JPS6222712Y2 - - Google Patents

Info

Publication number
JPS6222712Y2
JPS6222712Y2 JP1978074858U JP7485878U JPS6222712Y2 JP S6222712 Y2 JPS6222712 Y2 JP S6222712Y2 JP 1978074858 U JP1978074858 U JP 1978074858U JP 7485878 U JP7485878 U JP 7485878U JP S6222712 Y2 JPS6222712 Y2 JP S6222712Y2
Authority
JP
Japan
Prior art keywords
cylindrical body
heating wire
embedded
tube
tubular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978074858U
Other languages
Japanese (ja)
Other versions
JPS54175612U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978074858U priority Critical patent/JPS6222712Y2/ja
Publication of JPS54175612U publication Critical patent/JPS54175612U/ja
Application granted granted Critical
Publication of JPS6222712Y2 publication Critical patent/JPS6222712Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Branch Pipes, Bends, And The Like (AREA)

Description

【考案の詳細な説明】 本考案は、熱可塑性合成樹脂製の管体を接続す
るための管継手に関し、特に熱可塑性合成樹脂製
の筒状体に電熱線が埋込まれて成る管継手の改良
に関する。
[Detailed description of the invention] The present invention relates to a pipe joint for connecting pipe bodies made of thermoplastic synthetic resin, and particularly to a pipe joint in which a heating wire is embedded in a cylindrical body made of thermoplastic synthetic resin. Regarding improvements.

熱可塑性合成樹脂たとえばポリエチレン製の管
の配管において管体を接続するには、接続すべき
2つの管体の端部を突合わせておいてヒータで加
熱すれば、両者が一体的に熱溶着して接続され
る。この場合、両管体の端面間には溶着代が必要
であるが、たとえば都市ガスを輸送するために地
中に埋設・固定されて動かすことができない管体
では、適正な溶着代を取ることは困難である。そ
のため従来では、両管体の端部が挿入される円筒
状の継手本体と、その継手本体の内周面および管
体の端部外周面の間隙に両端からシール部材を挟
圧してシールするための押輪とを含む金属製の管
継手によつて接続している。この管継手によれば
両管体の端面間の距離の多少の変動は許容され
る。この管継手の継手本体は金属製であるので、
地中においては腐食し易い。
To connect pipes made of thermoplastic synthetic resin, such as polyethylene, the ends of the two pipes to be connected are butted together and heated with a heater, so that they are thermally welded together. connected. In this case, a welding allowance is required between the end faces of both pipes, but for example, for pipes that are buried and fixed underground to transport city gas and cannot be moved, it is necessary to take an appropriate welding allowance. It is difficult. For this reason, in the past, sealing was achieved by squeezing a sealing member from both ends into the gap between the cylindrical joint body into which the ends of both pipes are inserted, the inner peripheral surface of the joint body, and the outer peripheral surface of the ends of the pipe body. It is connected by a metal pipe joint containing a press ring. According to this pipe joint, some variation in the distance between the end faces of both pipe bodies is allowed. The fitting body of this pipe fitting is made of metal, so
It corrodes easily underground.

