JPS62225464A - Steering force control device of power steering device - Google Patents

Steering force control device of power steering device

Info

Publication number
JPS62225464A
JPS62225464A JP6852786A JP6852786A JPS62225464A JP S62225464 A JPS62225464 A JP S62225464A JP 6852786 A JP6852786 A JP 6852786A JP 6852786 A JP6852786 A JP 6852786A JP S62225464 A JPS62225464 A JP S62225464A
Authority
JP
Japan
Prior art keywords
pressure
flow
valve
control valve
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6852786A
Other languages
Japanese (ja)
Inventor
Mikio Suzuki
幹夫 鈴木
Mitsunori Naruse
成瀬 光則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP6852786A priority Critical patent/JPS62225464A/en
Publication of JPS62225464A publication Critical patent/JPS62225464A/en
Pending legal-status Critical Current

Links

Landscapes

  • Power Steering Mechanism (AREA)

Abstract

PURPOSE:To ensure the responsive feeling at a high speed by providing a fluid force applying means applying the fluid pressure proportional to the gear- generated pressure to a diversion control valve in the radial direction against its valve stem. CONSTITUTION:A fixed flow Q of pressure oil from a feed pump 60 is divided and controlled into a flow QG to a servo valve 30 side and a flow QR to a reaction mechanism side by a diversion control valve 1. When a handle is turned at a high speed, the gear-generated pressure PG of the servo valve 30 is increased, and in response to it, the gear-generated pressure PG is guided to a guide port 40, thus pressing the outer diameter face of a spool (valve stem) 5 in the diameter direction. The outer diameter face of the valve stem 5 on the opposite side to the pressed side of the guide port 40 is pressed to the housing inner wall face of the control valve 1 by this pressing force, and the sliding resistance of the valve stem 5 for its axial shift is increased. Accordingly, the diversion flow QR from a discharge port 4 to a reaction chamber 55 is increased in proportion to the gear-generated pressure PG, the reaction oil pressure PR is increased, and the responsive feeling is ensured.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、車速等に応じた制御圧を供給し、ハンドルI
・ルクを車速等に応じて変化させる反力機構を備えた動
力舵取装置の操舵力制御装置に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention supplies control pressure according to vehicle speed, etc.
・This invention relates to a steering force control device for a power steering device equipped with a reaction force mechanism that changes torque according to vehicle speed, etc.

〈従来の技術〉 車速等に比例した制御圧を反力機構に導入し、動力舵取
装置の操舵力を車速等に応じて制御するものは公知であ
る。この種の装置においては、供給ポンプより吐出され
た一定流量の圧油を分流制御弁によりサーボ弁側と反力
機構の反力室側とに分流し、反力室側の通路に設けた車
速等に応じて制御される電磁絞り弁にて反力機構に導入
する油圧力を制御している。また、サーボ弁側の通路と
反力室側の通路間を固定絞りを介して連通した連通路を
設け、高速時において、ハンドルを切り込んだときに、
サーボ弁のギヤ発生圧力の上昇に応じて連通路の固定絞
りを通る流量により反力油圧を上昇させ手ごたえ感を明
確にするようにした構成のものがある。
<Prior Art> It is known that a control pressure proportional to the vehicle speed or the like is introduced into a reaction force mechanism to control the steering force of the power steering device according to the vehicle speed or the like. In this type of device, a constant flow rate of pressurized oil discharged from a supply pump is divided into a servo valve side and a reaction chamber side of a reaction force mechanism by a flow control valve, and a vehicle speed control valve is installed in a passage on the reaction force chamber side. The hydraulic pressure introduced into the reaction force mechanism is controlled by an electromagnetic throttle valve that is controlled according to the following conditions. In addition, a communication passage is provided between the passage on the servo valve side and the passage on the reaction force chamber side through a fixed throttle, so that when the handle is turned at high speed,
There is a configuration in which the reaction oil pressure is increased by the flow rate passing through a fixed throttle in the communication passage in response to an increase in the gear-generated pressure of the servo valve, thereby making the response clearer.

