JPS62224987A - Cryogenic cooler - Google Patents

Cryogenic cooler

Info

Publication number
JPS62224987A
JPS62224987A JP61067199A JP6719986A JPS62224987A JP S62224987 A JPS62224987 A JP S62224987A JP 61067199 A JP61067199 A JP 61067199A JP 6719986 A JP6719986 A JP 6719986A JP S62224987 A JPS62224987 A JP S62224987A
Authority
JP
Japan
Prior art keywords
nitrogen gas
heat exchanger
cryostat
superconducting magnet
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61067199A
Other languages
Japanese (ja)
Inventor
Itsuo Kodera
小寺 溢男
Akinori Ohara
尾原 昭徳
Sadao Ogawa
小河 貞男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61067199A priority Critical patent/JPS62224987A/en
Publication of JPS62224987A publication Critical patent/JPS62224987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

PURPOSE:To facilitate cooling a supercorducting magnet while the temperature difference between the superconducting magnet and circulated nitrogen gas is being maintained approximately constant by a method wherein a heat exchanger which facilitates beat exchange between the circulated nitrogen gas from an LN2 cooler and the circulated nitrogen gas returned from a cryostat is provided. CONSTITUTION:A liquid nitrogen bath 1 in which liquid nitrogen 3 is contained and an LN2 cooler 7 which is immersed in the liquid nitrogen and cools the circulated nitrogen gas transferred by the operation of a compressor 5 by heat exchange between the circulated nitrogen gas and the liquid nitrogen 3 are provided to cool a superconducting magnet 10 provided in a cryostat 8 by using the circulated nitrogen gas. 1st heat exchanger 22, which facilitates heat exchange between the circulated nitrogen gas from the LN2 cooler 7 and the circulated nitrogen gas returned from the cryostat 8 after cooling the superconducting magnet 10, is provided between the LN2 cooler 7 and the cryostat 8 in such a cryogenic cooler. With this constitution, the superconducting magnet can be cooled while the temperature difference between the superconducting magnet and the circulated nitrogen gas is being maintained approximately constant without adjusting the opening of a regulating valve during the cooling of the superconducting magnet.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、極低温冷却装置に関し、特に超電導マグネ
ットを液体・\リウムに比べ安価で取扱いが容易な液体
窒素を用いて予冷却する極低温冷却装置に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to a cryogenic cooling device, and in particular to a cryogenic cooling device that precools a superconducting magnet using liquid nitrogen, which is cheaper and easier to handle than liquid nitrogen. This relates to a cooling device.

〔従来の技術〕[Conventional technology]

第夕図は例えば本出願人が出願している特開昭40−1
110060号公報に示された従来の極低温冷却装置の
一例を示す概略構成図であり、液体窒素槽(1)内には
真空断熱を施した移送管(コ)を通じて供給される約g
OKの温度の液体窒素(3)が入っている。液体窒素槽
(1)内には熱交換器(ll)が設けられており、この
熱交換器(り)は、圧縮機(夕)から吐出管(6)を通
じて吐出された循環窒素ガスと、液体窒素槽(1)内の
蒸発した窒素ガスとを熱交換するようになっている。液
体窒素(3)内には熱交換器(り)に一端が接続された
LN、冷却器(ワ)が浸漬されており、このLN、冷却
器(ワ)は、圧縮機(夕)からの循環窒素ガスを約tO
Kに冷却するよう釦なっている。LN。
For example, Fig.
This is a schematic configuration diagram showing an example of a conventional cryogenic cooling device disclosed in Publication No. 110060, in which approximately g is supplied into the liquid nitrogen tank (1) through a vacuum-insulated transfer pipe.
Contains liquid nitrogen (3) at an OK temperature. A heat exchanger (11) is provided in the liquid nitrogen tank (1), and this heat exchanger (21) exchanges circulating nitrogen gas discharged from the compressor (11) through the discharge pipe (6), Heat is exchanged with the evaporated nitrogen gas in the liquid nitrogen tank (1). LN and a cooler (wa), one end of which is connected to a heat exchanger (ri), are immersed in liquid nitrogen (3), and this LN and cooler (wa) are connected to the heat exchanger (ri). Approximately tO of circulating nitrogen gas
There is a button to cool down to K. LN.