上述の技術的課題を解決する先行技術は、第5
図に示されている。この先行技術では、熱可塑性
合成樹脂たとえばポリエチレンから成る筒状体5
0に電熱線51が埋込まれた管継手52を用いて
いる。電熱線51は、筒状体50の全内周面近く
に、軸線方向に沿つて螺旋状にかつ電熱線51の
外周の一部を筒状体の内周面から露出させて埋込
まれている。この筒状体の両端に、接続されるべ
きポリエチレン製の管体53,54の端部をそれ
ぞれ嵌入して、電熱線51を電力付勢する。そう
すると、電熱線51の発熱によつて筒状体50の
内周面と管体53,54の外周面とが加熱され
る。筒状体50を、その全外周にわたつて締付金
具で固定しておくと、筒状体50は半径方向外方
への熱膨脹を抑えられる。そのため筒状体50の
内周面と管体53,54の外周面とは相互に圧接
して一体的に熱溶着される。このとき電熱線51
と筒状体50との熱膨脹係数の相違によつて、筒
状体50内で電熱線51の外周に空間59が生じ
ることが考えられる。そのため、その空間59が
両管体53,54の端面間における筒状体50の
内周面から筒状体50の外方に連通して、気密性
が損なわれる恐れがある。また電熱線の熱膨脹係
数は比較的大きいため、電熱線51は加熱されて
軟かくなつた筒状体50内周面に半径方向外方に
向けて食込む。そのため両管体53,54の端面
間における筒状体50の内周面に、管内に向けて
開放された環状の凹溝60が生じることがある。
筒状体50に曲げモーメント57,58などがか
かると、この凹溝60に応力が集中してクラツク
が発生する恐れがある。
The prior art that solves the above technical problem is the fifth
As shown in the figure. In this prior art, a cylindrical body 5 made of a thermoplastic synthetic resin such as polyethylene is used.
A pipe joint 52 in which a heating wire 51 is embedded is used. The heating wire 51 is embedded near the entire inner peripheral surface of the cylindrical body 50 in a spiral shape along the axial direction, with a part of the outer periphery of the heating wire 51 being exposed from the inner peripheral surface of the cylindrical body. There is. The ends of polyethylene tubes 53 and 54 to be connected are respectively fitted into both ends of this cylindrical body, and the heating wire 51 is energized with electric power. Then, the inner circumferential surface of the cylindrical body 50 and the outer circumferential surfaces of the tube bodies 53 and 54 are heated by the heat generated by the heating wire 51. By fixing the cylindrical body 50 over its entire outer periphery with a fastening fitting, the cylindrical body 50 can be prevented from thermally expanding outward in the radial direction. Therefore, the inner circumferential surface of the cylindrical body 50 and the outer circumferential surfaces of the tube bodies 53 and 54 are pressed against each other and are integrally heat-welded. At this time, the heating wire 51
It is conceivable that a space 59 is created around the outer periphery of the heating wire 51 within the cylindrical body 50 due to the difference in coefficient of thermal expansion between the cylindrical body 50 and the cylindrical body 50 . Therefore, the space 59 communicates with the outside of the cylindrical body 50 from the inner circumferential surface of the cylindrical body 50 between the end faces of both the tubular bodies 53 and 54, and there is a possibility that airtightness may be impaired. Further, since the heating wire has a relatively large coefficient of thermal expansion, the heating wire 51 bites radially outward into the inner peripheral surface of the cylindrical body 50, which has become soft due to heating. Therefore, an annular groove 60 that is open toward the inside of the tube may be formed on the inner circumferential surface of the cylindrical body 50 between the end surfaces of both the tube bodies 53 and 54.
If a bending moment 57, 58 is applied to the cylindrical body 50, stress may be concentrated on the groove 60, causing a crack.

第5図示の先行技術の他の重要な問題は、曲げ
強度が小さいことである。螺旋状に埋め込まれて
いる電熱線51は、筒状体50の両最端部50
a,50bにおいて、全周にわたつて位置するこ
とができない。すなわち筒状体50の両最端部5
0a,50bにおいては、筒状体50と管体5
3,54との熱溶着が行なわれない部分55,5
6が生じることになる。したがつて筒状体50と
管体53,54との接続後に、管体53,54に
参照符57,58で示される曲げモーメントが作
用すると、その熱溶着されていない両最端部50
a,50bの前記非溶着部分55,56付近にお
いて応力集中現象が生じ、これによつてクラツク
が発生する恐れがある。このクラツクの発生は、
筒状体50および管体53,54が、たとえばポ
リエチレンであつて界面活性剤に接触している
と、一層生じやすくなる。このようにして先行技
術では、筒状体50の両最端部50a,50bに
おいて、管体53,54との熱溶着がされない部
分55,56が存在することによつて、曲げ強度
が劣つていた。
Another important problem with the prior art shown in Figure 5 is its low bending strength. The heating wire 51 embedded in a spiral shape is located at both extreme ends 50 of the cylindrical body 50.
a, 50b, cannot be located all around the circumference. That is, both extreme ends 5 of the cylindrical body 50
0a, 50b, the cylindrical body 50 and the tube body 5
3, 54 where the heat welding is not performed 55, 5
6 will occur. Therefore, when a bending moment indicated by reference numerals 57 and 58 is applied to the tubes 53 and 54 after the cylindrical body 50 and the tubes 53 and 54 are connected, both ends 50 which are not thermally welded
A stress concentration phenomenon occurs near the non-welded portions 55 and 56 of a and 50b, which may cause cracks. The occurrence of this crack is
If the cylindrical body 50 and the tube bodies 53, 54 are made of polyethylene and are in contact with a surfactant, this phenomenon is more likely to occur. In this way, in the prior art, the bending strength is poor due to the existence of the portions 55, 56 that are not thermally welded to the tube bodies 53, 54 at both extreme ends 50a, 50b of the tube body 50. was.

もつと詳しく述べると、第6図1で示されるよ
うに曲げモーメント57が作用したとき、非溶着
部分55の基端50aにおいて、応力集中現象に
より、矢符60の方向に筒状体50と管体53と
の溶着部分に沿つてクラツクが伸展していく。
To be more specific, when a bending moment 57 is applied as shown in FIG. The crack extends along the welded portion with the body 53.