く考案が解決しようとする問題点〉 上記従来の構成においては、連通路の流i!Lqは、ギ
ヤ発生圧力PGに比例して多くなる。従って、反力を必
要としない電磁制御弁が全開状態の据切り、低速時には
ギヤ発生圧力を70〜80kgt/cm2まで使用する
ため流ff1qが多ずぎとなり、固定絞り部における流
速がきわめて高くなる。
Problems to be solved by this invention> In the above-mentioned conventional configuration, the flow of the communication path is limited to i! Lq increases in proportion to gear generation pressure PG. Therefore, when the electromagnetic control valve that does not require reaction force is fully open and at low speed, the gear generated pressure is used up to 70 to 80 kgt/cm2, so the flow ff1q becomes too large, and the flow velocity at the fixed throttle part becomes extremely high. .

そのため固定絞りを通ってレリーフ通路に流れる前記流
ff1qにより固定絞り部にシュー音(圧力流体の通過
音)が発生する。
Therefore, the flow ff1q flowing through the fixed throttle and into the relief passage generates a hissing sound (passing sound of pressure fluid) in the fixed throttle.

く問題点を解決するための手段〉 本発明は、上記従来の問題点を解決するためになされた
ものであり、その構成は、入力軸と出力軸との相対回転
に基づいて作動されパワーシリンダへの圧油を給排する
サーボ弁と、車速等に応じてハンドルトルクを変化させ
る反力機構を備えた動力舵取装置の操舵力制御装置にお
いて、供給ポンプより吐出された一定流量の圧油を前記
サーボ弁と反力機構へ流量制御して分流する分流制御弁
と、前記反力機構に分流された圧油を車速等に応じて低
圧側へ逃す電磁制御弁とを備え、前記分流制御弁には、
その弁軸に対してラジアル方にギヤ発生圧力に比例した
流体圧を付与する流体力付与手段を設けたものである。
Means for Solving the Problems> The present invention has been made to solve the above-mentioned problems of the conventional art. In the steering force control device of a power steering device, which is equipped with a servo valve that supplies and discharges pressure oil to and from the vehicle, and a reaction force mechanism that changes the steering wheel torque depending on the vehicle speed, etc., a constant flow of pressure oil discharged from a supply pump is used. a flow control valve that controls the flow rate of the oil to the servo valve and the reaction mechanism, and an electromagnetic control valve that releases the pressure oil diverted to the reaction mechanism to a low pressure side according to vehicle speed, etc.; On the valve,
A fluid force applying means is provided for applying a fluid pressure proportional to the gear generated pressure in the radial direction to the valve shaft.

く作  用〉 本発明は、ギヤ発生圧力に比例した流体圧を分流制御弁
の弁軸(スプール)にラジアル方向に付与して弁軸の軸
移動に対し摺動抵抗を発生させ、反力室側への分流流量
をギヤ発生圧力に応じて増加させるものである。
Function> The present invention applies fluid pressure proportional to the gear generation pressure to the valve shaft (spool) of a branch control valve in the radial direction to generate sliding resistance against the axial movement of the valve shaft, and the reaction force chamber The flow rate diverted to the side is increased in accordance with the gear generated pressure.

く実 施 例〉 以下本発明の実施例を図面に基づいて説明する。第1図
において、11は動力舵取装置の本体をなすハウジング
本体、12はハウシング本体11に固着されている弁ハ
ウジングである。このハウジング本体11及び弁ハウジ
ング12内には一対の軸受13.14を介してビニオン
軸(出力軸〉21が回転自在に軸承されており、このビ
ニオン軸21にはこれと交差する方向に摺動可能なラッ
ク軸22のラック歯22aが噛合している。このラック
軸22は、パワーシリンダ65(第3図参照)のピスト
ンと連結され、その両端は所要の操舵リンク機構を介し
て操向車輪に連結されている。
Embodiments Hereinafter, embodiments of the present invention will be described based on the drawings. In FIG. 1, reference numeral 11 is a housing main body forming the main body of the power steering device, and reference numeral 12 is a valve housing fixed to the housing main body 11. A binion shaft (output shaft) 21 is rotatably supported in the housing main body 11 and the valve housing 12 via a pair of bearings 13 and 14. The rack teeth 22a of a possible rack shaft 22 are in mesh with each other.This rack shaft 22 is connected to a piston of a power cylinder 65 (see FIG. 3), and both ends of the rack shaft 22 are connected to a steering wheel via a required steering linkage. is connected to.

