JPS62226670A - Manufacture of compound semiconductor solar cell - Google Patents

Manufacture of compound semiconductor solar cell

Info

Publication number
JPS62226670A
JPS62226670A JP61068574A JP6857486A JPS62226670A JP S62226670 A JPS62226670 A JP S62226670A JP 61068574 A JP61068574 A JP 61068574A JP 6857486 A JP6857486 A JP 6857486A JP S62226670 A JPS62226670 A JP S62226670A
Authority
JP
Japan
Prior art keywords
layer
substrate
compound semiconductor
solar cell
grown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61068574A
Other languages
Japanese (ja)
Other versions
JPH077841B2 (en
Inventor
Katsuzo Uenishi
上西 勝三
Yoshihiro Kawarada
河原田 美裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP61068574A priority Critical patent/JPH077841B2/en
Publication of JPS62226670A publication Critical patent/JPS62226670A/en
Publication of JPH077841B2 publication Critical patent/JPH077841B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a light-weight compound semiconductor solar cell having high photoelectric conversion efficiency by previously forming a plurality of mutually orthogonal grooves to the surface of an Si substrate, growing a compound semiconductor layer, flattening the compound semiconductor layer by mechanical force and generating cracks only in the grooves. CONSTITUTION:A plurality of grooves 12 are worked vertically in a latticed manner in parallel with the surface of an orientation flat in the surface of an n<+> type Si substrate 11. An n-type GaAs layer 13 is shaped orto the substrate 11 by using an epitaxial growth technique, a p-type GaAs layer 14 is grown, and a p-type GaAlAs layer 15 is grown. A section corresponding to the upper section of the groove 12 in the layer 15 is removed through etching, and employed as a contact section 16 for a solar cell. A resist is applied onto the layer 15 at that time, and a mask is aligned through bonding and exposure, thus flattening the whole of the grown substrate, then preventing the deformation of the substrate due to the generation of a crack 17 in the n and p-type GaAs layers 13,14 grown in the groove 12. An insulating film 18 in a contact section 16 is removed, and a p side electrode 19 consisting of an Au-Zn alloy layer is formed. An n side electrode 20 is shaped on thc back of the substrate.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、シリコン単結晶(以下Siという)基に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a silicon single crystal (hereinafter referred to as Si) group.

(従来の技術) 従来の化合物半導体太陽電池は、−例として特開昭59
−75677号公報に記載されている。
(Prior art) Conventional compound semiconductor solar cells are as follows:
It is described in the publication No.-75677.

一般の化合物半導体太陽電池は、第1導電型GaAs基
板上に、液相または気相成長法により第1導電型GaA
a層を5μm程度の厚さにエピタキシャル成長させ、こ
の上に第2導電型GaAs層を1.0μm程度の厚さに
エピタキシャル成長させ、この上に第2導電型G a 
1− XAl−XAs層を0.2μm程度の厚さに成長
させ、次に第2導電側電極をとるために表面の第2導電
型Ga 1−zALzAs層の1部を化学エツチングに
より除去して第2導電型GaAs層を露出し、その後絶
縁膜として窒化シリコンを3000久厚さに被着し、さ
らにこの窒化シリコンを1部除去することにより前記第
2導電型GaAs層を露出し、この露出部分に第2導電
側電極としてAu −Z n等を蒸着することにより形
成し、第1導電型GaAs基板側には第1導電側電極と
してAu−Ge等を蒸着およびエツチングすることによ
り形成さ扛る。
A general compound semiconductor solar cell is manufactured by growing a first conductivity type GaAs substrate on a first conductivity type GaAs substrate by a liquid phase or vapor phase growth method.
The a layer is epitaxially grown to a thickness of about 5 μm, a second conductivity type GaAs layer is epitaxially grown to a thickness of about 1.0 μm, and a second conductivity type GaAs layer is epitaxially grown on this to a thickness of about 1.0 μm.
A 1-XAl-XAs layer is grown to a thickness of about 0.2 μm, and then a part of the second conductive type Ga1-zALzAs layer on the surface is removed by chemical etching in order to form a second conductive side electrode. The second conductivity type GaAs layer is exposed, and then silicon nitride is deposited as an insulating film to a thickness of 3000 mm, and a portion of this silicon nitride is removed to expose the second conductivity type GaAs layer. A second conductive side electrode is formed by vapor-depositing Au-Zn, etc., and a first conductive-side electrode is formed by vapor-depositing and etching Au-Ge etc. on the first conductive type GaAs substrate side. Ru.