他の先行技術は、たとえば特公昭33−4429に開
示されている。この先行技術では、電熱線として
無端環状のリングが管軸方向に複数個隔置されて
熱可塑性合成樹脂製筒状体に埋込まれており、こ
のリングはその一直径線上で管軸方向に延びる一
対のリード線に溶接によつてそれぞれ固定され
る。リード線もまた筒状体に埋込まれる。このよ
うな先行技術では、電熱線がリングであり、リー
ド線に固定してあるので、その構成が比較的複雑
であり、生産性に劣る。
Other prior art is disclosed, for example, in Japanese Patent Publication No. 33-4429. In this prior art, a plurality of endless rings as heating wires are spaced apart in the tube axis direction and embedded in a thermoplastic synthetic resin cylindrical body. They are each fixed to a pair of extending lead wires by welding. Lead wires are also embedded in the tubular body. In such prior art, the heating wire is a ring and is fixed to the lead wire, so the structure is relatively complicated and productivity is poor.

したがつて本考案の目的は、熱可塑性合成樹脂
製の筒状体に電熱線が埋込まれて成る管継手の気
密性を向上させるとともに、曲げ強度を向上させ
ることである。
Therefore, an object of the present invention is to improve the airtightness and bending strength of a pipe joint in which a heating wire is embedded in a cylindrical body made of thermoplastic synthetic resin.

本考案は、熱可塑性合成樹脂製の筒状体6の内
にその筒状体6と同心の螺旋状に電熱線10が埋
込まれており、両端に接続されるべき熱可塑性合
成樹脂製の管体1,2が管軸方向に間隔をあけて
嵌入され、前記電熱線10を電力付勢して発熱さ
せ、前記筒状体6と前記管体1,2とを熱溶着す
る管継手において、前記電熱線10は、管体1,
2が嵌入される筒状体の部分のみに設けられてお
り、この筒状体は電熱線10が設けられている前
記部分よりも軸線方向両外方に延びている延長部
分を有し、これらの延長部分には電熱線10が設
けられておらず、筒状体6の電熱線10が埋込ま
れていない軸線方向外方に延長した部分の内径
を、電熱線10が埋込まれている部分の内径より
大径とすることによつて、間隔19が形成される
ことを特徴とする管継手である。
In the present invention, a heating wire 10 is embedded in a cylindrical body 6 made of thermoplastic synthetic resin in a spiral shape concentric with the cylindrical body 6, and a heating wire 10 made of thermoplastic synthetic resin is connected to both ends. In a pipe joint in which tube bodies 1 and 2 are fitted with a gap in the tube axis direction, the heating wire 10 is energized to generate heat, and the cylindrical body 6 and the tube bodies 1 and 2 are thermally welded. , the heating wire 10 has a tubular body 1,
2 is provided only in the part of the cylindrical body into which the heating wire 10 is fitted, and this cylindrical body has an extension part extending outward in the axial direction from the part in which the heating wire 10 is provided. The heating wire 10 is not provided in the extended portion of the cylindrical body 6, and the heating wire 10 is embedded in the inner diameter of the portion of the cylindrical body 6 extending outward in the axial direction where the heating wire 10 is not embedded. This pipe joint is characterized in that a gap 19 is formed by making the diameter larger than the inner diameter of the part.

第1図は本考案の一実施例の縦断面図であり、
第2図は第1図の−線から見た断面図であ
る。第1図は接続が行われる以前の状態を示す。
熱可塑性合成樹脂たとえばポリエチレンから成る
管体1,2は、たとえば都市ガスなどを輸送する
ために地中に埋設される。これらの管体1,2の
端部3,4は、本考案に従う管継手5によつて接
続される。管継手5の筒状体6は熱可塑性合成樹
脂たとえばポリエチレンから成る。筒状体6に
は、後述の両埋込み位置8,9の範囲内で、電熱
線10,11が埋込まれている。筒状体6の外周
には、たとえばヒンジ12によつて半割状に開閉
自在の締付金具13が取外し自在に嵌められる。
電熱線10,11には電源14および電圧調整装
置15が直列にそれぞれ接続される。
FIG. 1 is a longitudinal sectional view of an embodiment of the present invention,
FIG. 2 is a sectional view taken along the - line in FIG. 1. FIG. 1 shows the situation before a connection is made.
Pipe bodies 1 and 2 made of thermoplastic synthetic resin, such as polyethylene, are buried underground in order to transport, for example, city gas. The ends 3, 4 of these tubes 1, 2 are connected by a pipe joint 5 according to the invention. The cylindrical body 6 of the pipe joint 5 is made of thermoplastic synthetic resin, such as polyethylene. Heating wires 10 and 11 are embedded in the cylindrical body 6 within the range of both embedded positions 8 and 9, which will be described later. A fastening fitting 13 which can be opened and closed in half by means of a hinge 12, for example, is removably fitted onto the outer periphery of the cylindrical body 6.
A power source 14 and a voltage regulator 15 are connected in series to the heating wires 10 and 11, respectively.