弁ハウジング12の弁孔内には、サーボ弁30が収納さ
れている。サーボ弁30は、操舵軸としての入力軸23
と一体的に形成したロータリ弁部材31と、このロータ
リ弁部材31の外周に同心的かつ相対的回転可能に嵌合
したスリーブ弁部材32を主要構成部材としている。ロ
ータリ弁部材31は、これと一体の入力軸23に一端を
連結したトーションバー24を介してビニオン軸21に
可撓的に連結されている。
A servo valve 30 is housed within the valve hole of the valve housing 12. The servo valve 30 is connected to the input shaft 23 as a steering shaft.
The main components are a rotary valve member 31 formed integrally with the rotary valve member 31, and a sleeve valve member 32 fitted concentrically and relatively rotatably to the outer periphery of the rotary valve member 31. The rotary valve member 31 is flexibly connected to the pinion shaft 21 via a torsion bar 24 whose one end is connected to an input shaft 23 integral therewith.

また、ロータリ弁部材31の外周には、図示しないが、
その軸方向に伸びる複数のランド部と溝部とが等間隔に
形成されており、これの溝底部より内周部に連通ずる連
通路37が穿設されている。入力軸23に前記内周部と
弁ハウジング12内の低圧室38とを連通ずる通路39
が設けられている。一方スリーブ弁部材32の内周にも
、その軸方向に伸びる複数のランド部と溝部が等間隔に
形成され、各溝部よりスリーブ弁部材32の外周に開口
する分配穴40.41が設けられている。
Further, although not shown, on the outer periphery of the rotary valve member 31,
A plurality of land portions and groove portions extending in the axial direction are formed at equal intervals, and a communication passage 37 communicating from the groove bottom to the inner peripheral portion is bored. A passage 39 that connects the input shaft 23 with the inner peripheral portion and the low pressure chamber 38 in the valve housing 12.
is provided. On the other hand, a plurality of lands and grooves extending in the axial direction are formed at equal intervals on the inner circumference of the sleeve valve member 32, and distribution holes 40, 41 are provided that open from each groove to the outer circumference of the sleeve valve member 32. There is.

供給ボート35より供給される圧力流体は、サーボ弁が
中立状態であればランド部両側の溝部に均等に流れ、連
通路37及び通路39を経て低圧室38より排出ボート
36に流出する。この場合、両分配ボート33.34は
低圧で等しい圧力となっているためパワーシリンダ65
は作動されない。サーボ弁30が中立状態から偏位すれ
ば、一方の分配穴40又は41には供給ボート35より
圧油が供給され、他方の分配穴41又は40にパワーシ
リンダ65から排出された流体が流入し、連通路372
通路39.低圧室38を経て排出ボート3Gに放出され
るようになっている。
When the servo valve is in the neutral state, the pressure fluid supplied from the supply boat 35 flows equally into the grooves on both sides of the land portion, and flows out from the low pressure chamber 38 to the discharge boat 36 via the communication passage 37 and the passage 39. In this case, since both distribution boats 33 and 34 are at low and equal pressure, the power cylinder 65
is not activated. When the servo valve 30 deviates from the neutral state, pressure oil is supplied from the supply boat 35 to one distribution hole 40 or 41, and fluid discharged from the power cylinder 65 flows into the other distribution hole 41 or 40. , communication path 372
Passage 39. It is designed to be discharged into the discharge boat 3G via the low pressure chamber 38.

反力機構は次の通りである。ロータリ弁部材31のビニ
オン軸21例の端部には第2図に示すように半径方向に
両側に突出する突起部50が形成されており、この突起
部50と対応するビニオン軸21には突起部50を入力
軸23の軸線回りに数度旋回可能に遊嵌する嵌合溝51
が形成されている。
The reaction force mechanism is as follows. As shown in FIG. 2, a protrusion 50 that protrudes on both sides in the radial direction is formed at the end of the binion shaft 21 of the rotary valve member 31, and the binion shaft 21 corresponding to this protrusion 50 has a protrusion. A fitting groove 51 into which the part 50 is loosely fitted so as to be rotatable several degrees around the axis of the input shaft 23
is formed.

ビニオン軸21には前記突起50をはさんでその両側に
挿通穴53が形成され、この挿通穴53にそれぞれプラ
ンジャ54が摺動可能に挿通されている。このプランジ
ャ54はその後方に形成された反力室55に導入される
油圧力によって前方へ突出され、前記突起部50をその
両側より挟持すると共にその前進端はプランジャ54に
形成された大径部54aによって規制されている。57
は車速等に応じた油圧力を導入するボート、58は通路
、59はこの通路58と前記反力室55とを連通ずる環
状溝である。
Insertion holes 53 are formed in the pinion shaft 21 on both sides of the protrusion 50, and a plunger 54 is slidably inserted into each of the insertion holes 53. The plunger 54 is projected forward by hydraulic pressure introduced into a reaction chamber 55 formed at the rear thereof, and holds the protrusion 50 from both sides thereof, and its forward end is connected to a large diameter portion formed in the plunger 54. 54a. 57
58 is a passage, and 59 is an annular groove that communicates the passage 58 with the reaction force chamber 55.