この構造は、化合物半導体太陽電池の1例であるが、基
本としてエピタキシャル成゛長技術を使った製造方法が
多く使われている。このような化合物半導体太陽電池は
、Siを使った太陽電池に比べて約培の20%以上の光
電変換効率を有している力め、小型で高効率の太陽電池
を得ることができる。
Although this structure is an example of a compound semiconductor solar cell, a manufacturing method that basically uses epitaxial growth technology is often used. Such a compound semiconductor solar cell has a photoelectric conversion efficiency of about 20% or more compared to a solar cell using Si, and it is possible to obtain a small, highly efficient solar cell.

(発明が解決しようとする問題点) しかしながら、以上のように化合物半導体基板、たとえ
ばGaAs基板の上にGaAs系化合物半導体をエピタ
キシャル成長させて太陽電池を形成すると、シリコン系
の太陽電池に比べ高価で且つ重量が大きくなるという問
題点があった。
(Problems to be Solved by the Invention) However, when a solar cell is formed by epitaxially growing a GaAs-based compound semiconductor on a compound semiconductor substrate, for example, a GaAs substrate, as described above, it is more expensive and expensive than a silicon-based solar cell. There was a problem that the weight increased.

本発明の目的は、安価で軽量で且つ光電変換効率の高い
太陽電池を提供することにある。
An object of the present invention is to provide a solar cell that is inexpensive, lightweight, and has high photoelectric conversion efficiency.

(問題点を解決するための手段) 本発明は前記問題点を解決するために、低抵抗第1導電
型のSi基板を準備し、この81基板の表面に互いに直
交する複数の溝を形成し、このSj基板上に第1導電型
GaAsの第1層、第2導亀型GaAsの第2層および
第2導電型GaAtAsの第3層を順次エピタキシャル
成長させ、この第3層の溝上部分を除去することにより
第2層を露出する開口を形成し、この第3層の表面にの
み絶縁膜を形成し、この基板を機械的な力により平坦化
し、少なくとも前記開口を覆い且つ前記第2層に接触す
る上部電極を形成するものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention prepares a low-resistance first conductivity type Si substrate, and forms a plurality of mutually perpendicular grooves on the surface of this 81 substrate. , on this Sj substrate, a first layer of first conductivity type GaAs, a second layer of second conductivity type GaAs, and a third layer of second conductivity type GaAtAs are sequentially grown epitaxially, and the upper part of the groove of this third layer is removed. An insulating film is formed only on the surface of the third layer, and the substrate is flattened by mechanical force, covering at least the opening and forming an insulating film on the second layer. This forms the contacting upper electrode.

(作用) 本発明によれば、以上説明したようにSt基板上に化合
物半導体層をエピタキシャル成長させているので、熱膨
張係数の違いから基板に反りが生じるが、本発明ではS
i基板表面にあらかじめ、互いに直交する複数の溝を形
成し、化合物半導体層の成長後、機械的な力により平坦
化しているのでストレスが溝の内部に集中し、クラック
を溝の内部にのみ発生させるので太陽電池の製造プロセ
スで平坦な基板として取り扱えるだけでなく、出来上っ
た太陽電池も平坦になる。さらに、以上説明したように
、溝上部分の開口を覆うように上部電極を形成している
ので、この上部電極が溝内部のクラックの入った化合物
半導体領域を保護するパッンベーション膜として働く。
(Function) According to the present invention, since the compound semiconductor layer is epitaxially grown on the St substrate as described above, the substrate is warped due to the difference in thermal expansion coefficient.
Multiple grooves perpendicular to each other are formed in advance on the surface of the i-substrate, and after the compound semiconductor layer is grown, it is flattened by mechanical force, so stress is concentrated inside the grooves and cracks occur only inside the grooves. Not only can it be used as a flat substrate in the solar cell manufacturing process, but the resulting solar cell will also be flat. Furthermore, as explained above, since the upper electrode is formed to cover the opening above the groove, this upper electrode functions as a passivation film that protects the cracked compound semiconductor region inside the groove.

(実施例) 第1図(A)〜■)は本発明の一実施例を説明するため
の化合物半導体太陽電池の断面図であり、以下図面に溢
って説明する。
(Example) FIGS. 1A to 1) are cross-sectional views of a compound semiconductor solar cell for explaining an example of the present invention, and the explanation will be given below with reference to the drawings.