第3図は管継手5の斜視図である。電熱線1
0,11は、筒状体6の内周面7の両埋込み位置
8,9で、電熱線10,11の外周の一部を内周
面7から露出させて埋込まれる。この埋込み位置
8,9は、筒状体6両端から軸線方向に長さl1
だけ入込んだ中央位置の両端において、管体1,
2の端面間の長さl2を除いた長さl3をそれぞ
れ有する。電熱線10は、折返し点16を埋込み
位置8の第1図における左端部に位置させて、円
周方向に平行にかつ軸線方向に沿つて螺旋状に埋
込まれる。電熱線10の引出し線17,18は筒
状体6と管体1の端部3との間隙19から第1図
の右方に引出される。この間隙19は、第1図に
明らかなように、筒状体6の電熱線10が埋込ま
れていない軸線方向外方に延長した部分の内径
を、電熱線10が埋込まれている部分の内径より
大径とすることによつて形成される。そのため管
1,2の外周面と、筒状体の電熱線10が埋込ま
れている部分の内周面とをぴつたりと接触して熱
溶着することができ、気密性の向上を図ることが
できる。電熱線11は、折返し点を埋込み位置9
の第1図における右端部に位置させて、円周方向
に平行にかつ軸線方向に沿つて螺旋状に埋込まれ
る。電熱線11の引出し線20,21は、筒状体
6と管体2との間隙22から第1図の左方に引出
される。引出し線17,18;20,21に電源
14と電圧調整装置15とを直列にそれぞれ接続
して、電力付勢する。そうすると筒状体6の内周
面7で、長さl3を有する埋込み位置8,9に埋
込まれている電熱線10,11がそれぞれ発熱す
る。その熱によつて、埋込み位置8,9におい
て、管体1,2の外周面と筒状体6の内周面7と
が加熱される。そのため管体1,2の端部3,4
は半径方向外方に向けて熱膨脹する。筒状体6の
外周には、締付金具13が嵌められているので、
筒状体6の半径方向外方への熱膨脹は抑えられ
る。そのため管体1,2の外周面と筒状体6の内
周面7とは強固に圧接される。しかして管体1,
2と筒状体6とは、一体的に熱溶着される。
FIG. 3 is a perspective view of the pipe joint 5. heating wire 1
0 and 11 are embedded positions 8 and 9 on the inner circumferential surface 7 of the cylindrical body 6, and the heating wires 10 and 11 are embedded with part of their outer peripheries exposed from the inner circumferential surface 7. The embedded positions 8 and 9 have a length l1 in the axial direction from both ends of the cylindrical body 6.
At both ends of the central position where the tube body 1,
Each has a length l3 excluding the length l2 between the two end faces. The heating wire 10 is spirally embedded parallel to the circumferential direction and along the axial direction, with the turning point 16 located at the left end of the embedding position 8 in FIG. The lead wires 17 and 18 of the heating wire 10 are drawn out to the right in FIG. 1 from a gap 19 between the cylindrical body 6 and the end 3 of the tubular body 1. As is clear from FIG. 1, this gap 19 is defined by the inner diameter of the portion of the cylindrical body 6 extending outward in the axial direction where the heating wire 10 is not embedded, and the portion where the heating wire 10 is embedded. It is formed by making the diameter larger than the inner diameter of. Therefore, the outer peripheral surfaces of the tubes 1 and 2 and the inner peripheral surface of the part of the cylindrical body in which the heating wire 10 is embedded can be tightly contacted and thermally welded, thereby improving airtightness. Can be done. The heating wire 11 has its turning point embedded at position 9.
It is located at the right end in FIG. 1 and embedded in a spiral shape parallel to the circumferential direction and along the axial direction. The lead wires 20 and 21 of the heating wire 11 are drawn out from the gap 22 between the cylindrical body 6 and the tube body 2 to the left in FIG. A power source 14 and a voltage regulator 15 are connected in series to the lead wires 17, 18; 20, 21, respectively, to apply power. Then, on the inner peripheral surface 7 of the cylindrical body 6, the heating wires 10 and 11 embedded in the embedded positions 8 and 9 having a length l3 generate heat, respectively. The heat heats the outer circumferential surfaces of the tubular bodies 1 and 2 and the inner circumferential surface 7 of the cylindrical body 6 at the embedding positions 8 and 9. Therefore, the ends 3, 4 of the tubes 1, 2
thermally expands radially outward. Since the tightening fitting 13 is fitted on the outer periphery of the cylindrical body 6,
Thermal expansion of the cylindrical body 6 in the radial direction outward is suppressed. Therefore, the outer circumferential surfaces of the tubular bodies 1 and 2 and the inner circumferential surface 7 of the cylindrical body 6 are firmly pressed together. However, the tube body 1,
2 and the cylindrical body 6 are integrally heat welded.