なお、上記構成の反力機構は、突起部50の両側に設け
られたプランジャ54にて突起部50を回転させる方向
に油圧力を作用させるものであるが、プランジャを半径
方向より押圧するラジアル方式であるいは軸方向に押圧
するスラスト方式のものでもよい。
The reaction force mechanism configured as described above applies hydraulic pressure in the direction of rotating the protrusion 50 by the plungers 54 provided on both sides of the protrusion 50, but it is a radial type in which the plunger is pressed from the radial direction. Alternatively, a thrust type that presses in the axial direction may be used.

第3図は本発明の実施例を示し、60は自動車エンジン
によって駆動される供給ポンプである。61は前記供給
ポンプ60からの吐出圧油の流量00を一定流ff1Q
に制御する流量制御弁である。この流量制御弁61はメ
ータリングオリフィス62と、このメータリングオリフ
ィス62の前後圧に応じて作動され、この前後圧を常に
一定に保持するよう低圧側に通じたバイパス通路63を
開口制御するバイパス弁64によって構成されている。
FIG. 3 shows an embodiment of the invention, where 60 is a supply pump driven by an automobile engine. 61 represents the flow rate 00 of the pressure oil discharged from the supply pump 60 as a constant flow ff1Q.
This is a flow control valve that controls the flow rate. The flow rate control valve 61 is a metering orifice 62 and a bypass valve that is operated according to the front and rear pressure of the metering orifice 62 and controls the opening of a bypass passage 63 communicating with the low pressure side so as to keep this front and rear pressure constant at all times. 64.

尚、供給ポンプ60を低速モータにより駆動する場合は
一定流ff1Qを吐出するので前記流量制御弁61は不
要である。
Note that when the supply pump 60 is driven by a low-speed motor, a constant flow ff1Q is discharged, so the flow rate control valve 61 is not necessary.

1は前記流量制御弁61の高圧側と接続する分流制御弁
である。この分流制御弁1は前記供給ポンプ60からの
一定流ff1Qの圧力流体を導入する入口ボート2と、
この入口ボート2から導入された圧力流体をスプール5
(弁軸)の軸移動により一定分流の割合でサーボ弁30
側へ流ftQGとして流す第1出ロボート3と反力室5
5へ流量Onとして流す第2出ロボート4とを有してい
る。第3図において、6はスプール5に設けられている
オリフィスであり、入口ボート2から導入された圧力流
体を、このオリフィス6を通してスプール5の軸内の通
路穴8に流入し、さらに第2出ロボート4に導かれる。
1 is a branch control valve connected to the high pressure side of the flow control valve 61. This branch control valve 1 includes an inlet boat 2 that introduces a constant flow ff1Q of pressure fluid from the supply pump 60;
The pressure fluid introduced from this inlet boat 2 is transferred to the spool 5
The servo valve 30 is divided at a constant rate by moving the valve shaft (valve shaft).
The first outgoing robot 3 and the reaction force chamber 5 flow to the side as ftQG.
5, and a second output robot 4 that allows the flow to flow to the second output robot 5 with the flow rate ON. In FIG. 3, 6 is an orifice provided in the spool 5, through which the pressure fluid introduced from the inlet boat 2 flows into the passage hole 8 in the shaft of the spool 5, and then to the second outlet. Guided by Robot 4.

65はパワーシリンダ、70は反力室55例の流量GR
を車速等に応じて絞り制御して低圧側ヘレリーフする電
磁制御弁である。この電磁制御弁70により反力室55
の反力油圧Prlが制御される。
65 is the power cylinder, 70 is the flow rate GR of 55 reaction force chambers.
This is an electromagnetic control valve that provides relief to the low pressure side by controlling the throttle according to vehicle speed, etc. This electromagnetic control valve 70 causes the reaction force chamber 55 to
The reaction oil pressure Prl is controlled.