まず、第1図(A)に示すように、n型のSt基板11
0表面に20μm幅の溝12を複数、オリエンテーショ
ンフラット面に平行および垂直に、形成予定の上側電極
形状に対応して格子状または升目状に加工する。2イン
チ81基板をエピタキシャル成長用の基板とする時には
通常、基板の厚みは200〜250μmであり溝12の
加工は100〜150μm深さにエツチングまたはグイ
シングツ−により行う。大口径の基板については、基板
の残りの厚みが100〜150μmとなるように溝12
を加工する。溝の幅は出来るだけ細い方が有効である。
First, as shown in FIG. 1(A), an n-type St substrate 11
A plurality of grooves 12 having a width of 20 μm are formed on the 0 surface parallel to and perpendicular to the orientation flat surface in a grid or square shape corresponding to the shape of the upper electrode to be formed. When a 2-inch 81 substrate is used as a substrate for epitaxial growth, the thickness of the substrate is usually 200 to 250 .mu.m, and the grooves 12 are formed by etching or grazing to a depth of 100 to 150 .mu.m. For large-diameter substrates, the grooves should be
Process. It is effective to make the width of the groove as narrow as possible.

次に第1図の)に示すように、有機金属化学気相成長法
(MOCVD法)あるいは分子課エピタキ/−法(MB
E法)等のエピタキシャル成長技術を用いて、Si基板
11上にまずn型のGaAsを低温約450℃程度で2
00X程度厚さ成長し、成長温度を700〜750°C
に上げて同様のn型GaAsを5μm成長することによ
りn型GaAs層13を形成し、p型GaAs層14を
1μm厚さに成長し、ついでp型GaAムs層15を0
62μm成長する。このように、Si基板1ノ上にGa
As層13.14やGaAtAs層15を5μm以上エ
ピタキシャル成長すると2インチSi基板11全上面に
成長した材質の熱膨張係数の差により第1図(B)に示
したように60〜80μm上に凹に反った形で変形する
Next, as shown in Fig. 1), metal organic chemical vapor deposition (MOCVD) or molecular epitaxy/- method (MB
Using an epitaxial growth technique such as E method, n-type GaAs is first grown on the Si substrate 11 at a low temperature of about 450°C.
Grow to a thickness of about 00X, and grow at a growth temperature of 700 to 750°C.
An n-type GaAs layer 13 is formed by growing similar n-type GaAs to a thickness of 5 μm, a p-type GaAs layer 14 is grown to a thickness of 1 μm, and then a p-type GaAs layer 15 is grown to a thickness of 5 μm.
Grows to 62 μm. In this way, Ga is placed on the Si substrate 1.
When the As layer 13, 14 or the GaAtAs layer 15 is epitaxially grown to a thickness of 5 μm or more, it becomes concave by 60 to 80 μm as shown in FIG. Deformed in a warped shape.

次に、第1図(C)に示すように、p型GaAAAs層
15の溝12の上にあたる部分をエツチング除去するこ
とにより太陽電池のコンタクト部16となる窓を形成す
る。この時、p型GaAtAs層15の上にレノストを
塗布し密着露光によりマスク合せを行うことによりエピ
タキシャル成長した基板は全体が平坦化され、その時一
番大きなストレスを受ける溝12の内部に成長したn型
及びp型GaAs層13.14にクラック17が入シ、
基板の変形はなくなる。その上に全面にSi3N4など
の絶縁膜18を約3000に厚さに被着する。
Next, as shown in FIG. 1C, a portion of the p-type GaAAAs layer 15 above the groove 12 is etched away to form a window that will become the contact portion 16 of the solar cell. At this time, by coating renost on the p-type GaAtAs layer 15 and performing mask alignment by contact exposure, the epitaxially grown substrate is flattened as a whole, and the n-type grown inside the groove 12, which is subjected to the greatest stress at that time, is And cracks 17 have appeared in the p-type GaAs layers 13 and 14,
No more deformation of the board. An insulating film 18 made of Si3N4 or the like is deposited on the entire surface to a thickness of about 3000 nm.

次に、第1図の)に示すように、溝12の上部に形成し
た太陽電池のコンタクト部16部分の絶縁膜18をエツ
チングによりと9除く、その後、コンタクト部16にA
u −Z n合金層のp側電極19を形成する。基板の
裏面には太陽電池のn側電極20として例えばAuを全
面に蒸着し出来上る。
Next, as shown in FIG.
A p-side electrode 19 of the u-Zn alloy layer is formed. For example, Au is deposited on the entire surface of the back surface of the substrate as the n-side electrode 20 of the solar cell.

