JPS62228145A - Ultraviolet type organic substance measuring apparatus - Google Patents

Ultraviolet type organic substance measuring apparatus

Info

Publication number
JPS62228145A
JPS62228145A JP7182586A JP7182586A JPS62228145A JP S62228145 A JPS62228145 A JP S62228145A JP 7182586 A JP7182586 A JP 7182586A JP 7182586 A JP7182586 A JP 7182586A JP S62228145 A JPS62228145 A JP S62228145A
Authority
JP
Japan
Prior art keywords
specimen
ultraviolet
absorbancy
cell
flow channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7182586A
Other languages
Japanese (ja)
Inventor
Yozo Morita
洋造 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7182586A priority Critical patent/JPS62228145A/en
Publication of JPS62228145A publication Critical patent/JPS62228145A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/631Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited using photolysis and investigating photolysed fragments

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To prevent the generation of adverse effect or erroneous correction due to a coloring component or a suspended substance, by irradiating the flow passage of a liquid specimen which ultraviolet rays to decompose the org. substance in the specimen by oxidation and calculating the reduction quantity of absorbancy before and after oxidative decomposition. CONSTITUTION:A liquid specimen is transferred to a flow passage 3 through a specimen introducing passage 14 and discharged through a specimen discharge passage 16. In this state, an operation part 12 calculates the absorbancy in a flow cell 4 with respect to ultraviolet rays with a wavelength of 254nm emitted from a low pressure mercury lamp 2 to store the same. Subsequently, similar absorbancy after a definite time is calculated with respect to a cell 5. At this time, the specimen is irradiated with ultraviolet rays for definite time while flowing through the flow passage 3 and the org. substance in the specimen is almost perfectly decomposed. Therefore, the absorbancy in the cell 5 is reduced with respect to that in the cell 4. As a result, the absorbancy difference calculated in the operation part 12 shows a relation substantially proportional to the concn. of the org. substance in the specimen.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、紫外線式有機物測定装置に関する。[Detailed description of the invention] (b) Industrial application fields The present invention relates to an ultraviolet organic substance measuring device.

さらに詳しくは、水中の有機物の濃度を紫外線の吸光度
に基づいて測定しうる有機物測定装置に関する。
More specifically, the present invention relates to an organic substance measuring device that can measure the concentration of organic substances in water based on the absorbance of ultraviolet rays.

(ロ)従来の技術 従来、COD等の水中に含まれる有機物質を測定する装
置として、いわゆるTOC計や紫外吸光度計が使用され
ており、ことに排水中の有機物質の定量に汎用されてい
る。これらのうち紫外吸光度計は、フローセルを用い平
均的な有機物の固有吸収波長の紫外線についての吸光度
に基づいて定量を行なう方式のものであり、通常、測定
用至適波長としては250nm以上の長波長の紫外線が
使用されている。
(b) Conventional technology Traditionally, so-called TOC meters and ultraviolet absorbance meters have been used as devices for measuring organic substances contained in water, such as COD, and are especially used for quantifying organic substances in wastewater. . Among these, the ultraviolet absorbance meter is a method that uses a flow cell to perform quantitative determination based on the absorbance of ultraviolet light, which is the characteristic absorption wavelength of average organic substances, and the optimal wavelength for measurement is usually a long wavelength of 250 nm or more. UV rays are used.