上記の構成において、前記分流制御弁に、そのスプール
5に対してラジアル方向にギヤ発生圧力PGに比例した
流体圧を付与する流体手段を設けたものである。
In the above structure, the branch control valve is provided with a fluid means for applying a fluid pressure in the radial direction to the spool 5 in proportion to the gear generation pressure PG.

この流体付与手段の第1実施例は第3図及び第4図で示
すように、分流制御弁1の第1出ロボート3と並行して
スプール5の径方向に導入ボート40を設け、これと第
1出ロボート3とを連通した構成である。
As shown in FIGS. 3 and 4, the first embodiment of this fluid application means has an introduction boat 40 provided in the radial direction of the spool 5 in parallel with the first exit boat 3 of the flow control valve 1. It is configured to communicate with the first outgoing robot 3.

また、第2実施例は第5図で示すように、スプール弁5
に半径方向の穴41を開設し、スプール5の軸内の通路
穴8とスプール5が摺動する分流制御弁1のハウジング
内壁面7との間を連通した構成である。
In addition, the second embodiment has a spool valve 5 as shown in FIG.
A radial hole 41 is formed in the spool 5, and a passage hole 8 in the shaft of the spool 5 communicates with the inner wall surface 7 of the housing of the diverter control valve 1 on which the spool 5 slides.

次に上記構成の動作について説明する。供給ポンプ60
からの一定流MQの圧油を分流制御弁1によってサーボ
弁30側への流量QGと反力機構側・\の流ff1OR
とに分流制御する。
Next, the operation of the above configuration will be explained. supply pump 60
The flow rate QG of the constant flow MQ of pressure oil from the flow control valve 1 to the servo valve 30 side and the flow rate of the reaction force mechanism side \ff1OR
and control the shunt flow.

車速か低い状態では、電磁制御弁70のソレノイドには
電流は供給されないので全開状態となっており、導入路
4bに分流された流量0口はレリーフ通路47より抵抗
なく低圧側へ逃される。
When the vehicle speed is low, no current is supplied to the solenoid of the electromagnetic control valve 70, so it is fully open, and the zero flow rate branched into the introduction path 4b is released to the low pressure side through the relief path 47 without resistance.

従って、反力機構のプランジャ54に作用する反力油圧
はOに保持されるため、ハンドル操作により入力軸が回
転されるとプランジャ54は容易に押し上げられ、これ
によりスリーブ弁部材32とロータリ弁部材31とが相
対回転し軽快なハンドル操作ができる。
Therefore, the reaction oil pressure acting on the plunger 54 of the reaction mechanism is maintained at O, so that when the input shaft is rotated by operating the handle, the plunger 54 is easily pushed up, thereby causing the sleeve valve member 32 and the rotary valve member to 31 rotates relative to each other, allowing for nimble steering operation.

また、車速か所定値を越えると、電磁制御弁70のソレ
ノイドに供給される電流値が車速の上昇に応じてリニア
に上昇する。これにより電磁制御弁70の開度が絞られ
反力油圧を高める。
Furthermore, when the vehicle speed exceeds a predetermined value, the current value supplied to the solenoid of the electromagnetic control valve 70 increases linearly in accordance with the increase in vehicle speed. This reduces the opening degree of the electromagnetic control valve 70 and increases the reaction oil pressure.

従って、車速の上昇に応じてプランジャ54は反力油圧
PRに応じた力で突起50に対する抑圧力が増大し操舵
力を重くする。
Therefore, as the vehicle speed increases, the suppressing force of the plunger 54 against the protrusion 50 increases with a force corresponding to the reaction oil pressure PR, thereby increasing the steering force.

さらに、高速時において、ハンドルを切り込んだときに
、サーボ弁30のギヤ発生圧力PGが上昇する。このギ
ヤ発生圧力PGの上昇に応じて、前記第1実施例の場合
は、導入ボート40にギヤ発生圧力1’Gが導入され、
スプール5の外径面を径方向に押圧する。この径方向の
押圧力Fにより、前記導入ボート40の抑圧側とは反対
側のスプール5の外径面が分流制御弁1のハウジングの
内壁面7に押し付けられ、スプール5の軸移動の摺動抵
抗が増大される。これにより第2出ロボート4から反力
室56への分流流ff1QRがギヤ発生圧力PGに比例
して増量し、反力油圧PRを上昇させ、高速時にハンド
ルを切り込んだときに手ごたえ感を明確にするものであ
る。
Furthermore, at high speeds, when the handle is turned in, the gear generation pressure PG of the servo valve 30 increases. In response to this increase in gear generation pressure PG, in the case of the first embodiment, gear generation pressure 1'G is introduced into the introduction boat 40,
The outer diameter surface of the spool 5 is pressed in the radial direction. Due to this radial pressing force F, the outer diameter surface of the spool 5 on the side opposite to the suppression side of the introduction boat 40 is pressed against the inner wall surface 7 of the housing of the diverter control valve 1, and the sliding of the axial movement of the spool 5 is caused. Resistance is increased. As a result, the divided flow ff1QR from the second output robot 4 to the reaction force chamber 56 increases in proportion to the gear generation pressure PG, increasing the reaction force pressure PR and making it possible to clearly feel the response when turning the steering wheel at high speed. It is something to do.