筒状体6の軸線方向両端の電熱線10,11が
埋込まれていない部分は、ほとんど加熱されな
い。したがつて筒状体6の内周面7と管体1,2
の外周面との間隙19,22は、軸線方向に長さ
l1をそれぞれ有したままであり、熱溶着されな
い。
The portions of the axially opposite ends of the cylindrical body 6 where the heating wires 10 and 11 are not embedded are hardly heated. Therefore, the inner peripheral surface 7 of the cylindrical body 6 and the tubes 1 and 2
The gaps 19 and 22 between the outer circumferential surface and the outer circumferential surface thereof each remain the length l1 in the axial direction, and are not thermally welded.

第4図は、管体1の端部3と筒状体6との熱溶
着部23付近の拡大断面図である。接続操作が終
了して締付金具13を取外した後、管体1の端部
3と筒状体6との熱溶着部23に曲げ荷重がかか
つた場合を想定する。第4図の矢符24で示す如
く、管体1に曲げモーメントが作用すると、仮想
線1aで示す如く管体1が筒状体6の内周面7の
端部に支持されて、管体1にかかつている曲げ荷
重の一部は筒状体6によつて分担される。このこ
とを確実にするために、筒状体6の両端の電熱線
10,11が埋込まれていない部分の長さl1を
充分に大きくとつている。そのため管体1が筒状
体6の内周面7の端部に当接するまでの角変位量
αを可及的に小さくして、管体1を筒状体6によ
つて支持させる。それによつて熱溶着部23に応
力が集中することが防がれる。
FIG. 4 is an enlarged cross-sectional view of the vicinity of the heat-welded portion 23 between the end portion 3 of the tubular body 1 and the cylindrical body 6. FIG. A case is assumed in which a bending load is applied to the heat-welded portion 23 between the end portion 3 of the tubular body 1 and the cylindrical body 6 after the connection operation is completed and the fastening fitting 13 is removed. When a bending moment is applied to the tubular body 1 as shown by the arrow 24 in FIG. A part of the bending load applied to 1 is shared by cylindrical body 6. In order to ensure this, the length l1 of the portion at both ends of the cylindrical body 6 where the heating wires 10, 11 are not embedded is set to be sufficiently large. Therefore, the angular displacement amount α until the tubular body 1 comes into contact with the end of the inner circumferential surface 7 of the tubular body 6 is made as small as possible, and the tubular body 1 is supported by the tubular body 6. This prevents stress from concentrating on the heat welded portion 23.

筒状体6の軸線方向両端の電熱線10が埋込ま
れていない部分は、軸線方向外方に延長してあ
り、この両端延長部分の内周面7と管体1,2の
外周面との間には間隙19が形成される。間隙1
9の半径方向の長さは参照符δで示されている。
The portions at both axial ends of the cylindrical body 6 in which the heating wires 10 are not embedded extend outward in the axial direction, and the inner circumferential surface 7 of these both end extended portions and the outer circumferential surfaces of the tubular bodies 1 and 2 A gap 19 is formed between them. Gap 1
The radial length of 9 is indicated by the reference δ.

したがつて第6図2で示されるように、管体1
に矢符80で示される曲げモーメントが作用した
ときには管体1の外周面に筒状体6の軸線方向外
方端62に当接する。したがつて管体1には筒状
体6との溶着位置からこの軸線方向外方端62と
の間で角変位置αだけ曲がる。管体1に大きな曲
げモーメント80が作用したときには、この管体
1は軸線方向外方端62を支点として角変位置β
だけさらに曲がる。こうして管体1は二段階に角
変位置α,βだけ角変位することになり、管体1
に作用する応力が低減される。
Therefore, as shown in FIG.
When a bending moment indicated by an arrow 80 acts on the outer peripheral surface of the tubular body 1, the axially outer end 62 of the cylindrical body 6 comes into contact with the outer peripheral surface of the tubular body 1. Therefore, the tubular body 1 is bent by an angular displacement position α between the welded position with the cylindrical body 6 and this axially outer end 62. When a large bending moment 80 is applied to the tubular body 1, the tubular body 1 shifts to an angular position β with the axially outer end 62 as a fulcrum.
Only bend further. In this way, the tube body 1 is angularly displaced by the angular displacement positions α and β in two steps, and the tube body 1
The stress acting on is reduced.