(ハ)発明が解決しようとする同居点 しかしながら上記従来の紫外吸光度計においては、 ■ 試料を導入するフローセルのセル窓の汚れにより測
定精度が低ドし易く、そのため種々の方式のセル窓洗浄
装置を付加する必要があるが、装置が複雑化しコスト高
となると共に、洗浄効果も完全ではない、 ■ 懸濁物質などの存在により測定が妨害され、その対
策として有機物が実質的に吸収しない波長(例えば可視
域の波長)の吸光度を測定して補正するいわゆる2波長
吸光度測定が一般に使用されるが、懸濁物質の種類によ
って紫外光と可視光についての吸光度がしばしば異なる
ため正確に補正されているとは限らない、 ■ 光源の輝度変化や受光器の感度変化により測定精度
が低ドし易い、 などの問題点があった。この発明はかかる問題点を解消
すべくなされたものであり、セル窓の汚れ、懸濁物質に
よる妨害、光源の輝度変化や受光素子の感度変化などに
起因する測定精度への悪影響を受けることなく簡便かつ
効率良く水中の有機物質を定量しつる紫外線式有機物測
定装置を提供しようとするものである。
(c) The same points that the invention aims to solve: However, in the conventional ultraviolet absorbance spectrometer described above, the measurement accuracy tends to be reduced due to dirt on the cell window of the flow cell into which the sample is introduced. It is necessary to add a So-called two-wavelength absorbance measurement is generally used, which measures and corrects the absorbance of wavelengths in the visible range (for example, wavelengths in the visible range), but since the absorbance of ultraviolet light and visible light often differ depending on the type of suspended solids, accurate correction cannot be made. There were problems such as: ■ Measurement accuracy tends to decrease due to changes in the brightness of the light source and changes in the sensitivity of the receiver. This invention was made to solve these problems, and does not have adverse effects on measurement accuracy caused by dirt on the cell window, interference from suspended substances, changes in the brightness of the light source, changes in the sensitivity of the light receiving element, etc. The purpose of the present invention is to provide an ultraviolet organic substance measuring device that can simply and efficiently quantify organic substances in water.

(ニ)問題点を解決するための手段 かくしてこの発明によれば、液体試料を移送する紫外線
透過性のフロー流路と、有機物に対して強い光学酸化作
用を示す紫外線を上記フロー流路に照射しつる紫外線光
源と、上記フロー流路の入口側及び出口側にそれぞれ設
定されてなり有機物の測定用至適波長での液体試料のフ
ロー流路入口側及び出口側における紫外線吸光度を測定
しうる光学測定部と、測定される上記吸光度の差を算出
する演算部を備えてなることを特徴とする紫外線式有機
物測定装置が提供される。
(d) Means for Solving the Problems According to the present invention, there is provided an ultraviolet-transparent flow channel for transferring a liquid sample, and the flow channel is irradiated with ultraviolet light that exhibits a strong optical oxidation effect on organic matter. A persistent ultraviolet light source, and an optical system that is set at the inlet and outlet sides of the flow channel and capable of measuring the ultraviolet absorbance of the liquid sample at the optimum wavelength for measuring organic matter at the inlet and outlet sides of the flow channel. There is provided an ultraviolet organic matter measuring device comprising a measuring section and a calculating section that calculates the difference between the measured absorbances.

この発明の最も特徴とする点は、液体試料の流路に紫外
線を照射して該試料中の有機物を紫外線の光学酸化力で
酸化分解させると共に、その酸化分解前後の液体試料の
吸光度を各々測定してこの減少量を算出し、それにより
液体試料中の有機物質やCOO値を測定しうるよう構成
した点にある。
The most distinctive feature of this invention is to irradiate the flow path of a liquid sample with ultraviolet rays to oxidize and decompose the organic matter in the sample using the optical oxidizing power of the ultraviolet rays, and to measure the absorbance of the liquid sample before and after the oxidative decomposition. The present invention is configured so that the amount of decrease can be calculated and the organic substances and COO values in the liquid sample can be measured accordingly.