また、第2実施例の場合は、スプール5の軸内の通路穴
8の内周面に外側に向けて均等に作用する流体圧力が、
スプール5に半径方向に設けた穴41によってアンバラ
ンスとなり、前記穴4Iを開設した位置と反対側のスプ
ール5の外径面を径方向に押圧する押圧力Fが生じる。
In addition, in the case of the second embodiment, the fluid pressure acting evenly outward on the inner peripheral surface of the passage hole 8 in the shaft of the spool 5 is
The holes 41 provided in the radial direction in the spool 5 create an imbalance, and a pressing force F is generated that presses the outer diameter surface of the spool 5 in the radial direction on the opposite side to the position where the holes 4I are opened.

従って、前記ギヤ発生圧力PGにより第5図においてス
プール5が右方に移動し、第2出ロボート4を紋り作用
することにより、通過穴8内の圧力がギヤ発生圧力PG
に比例して高められる。従って、ギヤ発生圧力PGの上
昇に伴い、前記押圧力Fが高まってスプール5の外径面
を分流制御弁1のハウジングの内壁面7に押し付けられ
、前記第1実施例と同様にスプール5の軸移動の摺動抵
抗の増大作用を行うものである。
Therefore, the spool 5 moves to the right in FIG. 5 due to the gear generation pressure PG, and by acting on the second output robot 4, the pressure in the passage hole 8 is reduced to the gear generation pressure PG.
will be increased in proportion to Therefore, as the gear generation pressure PG rises, the pressing force F increases and the outer diameter surface of the spool 5 is pressed against the inner wall surface 7 of the housing of the diverter control valve 1, and as in the first embodiment, the spool 5 This serves to increase the sliding resistance of shaft movement.

〈発明の効果〉 以上のように本発明によると、サーボ弁側と反力室側と
に圧力流体を分流する分流制御弁の弁軸に対しギヤ発生
圧力に比例した流体圧をラジアル方向に付与して弁軸の
軸移動の摺動抵抗を増大し、反力室側への流体をギヤ発
生圧力に応じて増大するものであるから、従来のように
、サーボ弁側の通路と反力室側の通路感を固定絞りを介
して連通した連通路を設けなくても高速時におけるハン
ドル切り込み時の反力油圧を上昇させ手ごたえ感を明確
にすることができ、前記連通路のシュー音の問題を解決
した効果を有している。
<Effects of the Invention> As described above, according to the present invention, fluid pressure proportional to the gear generated pressure is applied in the radial direction to the valve shaft of the flow control valve that divides pressure fluid into the servo valve side and the reaction force chamber side. This increases the sliding resistance of the axial movement of the valve stem, and increases the fluid flowing to the reaction chamber side in accordance with the gear generation pressure. Even without providing a communication passage that communicates the feeling of the side passage through a fixed throttle, it is possible to increase the reaction oil pressure when turning the steering wheel at high speeds and make the response clearer, thereby solving the problem of hissing noise in the communication passage. It has the effect of solving the problem.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示し、第1図は動力舵取装置の
断面図、第2図は第1図■−■線断面図、第3図は本発
明の油圧系統図、第4図は本発明に用いられる分流制御
弁の第1実施例を示す要部断面図、第5図は同第2実施
例を示す要部断面図である。 1・・・分流制御弁、5・・・スプール、21・・・ビ
ニオン軸、23・・・入力軸、30・・・サーボ弁、4
0・・・導入ボート、41・・・穴、55・・・反力室
、70・・・電磁制御弁。
The drawings show an embodiment of the present invention; FIG. 1 is a cross-sectional view of the power steering device, FIG. 2 is a cross-sectional view taken along the line ■-■ in FIG. 1, FIG. 3 is a hydraulic system diagram of the present invention, and FIG. 5 is a cross-sectional view of a main part showing a first embodiment of a branch control valve used in the present invention, and FIG. 5 is a cross-sectional view of a main part showing a second embodiment of the same. DESCRIPTION OF SYMBOLS 1... Diversion control valve, 5... Spool, 21... Binion shaft, 23... Input shaft, 30... Servo valve, 4
0... Introduction boat, 41... Hole, 55... Reaction force chamber, 70... Solenoid control valve.