これに対して第6図1で示された先行技術では
管体53に曲げモーメント57が作用したときに
は、筒状体50の軸方向外方端63を支点として
屈曲し、その角変位量は第6図2と同じ曲げモー
メントが作用したときには、角変位量は(α+
β)となる。このようにして管体53は単一の支
点63の周りに大きく角変位することになる。し
たがつて基端50aにおける応力集中現象が大き
くなり、き裂が極めて生じ易い。
On the other hand, in the prior art shown in FIG. 6, when a bending moment 57 is applied to the tubular body 53, the tubular body 50 is bent about the axially outer end 63 of the tubular body 50 as a fulcrum, and the amount of angular displacement is 6 When the same bending moment as in Fig. 2 is applied, the amount of angular displacement is (α+
β). In this way, the tubular body 53 undergoes a large angular displacement around the single fulcrum 63. Therefore, the stress concentration phenomenon at the base end 50a increases, and cracks are extremely likely to occur.

本考案は、このような先行技術の問題を解決
し、応力集中現象の緩和が図られる。
The present invention solves the problems of the prior art and alleviates the stress concentration phenomenon.

管体2と筒状体6との熱溶着部においても、上
述と同様にその熱溶着部に応力が集中することが
防がれる。
Also in the heat welded portion between the tubular body 2 and the cylindrical body 6, stress is prevented from concentrating on the heat welded portion in the same way as described above.

本考案によれば、管体1,2端面間の距離l2
の範囲内において、筒状体6には電熱線が埋込ま
れていない。したがつて管体1,2と筒状体6と
が熱溶着された時点で、電熱線10,11が管内
に露出されることはない。そのため熱膨脹係数の
差によつて、たとえ筒状体6内で電熱線10,1
1の外周に空間が生じたとしても、その空間が管
内と筒状体6の外方とにわたつて連通することは
なく、気密性が優れている。
According to the present invention, the distance l2 between the end surfaces of the tubes 1 and 2
Within this range, no heating wire is embedded in the cylindrical body 6. Therefore, when the tube bodies 1, 2 and the cylindrical body 6 are thermally welded, the heating wires 10, 11 are not exposed inside the tube. Therefore, due to the difference in coefficient of thermal expansion, even if the heating wires 10 and 1
Even if a space is created around the outer periphery of the tube 1, the space does not communicate between the inside of the tube and the outside of the cylindrical body 6, and the airtightness is excellent.

また電熱線10,11が筒状体6の内周面7に
半径方向外方に向けて食込んでも、管体1,2の
端部3,4間における内周面7に管内に向けて開
放された環状の凹溝が生じることはない。そのた
め、曲げ荷重などによつて筒状体6の内周面7に
クラツクが発生する恐れはなく、曲げ強度が従来
のものより優れている。
Furthermore, even if the heating wires 10 and 11 bite into the inner circumferential surface 7 of the tubular body 6 radially outward, the heating wires 10 and 11 do not cut into the inner circumferential surface 7 between the ends 3 and 4 of the tubular bodies 1 and 2 toward the inside of the tube. No open annular grooves are formed. Therefore, there is no fear that cracks will occur on the inner circumferential surface 7 of the cylindrical body 6 due to bending loads, and the bending strength is superior to conventional ones.

第7図を参照して、本考案では、電熱線10が
筒状体6内に、その筒状体6と同心の螺旋状に埋
込まれている。したがつて筒状体6と管体1との
融着強度の管軸方向の分布は、管軸を通る一平面
内で第7図の上方では、参照符71で示されるよ
うに、また第7図の下方では参照符72で示され
るように分布している。このようにして筒状体6
と管体1との融着強度が軸線方向に均一化される
ので、強度が増大される。
Referring to FIG. 7, in the present invention, a heating wire 10 is embedded in a cylindrical body 6 in a spiral shape concentric with the cylindrical body 6. Therefore, the distribution of the fusion strength between the cylindrical body 6 and the tube body 1 in the tube axis direction is as indicated by reference numeral 71 in the upper part of FIG. 7 within a plane passing through the tube axis. In the lower part of FIG. 7, the distribution is as indicated by reference numeral 72. In this way, the cylindrical body 6
Since the strength of the fusion bond between the tube body 1 and the tube body 1 is made uniform in the axial direction, the strength is increased.

