JPS62227056A - Composite material for heat exchanger made of aluminum - Google Patents

Composite material for heat exchanger made of aluminum

Info

Publication number
JPS62227056A
JPS62227056A JP6875386A JP6875386A JPS62227056A JP S62227056 A JPS62227056 A JP S62227056A JP 6875386 A JP6875386 A JP 6875386A JP 6875386 A JP6875386 A JP 6875386A JP S62227056 A JPS62227056 A JP S62227056A
Authority
JP
Japan
Prior art keywords
aluminum
corrosion
core material
weight
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6875386A
Other languages
Japanese (ja)
Inventor
Tatsuya Fujiyoshi
藤吉 達也
Katsuyuki Hashimoto
勝之 橋本
Ken Toma
当摩 建
Kensho Takahashi
高橋 憲昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON RADIATOR CO Ltd
Marelli Corp
MA Aluminum Corp
Original Assignee
NIPPON RADIATOR CO Ltd
Mitsubishi Aluminum Co Ltd
Nihon Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON RADIATOR CO Ltd, Mitsubishi Aluminum Co Ltd, Nihon Radiator Co Ltd filed Critical NIPPON RADIATOR CO Ltd
Priority to JP6875386A priority Critical patent/JPS62227056A/en
Publication of JPS62227056A publication Critical patent/JPS62227056A/en
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To provide light weight, durability, and stable properties by making the whole body hardly corrodible with securing the corrosion prevention of a core material and also by improving the strength of the core material. CONSTITUTION:A composite material for a heat exchanger made of Al has a sacrificial corrosion layer 10 on the surface of the side, which is to be in contact with water, of a core material 9 to be subjected to corrosion prevention and also has, on the opposite side surface of this core material, a brazing layer 11 supplying a brazing filler metal for use in brazing this composite material to another Al plate. The above core material 9 has a composition consisting of, by weight, 0.8-1.5% Mn, 0.3-1% Cu, 0.05-0.2% Zr, and the balance Al with inevitable impurities. The sacrificial corrosion layer 10 has a composition consisting of, by weight, 0.2-0.5% Mg, 0.1-0.3% Zn, and the balance Al with inevitable impurities. The brazing layer 11 has a composition containing Si and composed principally of Al.

Description

【発明の詳細な説明】 a1発明の目的 (産業上の利用分計) この考案に係るアルミニウム製熱交換器用複合材は、自
動車用ラジェータやヒータコア等として利用するアルミ
ニウム製熱交換器の伝熱管や座板を構成する板材として
利用する事が出来る。
[Detailed description of the invention] a1 Purpose of the invention (industrial usage) The composite material for aluminum heat exchangers according to this invention is suitable for heat exchanger tubes and aluminum heat exchangers used as automobile radiators, heater cores, etc. It can be used as a board material that makes up the seat board.

(従来の技術) ラジェータ或はヒータコアとして利用される熱交換器と
して、第2図に示す様な熱交換器が知られている。この
熱交換器は、多数の扁平な伝熱管1.1と、多数のフィ
ン2.2とを、各フィン2.2の湾曲部を各伝熱管1.
1の平坦な側面に当接させた状態で交互に重ね合わせて
成るコア部3の上下(或は左右)両端部に、それぞれ座
板4を介して入口管5を有する上タンク6と出口管7を
有する下タンク8とを設けている。
(Prior Art) A heat exchanger as shown in FIG. 2 is known as a heat exchanger used as a radiator or a heater core. This heat exchanger includes a large number of flat heat transfer tubes 1.1, a large number of fins 2.2, and a curved portion of each fin 2.2 for each heat transfer tube 1.1.
An upper tank 6 and an outlet pipe each have an inlet pipe 5 via a seat plate 4 at both upper and lower (or right and left) ends of the core part 3 which is alternately stacked in contact with the flat side surface of the upper tank 6. A lower tank 8 having a lower tank 7 is provided.