本発明の実施例によれば、以上説明したように、n+型
のSi基板1ノ上にn型GaAs層13、p型GaAs
層14およびp型GaAtAs層15を順次エピタキシ
ャル成長させて太陽電池を構成しているので、軽量且つ
高い光電変換効率の太陽電池を安価に作ることができる
。また、Si基板ll上に各化合物半導体をエピタキシ
ャル成長させると、それら材質の熱膨張係数の違いによ
り凹形に基板が変形するが、各化合物半導体層をエピタ
キシャル成長させた後の平坦化工程で溝12の内部にス
トレスを集中し、クラック17を溝12の内部にのみ発
生させるので、太陽電池の製造プロセスで平坦な基板と
して取9扱えるだけでなく出来上った太陽電池そのもの
も平坦なものとなる。さらに、p側電極19は、溝12
を覆うように形成されクラック17の発生した化合物半
導体領域を保護するパッシベーション膜として働き、太
陽電池の劣化を防止する。
According to the embodiment of the present invention, as described above, the n-type GaAs layer 13 and the p-type GaAs layer 13 are formed on the n+ type Si substrate 1.
Since the solar cell is constructed by sequentially epitaxially growing the layer 14 and the p-type GaAtAs layer 15, a lightweight solar cell with high photoelectric conversion efficiency can be manufactured at low cost. Furthermore, when each compound semiconductor layer is epitaxially grown on a Si substrate 11, the substrate is deformed into a concave shape due to the difference in thermal expansion coefficients of these materials. Since stress is concentrated inside and cracks 17 are generated only inside the grooves 12, not only can it be handled as a flat substrate in the solar cell manufacturing process, but the resulting solar cell itself is also flat. Furthermore, the p-side electrode 19
It acts as a passivation film to protect the compound semiconductor region where the crack 17 has occurred, and prevents deterioration of the solar cell.

尚、本発明の実施例におけるSi基板1ノおよび各化合
物半導体層13,14.15の導電型は、それぞれ逆の
導電型でもよい。また、n側電極20は、本発明の実施
例において、最後に形成しているが、他の工程で形成し
てもよい。
Incidentally, the conductivity types of the Si substrate 1 and each compound semiconductor layer 13, 14, 15 in the embodiment of the present invention may be opposite conductivity types. Furthermore, although the n-side electrode 20 is formed last in the embodiment of the present invention, it may be formed in another step.

・(発明の効果) 本発明によれば、以上詳細に説明したようにSi基板を
用いてGaAs系化合物半導体の太陽電池を形成してい
るので、軽量で且つ高い光電変換効率を有する化合物半
導体太陽電池を製造することができる。
- (Effects of the Invention) According to the present invention, as explained in detail above, a GaAs-based compound semiconductor solar cell is formed using a Si substrate, so a compound semiconductor solar cell that is lightweight and has high photoelectric conversion efficiency can be obtained. Batteries can be manufactured.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜■)は本発明の一実施例を説明するため
の化合物半導体太陽電池の断面図である。 11−−・Si基板、12 ・・・溝、13− n型G
aAs層、14− p型GaAs層、15 ・p型Ga
AtAa層、16 ・・・コにタクト部、17・・・ク
ラック、18・・・絶縁膜、19・・・p側電極、20
・・・n側電極。 特許出願人  沖電気工業株式会社 第1図
FIGS. 1(A) to 1) are cross-sectional views of a compound semiconductor solar cell for explaining one embodiment of the present invention. 11--Si substrate, 12...groove, 13- n-type G
aAs layer, 14- p-type GaAs layer, 15 ・p-type Ga
AtAa layer, 16... tact portion, 17... crack, 18... insulating film, 19... p side electrode, 20
...n-side electrode. Patent applicant Oki Electric Industry Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】 第1導電型のシリコン単結晶基板を準備する工程と、 該シリコン単結晶基板の表面に互いに直交する複数の溝
を形成する工程と、 該シリコン単結晶基板上に第1導電型ガリウム砒素の第
1層をエピタキシャル成長させる工程と、該第1層上に
第2導電型ガリウム砒素の第2層をエピタキシャル成長
させる工程と、 該第2層上に第2導電型アルミニウムガリウム砒素の第
3層をエピタキシャル成長させる工程と、該第3層の前
記溝上部分を除去することにより前記第2層を露出する
開口を形成する工程と、該第3層の表面に絶縁膜を形成
する工程と、該基板を機械的な力により平坦化する工程
と、少なくとも前記開口を覆い且つ前記第2層に接触す
る上部電極を形成する工程とを備えてなることを特徴と
する化合物半導体太陽電池の製造方法。
[Claims] A step of preparing a silicon single crystal substrate of a first conductivity type; a step of forming a plurality of grooves perpendicular to each other on a surface of the silicon single crystal substrate; epitaxially growing a first layer of conductivity type gallium arsenide; epitaxially growing a second conductivity type gallium arsenide layer on the first layer; and epitaxially growing a second conductivity type aluminum gallium arsenide layer on the second layer. a step of epitaxially growing a third layer; a step of forming an opening exposing the second layer by removing a portion of the third layer above the groove; and a step of forming an insulating film on a surface of the third layer. manufacturing a compound semiconductor solar cell, comprising: flattening the substrate by mechanical force; and forming an upper electrode that covers at least the opening and contacts the second layer. Method.
JP61068574A 1986-03-28 1986-03-28 Method for manufacturing compound semiconductor solar cell Expired - Lifetime JPH077841B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61068574A JPH077841B2 (en) 1986-03-28 1986-03-28 Method for manufacturing compound semiconductor solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61068574A JPH077841B2 (en) 1986-03-28 1986-03-28 Method for manufacturing compound semiconductor solar cell