この発明におけるフロー流路は一種の光学的反応器とし
て設定される。従ってフロー流路は、紫外線透過性の材
質で構成することが必要であり、特に短波長の紫外線を
透過する溶融石英ガラスや合成石英ガラス製のものが好
ましい。かかるフロー流路は紫外線光源からの紫外線を
効率良く照射できるような照射面積の広い形状のものを
用いるのが適しており、紫外線光源に近接して配設する
のが好ましく、該光源にコイル状に巻回する構造やジク
ザク状に配置する構造が好ましい態様である。このフロ
ー流路の至適長さは、試料流の速度や量によって変化す
るが、試料中の有機物が充分(80〜100%)に分解
されるように決定される◎この発明の紫外線光源として
は有機物に対して強い光学酸化作用を示す紫外線を放出
する紫外線光源が選択される。通常200ni以下の短
波長の紫外線を放出する光源を用いるのが適しており、
ことに強力な酸化作用を示す185nm付近の輝線スペ
クトルを放出する水銀ランプを用いるのが好ましく、長
期間の連続測定が可能な点で耐久性の優れた低圧水銀ラ
ンプを用いるのが最も好ましい。
The flow channel in this invention is set up as a kind of optical reactor. Therefore, the flow channel must be made of a material that transmits ultraviolet rays, and is particularly preferably made of fused silica glass or synthetic quartz glass that transmits short-wavelength ultraviolet rays. It is suitable for such a flow channel to have a shape with a wide irradiation area so that the ultraviolet rays from the ultraviolet light source can be efficiently irradiated, and it is preferable to arrange the flow channel close to the ultraviolet light source. Preferable embodiments include a structure in which the fibers are wound around each other and a structure in which the fibers are arranged in a staggered manner. The optimal length of this flow channel varies depending on the speed and volume of the sample flow, but is determined so that the organic matter in the sample is sufficiently decomposed (80 to 100%) ◎As the ultraviolet light source of this invention An ultraviolet light source that emits ultraviolet light that exhibits a strong optical oxidation effect on organic matter is selected. It is usually suitable to use a light source that emits ultraviolet light with a short wavelength of 200 ni or less.
It is preferable to use a mercury lamp that emits an emission line spectrum around 185 nm that exhibits a particularly strong oxidizing effect, and it is most preferable to use a low-pressure mercury lamp that has excellent durability because it allows continuous measurement over a long period of time.

上記フロー流路の入口側及び出口側にはそれぞれ試料流
の紫外線吸光度を測定しつる光学測定部が設定される。
Optical measuring units for measuring the ultraviolet absorbance of the sample flow are installed on the inlet and outlet sides of the flow channel, respectively.

この光学測定部は、フロー流路の入口及び出口にフロー
セルを付設し、このフローセルに紫外線を照射して有機
物測定用至適波長での吸光度を測定しうるよう構成する
のが適しており、その具体的な構成は通常の紫外線吸光
度計測に用いられるごとく、光源、光学フィルタ、分光
圀、受光器、スリット等を適宜組合せて設定する。
This optical measurement section is suitably configured to have a flow cell attached to the inlet and outlet of the flow channel, and to irradiate the flow cell with ultraviolet rays to measure the absorbance at the optimum wavelength for measuring organic substances. The specific configuration is set by appropriately combining a light source, an optical filter, a spectral field, a light receiver, a slit, etc., as is used for normal ultraviolet absorbance measurement.

また有機物の測定用至適波長は250nm以上の波長の
紫外線が選ばれる。ただしこの測定に用いる紫外線の供
給は、前記酸化分解用の紫外線光源からの紫外線を利用
するのが装@構成上好ましく、従って前記紫外線光源と
しては、これら測定用至適波長の紫外線をも放出しうる
ちのを用いるが好ましく、この点からも250ni以上
の紫外線をも放出する前記水銀ランプは好ましいもので
ある。この場合、上記フローセルの紫外線透過位置には
干渉フィルター等の波長選択手段を介して受光器(シリ
コンフォトセル、フォトマルチプライヤ−等)が配設さ
れ、この出力に基づいて吸光度差が算出される。なお、
かかる水銀ランプを用いた場合には、測定波長は吸収効
率及び硝酸イオンなどの無機イオンの妨害を受けない点
から254nm付近にするのが適している。
Moreover, ultraviolet rays with a wavelength of 250 nm or more are selected as the optimum wavelength for measuring organic substances. However, for the supply of ultraviolet rays used in this measurement, it is preferable to use ultraviolet rays from the ultraviolet light source for oxidation and decomposition in terms of the equipment configuration. It is preferable to use UV rays, and from this point of view as well, the mercury lamp that emits ultraviolet rays of 250 ni or more is preferable. In this case, a light receiver (silicon photocell, photomultiplier, etc.) is arranged at the ultraviolet transmitting position of the flow cell via a wavelength selection means such as an interference filter, and the absorbance difference is calculated based on the output of this light receiver. . In addition,
When using such a mercury lamp, the measurement wavelength is preferably around 254 nm from the viewpoint of absorption efficiency and freedom from interference from inorganic ions such as nitrate ions.