このような熱交換器により、例えば冷却水の放熱を行な
う場合、エンジンの熱を奪って温度上昇した冷却水を入
口管5から送り込むと、この冷却水は上タンク6から下
タンク8に向けて多数の伝熱管1.1内を流下する間に
、コア部3を構成する多数のフィン2.2の間を図面の
表裏方向に流通する空気との間で熱交換を行なって温度
低下した後、出口管7から送り出される。
When using such a heat exchanger to radiate heat from cooling water, for example, when the cooling water whose temperature has increased by removing heat from the engine is sent from the inlet pipe 5, this cooling water is directed from the upper tank 6 to the lower tank 8. While flowing down inside the large number of heat transfer tubes 1.1, heat exchange is performed between the large number of fins 2.2 constituting the core part 3 with the air flowing in the front and back directions of the drawing, and the temperature is lowered. , is sent out from the outlet pipe 7.

この様な熱交換器は、従来は銅や真鍮によって造られて
いたが、近年安価で軽量なアルミニウムにより造る事が
多くなって来た。
Such heat exchangers have traditionally been made of copper or brass, but in recent years they have increasingly been made of inexpensive and lightweight aluminum.

ところが、アルミニウムは銅や真鍮に比べて腐食し易く
、そのままでは熱交換器として十分な耐久性を得る事が
出来ない為、特開昭55−123996号公報、同58
−173396号公報等に開示されている様に、亜鉛を
多く含むアルミニウム合金を防食をすべきアルミニウム
材にクラッドして設け、上記亜鉛を多く含むアルミニウ
ム合金を犠牲的に腐食させる事によって、アルミニウム
材の防食を図る事が行なわれている。
However, aluminum corrodes more easily than copper or brass, and cannot provide sufficient durability as a heat exchanger as it is.
As disclosed in Japanese Patent No. 173396, etc., aluminum alloy containing a large amount of zinc is clad with an aluminum material to be protected from corrosion, and the aluminum alloy containing a large amount of zinc is sacrificially corroded. Measures are being taken to prevent corrosion.

即ち、従来の防食を考慮したアルミニウム製熱交換器用
複合材の代表的なものとしては、例えばJIS3003
材(0,05〜0.2%の銅と、10〜1.5%のマン
ガンとを含み、残りを不可避不純物とアルミニウムとし
たもの)を芯材とし、この芯材の表面にJIS7072
材(0゜8〜13%の亜鉛を含み、残りを不可避不純物
とアルミニウムとしたもの)製の皮材を被覆した複合材
がある。
In other words, typical examples of conventional composite materials for aluminum heat exchangers that take corrosion protection into consideration include JIS 3003.
(containing 0.05 to 0.2% copper and 10 to 1.5% manganese, with the remainder being unavoidable impurities and aluminum) is used as a core material, and the surface of this core material is coated with JIS 7072.
There is a composite material coated with a skin made of wood (containing 0.8 to 13% zinc, with the remainder being unavoidable impurities and aluminum).

この従来の複合材に於いては、亜鉛を多く含む皮材が犠
牲的に腐食する事で、芯材に迄腐食が及ぶ事を防止する
。従来から知られているアルミニウム製熱交換器用複合
材の他のものも基本的には同様にして、芯材に熱交換器
として致命的になる様な腐食が発生する事の防止を図っ
ている。
In this conventional composite material, the skin material containing a large amount of zinc corrodes sacrificially, thereby preventing corrosion from reaching the core material. Other conventionally known composite materials for aluminum heat exchangers are basically the same, with the aim of preventing corrosion in the core material that would be fatal to the heat exchanger. .

(発明が解決しようとする問題点) ところが従来のアルミニウム熱交換器用複合材に於いて
は、次に述べる様な不都合を生じる。
(Problems to be Solved by the Invention) However, conventional composite materials for aluminum heat exchangers have the following disadvantages.

