 12748
CN113419256A (en) Spacecraft return searching and positioning system and searching and positioning method