なお、フロー流路内での照射による有様物の分所動率が
不充分な場合には光源強度を上昇したり、フロー流路を
増長して適合化すればよいが、有機物の酸化は酸性状態
の方が速いため、場合によってはリン酸等の無機酸を少
量混入して測定を行なってもよく、またベルオキソ硫酸
塩等の酸化剤を添加したり酸素ガスをバブリングして混
入させて光学酸化を促進させてもよい。さらに、照射効
率を向上させる点で、光源とフロー流路の間を脱酸素ガ
ス(例えば窒素ガス)で密閉してもよく、さらにこの周
囲を反射板で囲っておいてもよい。
Note that if the local movement rate of particles due to irradiation in the flow channel is insufficient, the light source intensity may be increased or the flow channel may be lengthened to make it more suitable, but the oxidation of organic matter may Since it is faster in acidic conditions, measurements may be performed by mixing a small amount of inorganic acid such as phosphoric acid, or by adding an oxidizing agent such as peroxosulfate or by bubbling oxygen gas. Optical oxidation may be promoted. Furthermore, in order to improve the irradiation efficiency, the space between the light source and the flow channel may be sealed with a deoxidizing gas (for example, nitrogen gas), and furthermore, this may be surrounded by a reflecting plate.

また、フローセルとフロー流路は一体化され、すなわち
フロー流路自体が少なくともその入口及び出口でフロー
セルとして機能するものであってもよい。
The flow cell and the flow channel may also be integrated, ie, the flow channel itself may function as a flow cell at least at its inlet and outlet.

この発明において、吸光度差の算出は試料のフロー状f
ill”で前記両光学測定部における受光器の出力に基
づいて演算部で行なわれる。この際の両眼光度の測定の
タイミングは同時であってもよいが、通常、入口側で測
定された試料が出口側に移送される時間差分だけタイミ
ングをずらせて行なうのが測定の正確さの点で好ましい
。かかるタイミング設定及び算出はマイクロコンピュー
タ制御により容易に設定することができる。
In this invention, the calculation of the absorbance difference is performed using the flow state f of the sample.
The measurement is performed by the calculation unit based on the outputs of the light receivers in both the optical measurement units.The timing of the measurement of the binocular luminosity at this time may be simultaneous, but usually the sample measured at the entrance side From the viewpoint of accuracy of measurement, it is preferable to shift the timing by the time difference in which the sample is transferred to the exit side.Such timing setting and calculation can be easily performed by microcomputer control.

(ホ)作用 フロー流路内を流れる液体試料に光源からの紫外線が照
射されることにより該液体試料中の有機物は徐々に分解
されて二酸化炭素と水になるが、これにより減少する所
定波長での試料の吸光度が入口側と出口側の吸光度値に
基づいて演算部で算出され、この減少値に、標準有機物
試料等により較正されたファクターを乗することにより
有機物の濃度やCOD値が決定されることとなる。
(E) Action When the liquid sample flowing in the flow channel is irradiated with ultraviolet rays from the light source, the organic matter in the liquid sample is gradually decomposed into carbon dioxide and water, which reduces the wavelength at a predetermined wavelength. The absorbance of the sample is calculated by the calculation unit based on the absorbance values on the inlet and outlet sides, and the organic matter concentration and COD value are determined by multiplying this decrease value by a factor calibrated using a standard organic matter sample, etc. The Rukoto.