本件考案者の実験結果を示す。前述の実施例に
おいて筒状体6に管体1,2が接続されており、
管体1がその管外径の5倍の曲率半径で湾曲する
ように曲げモーメント80が作用し、その雰囲気
温度は50℃とし、管体1に供給されている内圧は
2Kg/cm2としたときにおいて、ガス漏れの発生は
見られず、クラツクの発生が生じないことが確認
された。これに対して第5図に示された先行技術
において同様な実験を行なつたところ、ガス漏れ
が発生した。こうして本考案によれば、応力集中
が抑制され、クラツクの発生が防がれることが確
認された。
The experimental results of the inventor of this case are shown below. In the above-mentioned embodiment, the tubular bodies 1 and 2 are connected to the cylindrical body 6,
A bending moment of 80 was applied so that the pipe body 1 was bent with a radius of curvature five times the outer diameter of the pipe, the ambient temperature was 50°C, and the internal pressure supplied to the pipe body 1 was 2 kg/cm2. At times, no gas leakage was observed, and it was confirmed that no cracks occurred. On the other hand, when a similar experiment was conducted using the prior art shown in FIG. 5, gas leakage occurred. Thus, it was confirmed that the present invention suppresses stress concentration and prevents the occurrence of cracks.

上述の如く本考案によれば、管体が嵌入される
筒状体の部分すなわち筒状体と管体とが重なつて
いる部分にのみ電熱線が設けられており、管体の
端面間においては、筒状体には電熱線が埋込まれ
ない。すなわち第1図に示されるように、電熱線
10,11は、長さl3においてのみ設けられて
おり、残余の長さl1,l2には設けられていな
いことが重要である。そのため筒状体と管体との
熱溶着後に筒状体内で電熱線の外周に生じ得る空
間が管内と連通せず、したがつて気密性が向上さ
れる。また熱溶着時に電熱線が筒状体内にめり込
んだ状態においても、管体の端面間では筒状体内
周面に凹溝が生じることはなく、したがつて応力
集中に起因する曲げ強度の低下が防がれる。
As described above, according to the present invention, the heating wire is provided only in the portion of the tubular body into which the tubular body is inserted, that is, the portion where the tubular bodies overlap, and the heating wire is provided between the end surfaces of the tubular bodies. No heating wire is embedded in the cylindrical body. That is, as shown in FIG. 1, it is important that the heating wires 10 and 11 are provided only in the length l3 and not in the remaining lengths l1 and l2. Therefore, after the cylindrical body and the tubular body are thermally welded, a space that may be created around the outer periphery of the heating wire within the cylindrical body does not communicate with the inside of the tube, thus improving airtightness. Furthermore, even if the heating wire sinks into the cylindrical body during thermal welding, no grooves will be formed on the circumferential surface of the cylindrical body between the end faces of the tube, and therefore the bending strength will not decrease due to stress concentration. Prevented.

また本考案によれば、熱可塑性合成樹脂製の筒
状体の電熱線が埋込まれていない両端を、軸線方
向外方に延長して形成したので、筒状体と管体と
の熱溶着部に曲げモーメントを受けたとき、応力
集中が発生することが防がれ、したがつて前述し
た従来の管継手に比べて曲げ強度が向上される。
Furthermore, according to the present invention, both ends of the thermoplastic synthetic resin cylindrical body in which the heating wires are not embedded are extended outward in the axial direction, so that the cylindrical body and the tubular body can be thermally welded. When a bending moment is applied to the pipe joint, stress concentration is prevented from occurring, and therefore the bending strength is improved compared to the conventional pipe fittings described above.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本考案の一実施例の縦断面図、第2図
は第1図の−線視断面図、第3図は管継手5
の斜視図、第4図は管体1の端部3と筒状体6と
の熱溶着部23付近の拡大断面図、第5図は先行
技術の縦断面図、第6図は先行技術と本考案の一
実施例との作用を説明するための断面図、第7図
は本考案の一実施例の溶着強度の分布を示す断面
図である。 1,2……管体、3,4……端部、5……管継
手、6……筒状体、7……筒状体6の内周面、
8,9……埋込み位置、10,11……電熱線、
13……締付金具、19,22……筒状体6と管
体1,2との間隙、23……熱溶着部、α,β…
…管体1の角変位量、δ……間隙19の半径方向
長さ。
Fig. 1 is a longitudinal cross-sectional view of one embodiment of the present invention, Fig. 2 is a cross-sectional view taken along the - line of Fig. 1, and Fig. 3 is a pipe joint 5.
FIG. 4 is an enlarged sectional view of the vicinity of the heat welded portion 23 between the end 3 of the tubular body 1 and the cylindrical body 6, FIG. 5 is a vertical sectional view of the prior art, and FIG. 6 is the prior art. FIG. 7 is a sectional view showing the distribution of welding strength in an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1, 2... Pipe body, 3, 4... End part, 5... Pipe joint, 6... Cylindrical body, 7... Inner peripheral surface of the cylindrical body 6,
8, 9...embedding position, 10,11...heating wire,
13...Tightening metal fitting, 19, 22...Gap between cylindrical body 6 and tube bodies 1, 2, 23...Heat welding part, α, β...
...Amount of angular displacement of tube body 1, δ...Radial length of gap 19.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 熱可塑性合成樹脂製の筒状体6の内にその筒状
体6と同心の螺旋状に電熱線10が埋込まれてお
り、両端に接続されるべき熱可塑性合成樹脂製の
管体1,2が管軸方向に間隔をあけて嵌入され、
前記電熱線10を電力付勢して発熱させ、前記筒
状体6と前記管体1,2とを熱溶着する管継手に
おいて、前記電熱線10は、管体1,2が嵌入さ
れる筒状体の部分のみに設けられており、この筒
状体は電熱線10が設けられている前記部分より
も軸線方向両外方に延びている延長部分を有し、
これらの延長部分には電熱線10が設けられてお
らず、筒状体6の電熱線10が埋込まれていない
軸線方向外方に延長した部分の内径を、電熱線1
0が埋込まれている部分の内径より大径とするこ
とによつて、間隙19が形成されることを特徴と
する管継手。
A heating wire 10 is embedded in a spiral shape concentric with the cylindrical body 6 in a cylindrical body 6 made of thermoplastic synthetic resin, and a cylindrical body 1 made of thermoplastic synthetic resin to be connected to both ends. 2 are inserted at intervals in the tube axis direction,
In the pipe joint in which the heating wire 10 is energized to generate heat to thermally weld the cylindrical body 6 and the tube bodies 1 and 2, the heating wire 10 is connected to a tube into which the tube bodies 1 and 2 are fitted. The cylindrical body is provided only in a portion of the cylindrical body, and this cylindrical body has an extension portion extending outward in the axial direction from the portion where the heating wire 10 is provided,
The heating wire 10 is not provided in these extended portions, and the inner diameter of the portion of the cylindrical body 6 extending outward in the axial direction in which the heating wire 10 is not embedded is defined as the heating wire 1
A pipe joint characterized in that a gap 19 is formed by making the diameter larger than the inner diameter of the part where the 0 is embedded.
JP1978074858U 1978-05-31 1978-05-31 Expired JPS6222712Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978074858U JPS6222712Y2 (en) 1978-05-31 1978-05-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978074858U JPS6222712Y2 (en) 1978-05-31 1978-05-31