即ち、亜鉛を多く含むアルミニウム合金を防食すべきア
ルミニウム材にクラッドして設けた場合、上記アルミニ
ウム材の防食を図る事は出来るが、亜鉛を多く含むアル
ミニウム合金の腐食量が相当に多くなってしまう。
In other words, if an aluminum alloy containing a large amount of zinc is clad with an aluminum material to be protected from corrosion, the aluminum material can be protected from corrosion, but the amount of corrosion of the aluminum alloy containing a large amount of zinc will increase considerably. .

この様に犠牲腐食させるアルミニウム合金の腐食量が多
くなると、熱交換器を構成する伝熱管1.1が詰まる原
因となり、熱交換器の性能を悪化させる事にもなる為好
ましくない。
If the amount of corrosion of the aluminum alloy subjected to sacrificial corrosion increases in this way, it is not preferable because it causes clogging of the heat exchanger tubes 1.1 constituting the heat exchanger and deteriorates the performance of the heat exchanger.

又、JIS3003材で代表される従来の熱交換器用複
合材の芯材の場合、引っ張り強度が11〜12にg/m
m2程度と比較的小さい為、ろう付は後に十分な強度を
得ようとした場合には、複合材の厚さを大きくしなけれ
ばならず、アルミニウムを採用する事による熱交換器の
軽量化を十分に果たす事が出来ない。
In addition, in the case of the core material of conventional composite materials for heat exchangers, typified by JIS 3003 materials, the tensile strength is 11 to 12 g/m.
Since it is relatively small at about m2, if you want to obtain sufficient strength after brazing, the thickness of the composite material must be increased, and it is possible to reduce the weight of the heat exchanger by using aluminum. I can't do it enough.

本発明のアルミニウム製熱交換器用複合材は、芯材の防
食を確実に図れる様にしたまま全体を腐食し難くし、併
せて芯材の強度を向上させる事によって、上述の様な不
都合を解消する様にしたものである。
The composite material for aluminum heat exchangers of the present invention eliminates the above-mentioned disadvantages by making the core material less likely to corrode as a whole, while also improving the strength of the core material. It was designed to do so.

b1発明の構成 (問題を解決するための手段) 本発明のアルミニウム製熱交換器用複合材は、前述した
従来のアルミニウム製熱交換器用複合材の場合と同様第
1図に示す様に、防食すべき芯材9の水と接触する側の
表面に犠牲腐食層10を、この芯材9の反対側の表面に
、この複合材を他のアルミニウム板材とろう付けする場
合のろうを供給するろう材層11を、それぞれ設けてい
る。
b1 Structure of the Invention (Means for Solving the Problem) The aluminum heat exchanger composite material of the present invention has anti-corrosion properties as shown in FIG. A sacrificial corrosion layer 10 is provided on the surface of the core material 9 on the side that comes into contact with water, and a brazing material is provided on the opposite surface of the core material 9 to supply the solder when this composite material is brazed with other aluminum plate materials. A layer 11 is provided respectively.

この内の芯材9は、0−8〜1..5重量%のマンガン
(Mn)と、0.3〜1.0重量%の銅(Cu)と、0
.05〜0.2重量%のジルコニウム(Zr)とを含み
、残りを不可避不純物とアルミニウム(八l)としてし
)る。
Among these, the core material 9 is 0-8 to 1. .. 5% by weight of manganese (Mn), 0.3-1.0% by weight of copper (Cu), 0
.. 0.05 to 0.2% by weight of zirconium (Zr), with the remainder being unavoidable impurities and aluminum (8L).

又、この芯材9の水と接触する側の面を覆う犠牲腐食層
10は、0.2〜0.5重量%のマグネシウム(Mg)
と、0.1〜0.3重量%の亜鉛(7n)とを含み、残
りを不可避不純物とアルミニウムとしている。
Further, the sacrificial corrosion layer 10 covering the surface of the core material 9 that comes into contact with water is made of 0.2 to 0.5% by weight of magnesium (Mg).
and 0.1 to 0.3% by weight of zinc (7n), with the remainder being unavoidable impurities and aluminum.