(へ)実施例 第1図は、この発明の紫外線式有機物測定装置の一実施
例を示す構成説明図である。図において紫外線式有機物
測定装置(1)は、入口側及び出口側にそれぞれ石英ガ
ラス製のフローセル(4)及び(5)を付設した有効長
50口、直径10mmのジグザク形状の石英ガラス製フ
ロー流路(3)と、このフロー、流路(3)に近接配置
された低圧水銀ランプ(2:40W)とを備え、フロー
セル(4)及び(5)における紫外線透過位置にはそれ
ぞれ254nm付近の紫外線(有機物測定用至適波長)
を選択透過する干渉フィルタ(6)。
(F) Embodiment FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the ultraviolet-type organic substance measuring device of the present invention. In the figure, the ultraviolet organic matter measuring device (1) has a zigzag-shaped quartz glass flow cell with an effective length of 50 holes and a diameter of 10 mm, which is equipped with quartz glass flow cells (4) and (5) on the inlet and outlet sides, respectively. A low-pressure mercury lamp (2: 40W) placed close to the flow channel (3) and the flow channel (3) is provided, and ultraviolet light around 254 nm is emitted at the ultraviolet transmission position in the flow cells (4) and (5), respectively. (Optimal wavelength for measuring organic matter)
An interference filter (6) that selectively transmits.

(7)並びにシリコンフォトセル(81191が配設さ
れて光学系が構成されてなる。そしてシリコンフォトセ
ル(81,+91の出力はそれぞれ増幅器001.(1
υを介して演算部面へ送られる。なお、a″3Jは送液
ポンプ、(14)は試料導入路、(ト)は試料排出路を
それぞれ示す。
(7) and a silicon photocell (81191) are disposed to form an optical system.The outputs of the silicon photocell (81 and +91) are each connected to an amplifier 001.(1
It is sent to the calculation section via υ. Note that a″3J represents a liquid pump, (14) represents a sample introduction path, and (G) represents a sample discharge path, respectively.

演算部[F]は、マイクロコンピュータにより制御され
、シリコンフォトセル+8)、+91からの出力差を計
測するための記憶部、比較部を備えてなり、計測指示信
号によりフロー中の試料における所定時のシリコンフォ
トビル(8)の出力及び一定時間経過後のシリコンフォ
トセル(9)の出力を各々吸光度信号に換算して記憶部
にストアしこれを比較部において減算して吸光度差を算
出し、表示部(151に表示する。ここで上記一定時間
は、フローセル(4)中の試料がフローセル(5)に移
送される時間に設定され、この実施例においては約2分
とされている。
The calculation unit [F] is controlled by a microcomputer, and includes a storage unit and a comparison unit for measuring the output difference from the silicon photocells +8) and +91, and is configured to measure the difference in output from the silicon photocells +8) and +91 at a predetermined time in the sample during flow based on the measurement instruction signal. The output of the silicon photo building (8) and the output of the silicon photo cell (9) after a certain period of time are each converted into an absorbance signal and stored in the storage section, and this is subtracted in the comparison section to calculate the absorbance difference, It is displayed on the display section (151).Here, the above-mentioned fixed time is set to the time during which the sample in the flow cell (4) is transferred to the flow cell (5), and in this example, it is about 2 minutes.

かかる装置(1)においてポンプ03)によりまず試料
導入路(14)を通じて、フロー流路(3)へ液体試料
が移送され、試料排出路(ト)を通じてドレインへ排出
される。この状態で演算部面はまず水銀ランプ(′2J
から放出される紫外線のうち254nmの波長について
のフローセル(4)における吸光度を鐸出し記憶する。
In such an apparatus (1), a liquid sample is first transferred to a flow channel (3) through a sample introduction channel (14) by a pump 03), and then discharged to a drain through a sample discharge channel (T). In this state, the calculation section first turns on the mercury lamp ('2J).
The absorbance in the flow cell (4) for a wavelength of 254 nm among the ultraviolet rays emitted from the flow cell (4) is extracted and stored.