Publications (2)

Publication Number Publication Date
JPS54175612U JPS54175612U (en) 1979-12-12
JPS6222712Y2 true JPS6222712Y2 (en) 1987-06-09

Family

ID=28988773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978074858U Expired JPS6222712Y2 (en) 1978-05-31 1978-05-31

Country Status (1)

Country Link
JP (1) JPS6222712Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2860942B2 (en) * 1989-03-24 1999-02-24 大阪瓦斯株式会社 Hot water supply header
JP2868091B2 (en) * 1989-03-24 1999-03-10 大阪瓦斯株式会社 Electrofusion fitting with connecting member
JP2860943B2 (en) * 1989-03-24 1999-02-24 大阪瓦斯株式会社 Hot water supply header

Also Published As

Publication number Publication date
JPS54175612U (en) 1979-12-12

Similar Documents

Publication Publication Date Title
SU1355115A3 (en) Method of joining insulated pipes
TW266185B (en) Process for the fusion jointing of plastics pipes and socket for carrying out the process
FI87685B (en) FOERFARANDE FOER SAMMANFOGNING AV ROER MED KORRUGERAD VAEGG AV PLASTMATERIAL
US2401231A (en) Hot-water tank and method of making the same
US5199153A (en) Method for making a flanged pipe length having a lining of plastic material
FI65729C (en) SAFETY RING FOR SUSPENSION AV PLASTROER GENOM VAERMEFOGNING
JPS6222712Y2 (en)
JP2001522026A (en) Weldable clamps for conduits made of heat-weldable materials
JPH07205296A (en) Welding method of tubular member and welding device for conducting said welding method
US5901753A (en) Flexibility support assembly for double-containment piping system
JPS6128507B2 (en)
JPS6023596Y2 (en) pipe fittings
JP5555531B2 (en) Welded joint and welding method thereof
US5990462A (en) Welding collar
JPH08244116A (en) Corrugated pipe welding method and welding device
JPS6140543B2 (en)
JP7365176B2 (en) fitting
KR102657752B1 (en) A method of manufacturing a fluid transfer double pipe used in semiconductor manufacturing
JPH045876B2 (en)
JP2015513653A (en) Pipe fitting and method for forming a pipe fitting
JP4650708B2 (en) Tube focusing body
JPH0629591Y2 (en) Branch of resin pipe
JPH04171392A (en) Electrically fused pipe joint
JP4316240B2 (en) Pipe connection structure set and pipe connection method using the same
CN206496138U (en) The internal expanding type movable sleeve connect suitable for tempreature bulb