Claims (1)

【特許請求の範囲】[Claims] 入力軸と出力軸との相対回転に基づいて作動されパワー
シリンダへの圧油を給排するサーボ弁と、車速等に応じ
てハンドルトルクを変化させる反力機構を備えた動力舵
取装置の操舵力制御装置において、供給ポンプより吐出
された一定流量の圧油を前記サーボ弁と反力機構へ流量
制御して分流する分流制御弁と、前記反力機構に分流さ
れた圧油を車速等に応じて低圧側へ逃す電磁制御弁とを
備え、前記分流制御弁には、その弁軸に対してラジアル
方にギヤ発生圧力に比例した流体圧を付与する流体力付
与手段を設けたことを特徴とする動力舵取装置の操舵力
制御装置。
Steering of a power steering device equipped with a servo valve that is activated based on the relative rotation of the input shaft and output shaft to supply and discharge pressure oil to the power cylinder, and a reaction force mechanism that changes the steering torque according to vehicle speed, etc. The force control device includes a flow control valve that controls the flow rate of a constant flow of pressure oil discharged from the supply pump and divides it to the servo valve and the reaction mechanism, and a flow control valve that controls the flow rate of the pressure oil discharged from the supply pump and divides it into the reaction force mechanism, and a flow control valve that controls the flow rate of the pressure oil discharged from the supply pump and divides the pressure oil divided into the reaction force mechanism according to the vehicle speed, etc. and an electromagnetic control valve that releases the flow to the low pressure side according to the flow direction, and the branch control valve is provided with a fluid force applying means for applying fluid pressure in a radial direction to the valve shaft in proportion to the gear generated pressure. A steering force control device for a power steering device.
JP6852786A 1986-03-28 1986-03-28 Steering force control device of power steering device Pending JPS62225464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6852786A JPS62225464A (en) 1986-03-28 1986-03-28 Steering force control device of power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6852786A JPS62225464A (en) 1986-03-28 1986-03-28 Steering force control device of power steering device

Publications (1)

Publication Number Publication Date
JPS62225464A true JPS62225464A (en) 1987-10-03

Family

ID=13376286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6852786A Pending JPS62225464A (en) 1986-03-28 1986-03-28 Steering force control device of power steering device

Country Status (1)

Country Link
JP (1) JPS62225464A (en)

Similar Documents

Publication Publication Date Title
JPS61247575A (en) Steering force control device in power steering device
JPS62152972A (en) Hydraulic reactional controller for steering force
JPS60229870A (en) Steering force control device in power steering device
JPS62225464A (en) Steering force control device of power steering device
US5823090A (en) Power steering apparatus having an easily adjustable counter force mechanism
JPS61275062A (en) Steerability control device for power steering device
JPS62214060A (en) Steering power control device for power steering device
JPS60226368A (en) Steering-force controller for power steering apparatus
JPS638073A (en) Steering force controlling unit of power steering device
JPS6325176A (en) Steering force control device for power steering device
JPS62184973A (en) Device for controlling steering force for power steering device
JPH0624302Y2 (en) Steering force control device for power steering device
JPS6299262A (en) Steering force control device of power steering device
JPS61218482A (en) Steering force controller for power steering
JPH036546Y2 (en)
JPH0619426Y2 (en) Steering force control device for power steering device
JPS62225465A (en) Steering force control device of power steering device
JPS62221970A (en) Steering force controller for power steering gear
JPS61155069A (en) Steering power control unit for power steering device
JPS61287863A (en) Steering force control device in power steering device
JPS60226369A (en) Steering-force controller for power steering apparatus
JPS61155063A (en) Steering power control unit for power steering device
JPS62152973A (en) Steering force controller for power steering device
JPS61218481A (en) Steering force controller for power steering
KR0166072B1 (en) Steering force control apparatus for power steering system