更に、芯材9の反対面を覆うろう材層11は、珪素を含
みアルミニウムを主成分としている。
Further, the brazing material layer 11 covering the opposite surface of the core material 9 contains silicon and has aluminum as a main component.

この様に構成される本考案のアルミニウム製熱交換器用
複合材に於いては、犠牲腐食層11自体に亜鉛が多く含
まれていない為、使用に伴なってこの犠牲腐食層11の
腐食量が、熱交換器を構成する伝熱管1.1(第2図)
を詰まらせる程多くなる事はない。
In the aluminum heat exchanger composite material of the present invention constructed in this way, since the sacrificial corrosion layer 11 itself does not contain much zinc, the amount of corrosion in the sacrificial corrosion layer 11 decreases with use. , heat exchanger tubes 1.1 constituting the heat exchanger (Fig. 2)
There will never be enough to clog the area.

但し、マンガンと銅とを含む芯材9の腐食電位は、これ
らの金属を含まない犠牲腐食層10の腐食電位よりも高
い(責である)為、腐食条件が厳しくなった場合には、
犠牲腐食層10が腐食する事で芯材に迄腐食が及ぶ事を
防止する。
However, since the corrosion potential of the core material 9 containing manganese and copper is higher than the corrosion potential of the sacrificial corrosion layer 10 that does not contain these metals, if the corrosion conditions become severe,
Corrosion of the sacrificial corrosion layer 10 prevents corrosion from reaching the core material.

又、マンガンと銅とを含む芯材9の引っ張り強度はJI
S3003材に比べて大きくなり、本考案の複合材を用
いて造った熱交換器の強度も十分に大きくなる。
In addition, the tensile strength of the core material 9 containing manganese and copper is JI
It is larger than the S3003 material, and the strength of the heat exchanger made using the composite material of the present invention is also sufficiently increased.

尚、芯材中に含有させるマンガン、銅、ジルコニウムの
量を前述の範囲に定めたのは、次の理由による。
The reason why the amounts of manganese, copper, and zirconium contained in the core material are set within the above-mentioned ranges is as follows.

即ち、アルミニウム合金にマンガンを添加する事によっ
て、このアルミニウム合金の耐食性と高温強度とが向上
するが、この効果はマンガンの含有量が0.8重量%未
満では不十分であり、反対に含有量が1.5重量%を越
えるとマンガンとアルミニウムとの間の粒界腐食性が強
くなって、金属を内部から破壊する原因となってしまう
為、上記の範囲に限定した。
That is, by adding manganese to an aluminum alloy, the corrosion resistance and high-temperature strength of the aluminum alloy are improved, but this effect is insufficient when the manganese content is less than 0.8% by weight; If it exceeds 1.5% by weight, the intergranular corrosion between manganese and aluminum becomes strong, causing the metal to be destroyed from within, so it was limited to the above range.

又、銅は芯材の電位を犠牲腐食層の電位よりも十分に高
くすると共に、芯材の強度を向上させる為に添加するが
、この効果は銅の含有量が0゜3%重量未満では不十分
であり、反対に含有量が1.0%重量を越えると前記マ
ンガンの場合と同様、銅とアルミニウムとの間の粒界腐
食性が強くなって、金属を内部から破壊する原因となっ
てしまう為、上記の範囲に限定した。
Copper is added to make the potential of the core material sufficiently higher than the potential of the sacrificial corrosion layer and to improve the strength of the core material, but this effect does not occur when the copper content is less than 0.3% by weight. If the content exceeds 1.0% by weight, on the other hand, as in the case of manganese, intergranular corrosion between copper and aluminum becomes strong, causing the metal to be destroyed from within. Therefore, it is limited to the above range.