次いで上記測定時から一定時間後における同様な吸光度
をフローセル(5)について算出する。この際、試料は
、フロー流路(3)を流れる間に水銀ランプ(21から
の紫外線を一定時間照射されることとなり、それにより
、試料中の有機物はほぼ完全に分解されて上記波長に吸
収を実質的に有しないCO2や+20に変換されるため
、フローセル(5)における吸光度A2はフローセル(
4)における吸光度A1に比して減少することとなる(
第2図参照)。
Next, the same absorbance after a certain period of time from the time of the above measurement is calculated for the flow cell (5). At this time, the sample is irradiated with ultraviolet rays from the mercury lamp (21) for a certain period of time while flowing through the flow channel (3), and as a result, the organic matter in the sample is almost completely decomposed and absorbed at the above wavelength. Since the absorbance A2 in the flow cell (5) is converted to CO2 or +20 that does not have substantially
The absorbance will decrease compared to the absorbance A1 in 4) (
(See Figure 2).

従って、演算部面において算出される吸光度差As=A
1 A2は試料中の有機物の濃度と実質的に比例関係を
示し、表示部05)で表示される指示値にファクターを
乗することにより試料中のC0Dliaや有機物濃度値
が容易に定量されることとなる。
Therefore, the absorbance difference As=A calculated in the calculation section
1 A2 shows a substantially proportional relationship with the concentration of organic matter in the sample, and the C0Dlia and organic matter concentration values in the sample can be easily quantified by multiplying the indicated value displayed on display section 05) by a factor. becomes.

(ト)発明の効果 この発明の測定装置は、以下の利点を有する。(g) Effects of the invention The measuring device of the present invention has the following advantages.

■ 酸化分解前後の紫外線吸光度差を求める方式のため
、実質的に有機物の濃度変化に対応する吸光度変化のみ
をサンプリングでき、従来の2波長式紫外吸光度計(例
えば、測定波長254nm 、比較波長546nm使用
)における着色成分や懸濁物質等の妨害成分の悪影響や
誤補正を生じることがない。
■ Because the method calculates the difference in ultraviolet absorbance before and after oxidative decomposition, it is possible to sample only the change in absorbance that corresponds to the change in the concentration of organic matter, making it possible to sample only the change in absorbance that corresponds to the change in the concentration of organic matter. ), there will be no adverse effects or erroneous corrections caused by interfering components such as colored components and suspended solids.

■ フローセルの汚れの影響を受けず、従来のセル窓洗
浄器で除去できない汚れを有するフローセルでも測定で
きる。また、特に従来の2波長測光方式では補正できず
かつワイパ一式洗浄方式のような機械的洗浄方式では除
去困難なフローセル内の微生物スライムや有機物の付着
が、紫外線の照射により防止されるためセル窓も従来に
比して汚れ難くかつ発生してもその悪影響を受けること
はない。
■ It is not affected by flow cell dirt and can be measured even in flow cells with dirt that cannot be removed with conventional cell window cleaners. In addition, ultraviolet irradiation prevents the attachment of microbial slime and organic matter inside the flow cell, which cannot be corrected with the conventional two-wavelength photometry method and is difficult to remove with mechanical cleaning methods such as the wiper set cleaning method. It is also less likely to get dirty than before, and even if it does occur, it will not have any negative effects.

■ 光源の輝度変化や、受光器の感度ドリフトの影響を
受けず正確な測定が長時間に亘って可能となる。
■ Accurate measurements can be made over a long period of time without being affected by changes in the brightness of the light source or sensitivity drift of the receiver.