Publications (2)

Publication Number Publication Date
JPS62226670A true JPS62226670A (en) 1987-10-05
JPH077841B2 JPH077841B2 (en) 1995-01-30

Family

ID=13377677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61068574A Expired - Lifetime JPH077841B2 (en) 1986-03-28 1986-03-28 Method for manufacturing compound semiconductor solar cell

Country Status (1)

Country Link
JP (1) JPH077841B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165178A (en) * 1987-12-22 1989-06-29 Mitsubishi Electric Corp Solar battery
JP2001044463A (en) * 1999-07-27 2001-02-16 Canon Inc Solar cell and manufacture thereof
JP2011014897A (en) * 2009-06-05 2011-01-20 Sumitomo Chemical Co Ltd Semiconductor substrate, photoelectric conversion device, method of manufacturing the semiconductor substrate, and method of manufacturing the photoelectric conversion device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165178A (en) * 1987-12-22 1989-06-29 Mitsubishi Electric Corp Solar battery
JP2001044463A (en) * 1999-07-27 2001-02-16 Canon Inc Solar cell and manufacture thereof
JP2011014897A (en) * 2009-06-05 2011-01-20 Sumitomo Chemical Co Ltd Semiconductor substrate, photoelectric conversion device, method of manufacturing the semiconductor substrate, and method of manufacturing the photoelectric conversion device

Also Published As

Publication number Publication date
JPH077841B2 (en) 1995-01-30

Similar Documents

Publication Publication Date Title
KR100390670B1 (en) Process for bonding crystalline substrates with different crystal lattices
EP0666602B1 (en) Method of manufacturing a GaAs solar cell on a Si substrate
US5716459A (en) Monolithically integrated solar cell microarray and fabrication method
US10090420B2 (en) Via etch method for back contact multijunction solar cells
EP2249401A1 (en) Solar cell and method for manufacturing solar cell
US10340187B2 (en) Strain relief epitaxial lift-off via pre-patterned mesas
US11996496B2 (en) Semiconductor light-emitting device
WO2011033776A1 (en) Method for producing compound semiconductor crystal, method for manufacturing electronic device, and semiconductor substrate
EP0414844A1 (en) High efficiency solar cell
US8330036B1 (en) Method of fabrication and structure for multi-junction solar cell formed upon separable substrate
KR20160047759A (en) Method of fabrication and structure for multi-junction solar cell formed upon separable substrate
JP2006216896A (en) Solar cell manufacturing method
US5320685A (en) Thin solar cell
JPS62226670A (en) Manufacture of compound semiconductor solar cell
JPS617671A (en) Gallium nitride semiconductor device
JPS62237768A (en) Manufacture of compound semiconductor sorar battery
JP2000114557A (en) Solar battery element
TWI817264B (en) Vertical light-emitting diode and manufacturing method thereof
JPS617621A (en) Manufacture of gallium nitride semiconductor device
JPS62221166A (en) Gaas solar battery
JPH0573331B2 (en)
JPS61188975A (en) Manufacture of thin gaas solar cell
JPS63302576A (en) Manufacture of semiconductor device
CN116884989A (en) Compound semiconductor device and method for manufacturing the same
JPS61219182A (en) Manufacture of compound semiconductor device