ジルコニウムに就いては、銅と同様に芯材の電位を犠牲
腐食層の電位よりも十分に高くすると共に、芯材の高温
時に於ける強度を向上させる為に添加するが、この効果
はジルコニウムの含有量が0.05重量%未満では不十
分であり、反対に含有量が0.2重量%を越えるとプレ
ス成形時等に於ける加工性が悪化する為、上記の範囲に
限定した。
Like copper, zirconium is added to make the potential of the core material sufficiently higher than the potential of the sacrificial corrosion layer and to improve the strength of the core material at high temperatures, but this effect is due to the fact that zirconium If the content is less than 0.05% by weight, it is insufficient, and if the content exceeds 0.2% by weight, the workability during press molding etc. will deteriorate, so it was limited to the above range.

犠牲腐食層中に含有させるマグネシウム、亜鉛の量を前
述の範囲に定めたのは、次の理由による。
The reason why the amounts of magnesium and zinc contained in the sacrificial corrosion layer are set within the above-mentioned ranges is as follows.

即ち、マグネシウムは適量加える事によってアルミニウ
ム合金の淡水中に於ける耐食性を向上させる事が出来る
が、この様に耐食性を期特出来る範囲は前記の様に0.
2〜0.5重量%の範囲であって、0.2重量%未満で
は耐食性を期特出来ず、反対に0.5重量%を越えて加
えてもかえって耐食性が低下する為、上記範囲に限定し
た。
That is, by adding an appropriate amount of magnesium, it is possible to improve the corrosion resistance of an aluminum alloy in fresh water, but the range in which such corrosion resistance can be expected is as described above.
It is in the range of 2 to 0.5% by weight, and if it is less than 0.2% by weight, corrosion resistance cannot be determined, and on the other hand, if it is added in excess of 0.5% by weight, the corrosion resistance will deteriorate, so it is within the above range. Limited.

又、亜鉛はマグネシウムとの共存でアルミニウム合金に
部分的に深い腐食が発生する所謂孔食を抑制する事が出
来るが、この孔食抑制効果は亜鉛の添加量が0.1重量
%未満ではあまり期特出来ず、反対に0.3重量%を越
えて添加した場合、孔食の防止は出来ても犠牲腐食層全
体としての腐食量が多くなって、多量に発生する腐食生
成物が伝熱管を詰まらせる原因となったりする為、0゜
1〜0.3重量%の範囲に限定した。
In addition, when zinc coexists with magnesium, it is possible to suppress so-called pitting corrosion, which occurs partially in deep corrosion of aluminum alloys, but this pitting corrosion suppressing effect is not very effective when the amount of zinc added is less than 0.1% by weight. On the other hand, if it is added in excess of 0.3% by weight, pitting corrosion can be prevented, but the amount of corrosion in the sacrificial corrosion layer as a whole will increase, and a large amount of corrosion products will be generated in the heat exchanger tube. Since this may cause clogging, the content was limited to a range of 0.1 to 0.3% by weight.

(実施例) 次に、本発明者が行なった実験に就いて説明する。(Example) Next, an experiment conducted by the present inventor will be explained.

実験は芯材9として第1表のN011〜6に示した様な
組成を有する6種類のアルミニウム合金を使用し、犠牲
腐食層10として第2表のNo、 A〜Iに示した様な
組成を有する9種類のアルミニウム合金を使用した。
In the experiment, six types of aluminum alloys having compositions as shown in Nos. 11 to 6 in Table 1 were used as the core material 9, and compositions as shown in Nos. and A to I in Table 2 were used as the sacrificial corrosion layer 10. Nine types of aluminum alloys were used.

第1表に示された6種類のアルミニウム合金の内、No
、 1〜4のものは本発明に属するものであり、N00
5〜6は比較の為に用意したアルミニウム合金であって
、No、 5はJIS3003材に相当するものである
Among the six types of aluminum alloys shown in Table 1, No.
, 1 to 4 belong to the present invention, and N00
Nos. 5 and 6 are aluminum alloys prepared for comparison, and No. 5 corresponds to JIS3003 material.