従って、ことにcoo811定に有用であるが、これ以
外にも特定の有機物、例えば水中のフェノールの定ff
iに適している。
Therefore, it is particularly useful for the determination of coo811, but also for the determination of certain organic substances, such as phenol in water.
suitable for i.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の紫外線式有機物測定装置の一実施
例を示す構成説明図、第2図は同じく測定過程における
有機物濃度と吸光度との関係を示すグラフ図である。 (1)・・・・・・紫外線式有機物測定装置、(′2J
・・・・・・低圧水銀ランプ、(3)・・・・・・フロ
ー流路、(4)、 (5)・・・・・・フローセル、+
61 、 +73・・・・・・干渉フィルタ、+8)+
91・・・・・・シリコンフォトセル、い、G1)・・
・・・・増幅器、 [F]・・・・・・演算部、    G3・・・・・・
ポンプ、蔦)・・・・・・試料導入路、  05)・・
・・・・表示部、(ト)・・・・・・試料排出路。
FIG. 1 is a configuration explanatory diagram showing an embodiment of the ultraviolet-type organic substance measuring device of the present invention, and FIG. 2 is a graph diagram showing the relationship between organic substance concentration and absorbance in the same measurement process. (1)・・・・・・Ultraviolet organic substance measuring device, ('2J
...Low pressure mercury lamp, (3) ...Flow channel, (4), (5) ...Flow cell, +
61, +73...Interference filter, +8)+
91...Silicon photocell, G1)...
...Amplifier, [F] ...Arithmetic section, G3...
pump, ivy)...sample introduction channel, 05)...
...Display section, (g) ...Sample discharge path.

Claims (1)

【特許請求の範囲】 1、液体試料を移送する紫外線透過性のフロー流路と、
有機物に対して強い光学酸化作用を示す紫外線を上記フ
ロー流路に照射しうる紫外線光源と、上記フロー流路の
入口側及び出口側にそれぞれ設定されてなり有機物の測
定用至適波長での液体試料のフロー流路入口側及び出口
側における紫外線吸光度を測定しうる光学測定部と、測
定される上記吸光度の差を算出する演算部を備えてなる
ことを特徴とする紫外線式有機物測定装置。 2、紫外線光源が、水銀ランプである特許請求の範囲第
1項記載の測定装置。
[Claims] 1. An ultraviolet-transparent flow channel for transporting a liquid sample;
An ultraviolet light source that can irradiate the flow channel with ultraviolet light that exhibits a strong optical oxidation effect on organic substances, and a liquid that is set at the inlet and outlet sides of the flow channel to emit a liquid at an optimum wavelength for measuring organic substances. 1. An ultraviolet-type organic matter measuring device comprising: an optical measuring section capable of measuring ultraviolet absorbance at the inlet and outlet sides of a flow channel of a sample; and an arithmetic section calculating a difference between the measured absorbances. 2. The measuring device according to claim 1, wherein the ultraviolet light source is a mercury lamp.
JP7182586A 1986-03-29 1986-03-29 Ultraviolet type organic substance measuring apparatus Pending JPS62228145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7182586A JPS62228145A (en) 1986-03-29 1986-03-29 Ultraviolet type organic substance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7182586A JPS62228145A (en) 1986-03-29 1986-03-29 Ultraviolet type organic substance measuring apparatus

Publications (1)

Publication Number Publication Date
JPS62228145A true JPS62228145A (en) 1987-10-07

Family

ID=13471715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7182586A Pending JPS62228145A (en) 1986-03-29 1986-03-29 Ultraviolet type organic substance measuring apparatus

Country Status (1)