又、第2表に示されたQ fffi類のアルミニウム合
金の内、No、 A〜Fのものは本発明に属するもので
あり、NO,GNIは比較の為に用意したアルミニウム
合金であッテ、No、GはJIS1050材、或はJI
S1070材にに相当するもの、No、  IはJIS
7072材に相当するものである。
Furthermore, among the Qfffi class aluminum alloys shown in Table 2, Nos. A to F belong to the present invention, and Nos. and GNI are aluminum alloys prepared for comparison. No., G are JIS1050 materials or JI
Equivalent to S1070 material, No. I is JIS
This corresponds to 7072 material.

これら第1〜2表に示された合計15種類のアルミニウ
ム合金は、第1表に示された芯材用のアルミニウム合金
の表面に第2図に示した犠牲腐食層用のアルミニウム合
金を0.1mmの厚さに被覆、第3表に示した様な合計
15f!T!類の熱交換器用複合材の試験片を造った。
A total of 15 types of aluminum alloys shown in Tables 1 and 2 are such that the aluminum alloy for the sacrificial corrosion layer shown in FIG. 2 is coated on the surface of the aluminum alloy for the core material shown in Table 1. Covered to a thickness of 1mm, total 15f as shown in Table 3! T! A test piece of a composite material for a heat exchanger of the same type was made.

各試験片は、実際の熱交換器に使用する複合材と条件を
同じにする為、窒素雰囲気中で600’Cで3分加熱し
た後、各試験片に就いて引っ張り強度の測定を行なうと
共に、所定の腐食試験を行ない、その後各試験片に就い
て腐食量と最大孔食深さとを測定した。
Each test piece was heated at 600'C for 3 minutes in a nitrogen atmosphere to make the conditions the same as the composite materials used in actual heat exchangers, and then the tensile strength of each test piece was measured. A predetermined corrosion test was conducted, and then the amount of corrosion and maximum pitting depth were measured for each test piece.

腐食試験は、塩素イオン((:l−)を200ppm 
、硫酸イオン(soa’−)を60 ppm 、銅イオ
ン((:u”)を1 ppm 、第二鉄イオン(Fe”
)を30 ppmそれぞれ含む腐食液に各試験片を浸漬
し、88℃に加温した上記腐食液を60λ/minで循
環させた中に上記試験片を8時間浸漬し、その後16時
間放置する作業を4週間行なった(合計28サイクル)
The corrosion test was conducted using 200 ppm of chlorine ions ((:l-).
, 60 ppm of sulfate ion (soa'-), 1 ppm of copper ion ((:u"), and 1 ppm of ferric ion (Fe").
) Each test piece was immersed in a corrosive solution containing 30 ppm of each sample, and the test piece was immersed for 8 hours in a corrosive solution heated to 88°C and circulated at 60λ/min, and then left for 16 hours. for 4 weeks (28 cycles in total)
.

この試験結果を判定するに当っては、腐食量に就いては
2 、0 mg/cm2未満の場合を良好とし、最大孔
食深さに就いては、犠牲腐食層の厚さである0、1mm
以下であれば良好とした。
When judging the results of this test, the amount of corrosion is considered good if it is less than 2.0 mg/cm2, and the maximum pitting depth is 0.0 mg/cm2, which is the thickness of the sacrificial corrosion layer. 1mm
It was considered good if it was below.

その結果、本発明によるアルミニウム製熱交換器用複合
材の引っ張り強度は何れに就いても17 Kg/mm2
以上で、熱交換器を造る為には十分な強度を有していた
As a result, the tensile strength of the composite material for aluminum heat exchangers according to the present invention was 17 Kg/mm2 in all cases.
As described above, it had sufficient strength to make a heat exchanger.

又、腐食量に関しても、最も多いものでも1゜8 mg
/cm2であって、比較の為に使用した複合材に比べて
少なかった。
Also, regarding the amount of corrosion, the largest amount is 1゜8 mg.
/cm2, which was smaller than that of the composite material used for comparison.

更に、最大孔食深さに就いては、最も深く迄達したもの
でも犠牲腐食層の厚さと同じ0.1mmであって、芯材
に迄腐食が達したものはなく、その多くが芯材に迄達す
る孔食を発生した比較材に比べて優れた結果を得られた
Furthermore, the maximum depth of pitting corrosion was 0.1 mm, which is the same as the thickness of the sacrificial corrosion layer, and there was no case where corrosion reached the core material, and most of the pitting corrosion did not reach the core material. Superior results were obtained compared to the comparative material, which suffered pitting corrosion up to .

C1発明の効果 本発明のアルミニウム製熱交換器用複合材は以上に述べ
た様に、腐食量を少なく抑える事が出来るにも拘らず、
芯材に迄達する様な深い孔食の発生を抑える事が可能と
なり、しかも引っ張り強度も十分に大きい為、軽量でし
かも耐久性が有り、安定した性能を発揮するアルミニウ
ム製熱交換器を得る事が出来る。
C1 Effects of the Invention As described above, although the aluminum composite material for heat exchangers of the present invention can suppress the amount of corrosion to a low level,
It is possible to suppress the occurrence of deep pitting corrosion that reaches the core material, and since the tensile strength is sufficiently high, it is possible to obtain an aluminum heat exchanger that is lightweight, durable, and exhibits stable performance. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のアルミニウム製熱交換器用複合材の断
面図、第2図はこの複合材を用いて造られる熱交換器の
1例を示す正面図である。 1:伝熱管、2:フィン、3:コア部、4:座板、5:
入口管、6:上タンク、7:出口管、8、下タンク、9
:芯材、10:犠牲腐食層、11:ろう材層。 特許出願人  日本ラヂヱーター株式会社代  理  
人  小 山 欽造(ばか1名)匹−」−一Δ −第−l−或− 第1図
FIG. 1 is a sectional view of a composite material for an aluminum heat exchanger of the present invention, and FIG. 2 is a front view showing an example of a heat exchanger made using this composite material. 1: Heat exchanger tube, 2: Fin, 3: Core part, 4: Seat plate, 5:
Inlet pipe, 6: Upper tank, 7: Outlet pipe, 8, Lower tank, 9
: core material, 10: sacrificial corrosion layer, 11: brazing metal layer. Patent applicant: Japan Radiator Co., Ltd.
Person Kinzo Koyama (one idiot) -1Δ -1st-l-or- Figure 1

Claims (1)

【特許請求の範囲】[Claims] 0.8〜1.5重量%のマンガンと、0.3〜1.0重
量%の銅と、0.05〜0.2重量%のジルコニウムと
を含み、残りを不可避不純物とアルミニウムとした芯材
と、この芯材の水と接触する側の面を覆う0.2〜0.
5重量%のマグネシウムと、0.1〜0.3重量%の亜
鉛とを含み、残りを不可避不純物とアルミニウムとした
犠牲腐食層と、芯材の反対面を覆う、珪素を含みアルミ
ニウムを主成分としたろう材層とから成るアルミニウム
製熱交換器用複合材。
A core containing 0.8-1.5% by weight of manganese, 0.3-1.0% by weight of copper, and 0.05-0.2% by weight of zirconium, with the remainder being unavoidable impurities and aluminum. material and 0.2 to 0.0.
A sacrificial corrosion layer containing 5% by weight of magnesium, 0.1 to 0.3% by weight of zinc, and the remainder being unavoidable impurities and aluminum, and a sacrificial corrosion layer containing silicon and mainly consisting of aluminum, which covers the opposite side of the core material. A composite material for aluminum heat exchangers consisting of a brazing metal layer and a brazing metal layer.
JP6875386A 1986-03-28 1986-03-28 Composite material for heat exchanger made of aluminum Expired - Lifetime JPS62227056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6875386A JPS62227056A (en) 1986-03-28 1986-03-28 Composite material for heat exchanger made of aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6875386A JPS62227056A (en) 1986-03-28 1986-03-28 Composite material for heat exchanger made of aluminum