Country Link
JP (1) JPS62228145A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682250A1 (en) * 1994-05-13 1995-11-15 Secomam S.A. Method and device for characterising organic, nitrogen containing and suspended matter in a liquid
WO1996018096A1 (en) * 1994-12-09 1996-06-13 United Utilities Plc Quantitative detection of chemical species
WO2003106981A1 (en) * 2002-06-12 2003-12-24 Baxter International Inc. "an improved optical sensor and method for measuring concentration of a chemical constituent using its intrinsic optical absorbance"
JP2009204431A (en) * 2008-02-27 2009-09-10 Chugoku Electric Power Co Inc:The Measuring method of chemical oxygen demand
JP2018053134A (en) * 2016-09-29 2018-04-05 山本化成株式会社 Method for producing tetraazaporphyrin compound nanoparticle, coloring composition using the nanoparticle, dispersion ink and color filter
JP2018053135A (en) * 2016-09-29 2018-04-05 山本化成株式会社 Method for producing naphthalocyanine compound nanoparticle and application of the nanoparticle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0682250A1 (en) * 1994-05-13 1995-11-15 Secomam S.A. Method and device for characterising organic, nitrogen containing and suspended matter in a liquid
FR2719904A1 (en) * 1994-05-13 1995-11-17 Secomam Sa Method and device for the characterization of organic matter, nitrogenous and suspended in a liquid.
WO1996018096A1 (en) * 1994-12-09 1996-06-13 United Utilities Plc Quantitative detection of chemical species
GB2310717A (en) * 1994-12-09 1997-09-03 United Utilities Plc Quantitative detection of chemical species
GB2310717B (en) * 1994-12-09 1999-04-07 United Utilities Plc Quantitative detection of chemical species
WO2003106981A1 (en) * 2002-06-12 2003-12-24 Baxter International Inc. "an improved optical sensor and method for measuring concentration of a chemical constituent using its intrinsic optical absorbance"
JP2009204431A (en) * 2008-02-27 2009-09-10 Chugoku Electric Power Co Inc:The Measuring method of chemical oxygen demand
JP2018053134A (en) * 2016-09-29 2018-04-05 山本化成株式会社 Method for producing tetraazaporphyrin compound nanoparticle, coloring composition using the nanoparticle, dispersion ink and color filter
JP2018053135A (en) * 2016-09-29 2018-04-05 山本化成株式会社 Method for producing naphthalocyanine compound nanoparticle and application of the nanoparticle

Similar Documents

Publication Publication Date Title
US7362438B2 (en) COD measuring method and device
US4304996A (en) Water sterilizer and organic matter measurement instrument
US4765961A (en) Apparatus for detection of certain nitrogen-containing gases using chemiluminescence
US5567621A (en) Method of and apparatus for analyzing nitrogen compound and phosphorus compound contained in water
Horstkotte et al. A miniature and field-applicable multipumping flow analyzer for ammonium monitoring in seawater with fluorescence detection
RU2013124969A (en) METHOD AND DEVICE FOR DETERMINING SYSTEM PARAMETERS IN ORDER TO REDUCE CORROSION IN THE INSTALLATION OF PRIMARY OIL TREATMENT
US20120329165A1 (en) Bromate ion measurement method
JP2000266677A (en) Analyzer for nitrogen compound, phosphorus compound and organic contaminant
JP3269196B2 (en) Analyzer for nitrogen compounds and phosphorus compounds in water
JPS62228145A (en) Ultraviolet type organic substance measuring apparatus
JP2003075348A (en) Method and instrument for measuring water quality
US4140487A (en) Method and apparatus for analysis of water
US4254339A (en) Method for the fluorimetric quantitative determination of SO2 in gases and apparatus therefor
JPS62228146A (en) Ultraviolet type organic substance measuring apparatus
JPH1054829A (en) Apparatus for measuring concentration of liquid phase ozone of ozone-process water and detecting apparatus for permanganate ion
JP2526544B2 (en) UV type organic matter measuring device
KR100840181B1 (en) Apparatus and method for automatic detecting total nitrogen and total phosphorus
JP3291879B2 (en) Photo-oxidative decomposition apparatus, method and apparatus for analyzing nitrogen compounds and phosphorus compounds in water using the same
WO2021250944A1 (en) Water quality analyzer and water quality analysis method
JPH09127005A (en) Method for analyzing compound in water
US3540849A (en) Analysis of aldehydes,unsaturated hydrocarbons and ketones
JP2003004635A (en) Fluorescence type oxygen analyzer
JP2004061312A (en) Measuring method and device for minor components in water
JP2953904B2 (en) Analyzer for silica component in water
WO2014174818A1 (en) Quantitative analyzing method for oxidant and quantitative analyzing instrument for oxidant