Publications (1)

Publication Number Publication Date
JPS62227056A true JPS62227056A (en) 1987-10-06

Family

ID=13382837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6875386A Expired - Lifetime JPS62227056A (en) 1986-03-28 1986-03-28 Composite material for heat exchanger made of aluminum

Country Status (1)

Country Link
JP (1) JPS62227056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232222A (en) * 1990-12-28 1992-08-20 Honda Motor Co Ltd Aluminum alloy clad material having superior corrosion resistance
WO2018020552A1 (en) * 2016-07-25 2018-02-01 三菱電機株式会社 Heat exchanger and air conditioner

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208938A (en) * 1986-03-11 1987-09-14 三菱アルミニウム株式会社 Al alloy composite tube for heat exchanger having excellent corrosion resistance
JPS62211360A (en) * 1986-03-11 1987-09-17 Mitsubishi Alum Co Ltd Manufacture of al alloy pipe superior in corrosion resistance for heat exchanger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208938A (en) * 1986-03-11 1987-09-14 三菱アルミニウム株式会社 Al alloy composite tube for heat exchanger having excellent corrosion resistance
JPS62211360A (en) * 1986-03-11 1987-09-17 Mitsubishi Alum Co Ltd Manufacture of al alloy pipe superior in corrosion resistance for heat exchanger

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232222A (en) * 1990-12-28 1992-08-20 Honda Motor Co Ltd Aluminum alloy clad material having superior corrosion resistance
WO2018020552A1 (en) * 2016-07-25 2018-02-01 三菱電機株式会社 Heat exchanger and air conditioner
JPWO2018020552A1 (en) * 2016-07-25 2018-09-27 三菱電機株式会社 Heat exchanger and air conditioner

Similar Documents

Publication Publication Date Title
US6387540B1 (en) Sacrificial corrosion-protective aluminum alloy for heat exchangers, high corrosion-resistant aluminum alloy composite material for heat exchangers, and heat exchanger using the said composite material
EP0623461A1 (en) Tubular element for a heat exchanger
CZ2004831A3 (en) Aluminium alloy
WO2004057261A1 (en) Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
JPH1180871A (en) Aluminum alloy clad material for heat exchanger, excellent in corrosion resistance
JP2685775B2 (en) Aluminum alloy composite material with excellent pitting resistance
JP3765327B2 (en) Brazing aluminum alloy composite member and brazing method
JPS62227056A (en) Composite material for heat exchanger made of aluminum
JP3759215B2 (en) Al brazing sheet for vacuum brazing, tube element for drone cup type heat exchanger and drone cup type heat exchanger
JP2934087B2 (en) Corrosion resistant Al alloy brazing sheet
JPH0611896B2 (en) Aluminum alloy brazing sheet
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JPS5989999A (en) Heat exchanger made of aluminum alloy
JP2685926B2 (en) A Blazing sheet for refrigerant passage of heat exchanger manufactured by A
JP4019337B2 (en) Aluminum alloy clad material for heat exchangers with excellent corrosion resistance
JPS60251246A (en) Water resistant brazing sheet for vacuum brazing and heat exchanger using said material
JPS6296637A (en) Aluminum alloy-clad material for heat exchanger
JP3217108B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2933382B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JP2000034532A (en) Composite material for heat exchanger made of aluminum alloy
JPS62185855A (en) Sheet for heat exchanger made of aluminum
JP3246970B2 (en) Aluminum heat exchanger composite
JP3234619B2 (en) High strength and high corrosion resistance aluminum alloy clad material for heat exchanger
JPS58110653A (en) Heat exchanger made of brazed aluminum
JPH08260085A (en) Aluminum alloy composite material for vacuum brazing excellent in corrosion resistance

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term