冷却器(7)は冷却された循環窒素ガスをフライオスタ
ラ) (7)内に導く断熱構造の低温移送管(9)と接
続されている。低温移送管(9)の途中からは、調節弁
(ll)が取り付けられ、先端部が吐出管(6)と接続
された分岐管(/λ)が分岐されている。低温移送管(
?)の先端部はフライオスタラ) (&)内に収納され
た超電導マグネット(10)に指向している。クライオ
スタット(8)は戻り管(/3)、加温器(ハ0を介し
て圧縮器(!i:)と接続されている。なお、符号(/
夕)は圧縮機(夕)の吸入側と液体窒素槽(1)内とを
連通して同圧圧する均圧管を示すものである。
The cooler (7) is connected to a cryogenic transfer pipe (9) with an adiabatic structure that guides the cooled circulating nitrogen gas into the Fry Ostara (7). A control valve (ll) is attached to the middle of the low temperature transfer pipe (9), and a branch pipe (/λ) is branched off, the tip of which is connected to the discharge pipe (6). Cryogenic transfer tube (
? ) is directed toward the superconducting magnet (10) housed in the fly Ostara (&). The cryostat (8) is connected to the compressor (!i:) via the return pipe (/3) and the warmer (c0).
(1) indicates a pressure equalizing pipe that communicates the suction side of the compressor (1) with the inside of the liquid nitrogen tank (1) to maintain the same pressure.

次に、上記構成の従来の極低温冷却装置の動作について
説明する。61体窒素槽(1)内には液体窒素(3)が
外部供給系(図示しない)から移送管(,2)を経由し
て液面高さを制御されながら供給されている。
Next, the operation of the conventional cryogenic cooling device having the above configuration will be explained. Liquid nitrogen (3) is supplied into the 61-body nitrogen tank (1) from an external supply system (not shown) via a transfer pipe (2) while controlling the liquid level.

この状態で圧縮機(3)を運転すると、圧縮機(!r)
から吐出された循環窒素ガスは、吐出管(A)から熱交
換器(り)に流入し、ここで液体窒素槽(1)内の蒸発
窒素ガスと対向流的に熱交換を行って低温になる。さら
に、循環窒素ガスはLN、冷却器(7)において液体窒
素(3)によって約tOKに冷却され低温移送管(9)
に流入する。
When the compressor (3) is operated in this state, the compressor (!r)
The circulating nitrogen gas discharged from the discharge pipe (A) flows into the heat exchanger (RI), where it exchanges heat with the evaporated nitrogen gas in the liquid nitrogen tank (1) in a countercurrent manner to lower the temperature. Become. Furthermore, the circulating nitrogen gas is cooled to about tOK by liquid nitrogen (3) in the LN cooler (7) and transferred to the cryogenic transfer pipe (9).
flows into.

に導びくこともできる。したがって、調節弁(ll)の
開度制御により室温循環窒素ガスとgOK循環窒素ガス
との混合比を適当に変えることにより、I!rOKから
室温付近までの任意の冷媒温度の循環窒素ガスを低温移
送管(9)を経由して、フライオスタラ) (ff)内
に供給して超電導マグネット(10)を冷却することが
できる。
It can also lead to. Therefore, by appropriately changing the mixing ratio of room temperature circulating nitrogen gas and gOK circulating nitrogen gas by controlling the opening of the control valve (ll), I! The superconducting magnet (10) can be cooled by supplying circulating nitrogen gas at any refrigerant temperature from rOK to around room temperature through the cryogenic transfer pipe (9) into the fly Ostara (ff).

超電導マグネット(10)に所要の寒冷を与えてクライ
オスタット(g)から戻る戻り循環窒素ガスは戻り管(
/3)から加温器(ハ0を経てほぼ室温で前述の圧縮機
(y) K吸入され、循環窒素ガスの前述の循環が繰り
返えされる。
The return circulating nitrogen gas that gives the necessary cold to the superconducting magnet (10) and returns from the cryostat (g) is passed through the return pipe (
The nitrogen gas is sucked into the compressor (y) K at approximately room temperature through the warmer (3), and the above-described circulation of circulating nitrogen gas is repeated.

超電導マグネツ) (io)の冷却温度の低下に伴って
不足する循環窒素ガスは、液体窒素槽(1)のガス層か
ら均圧管(/りを経て圧縮機(夕)の吸入側に補給され
る。
The circulating nitrogen gas, which becomes insufficient as the cooling temperature of the superconducting magnets (io) decreases, is supplied from the gas layer of the liquid nitrogen tank (1) to the suction side of the compressor (Y) via the pressure equalization pipe (/). .

通常、超電導マグネツ) (10)を室温から冷却する
とき、被冷却体と供給冷媒の温度差が大きいことによっ
て許容範囲を超える熱歪が発生し、強度上問題になるこ
とがあるが、前述の方法によれば調節弁(ll)の開度
調節により供給冷媒温度を任意に変えられ、合理的な冷
却が行なえる。
Normally, when cooling superconducting magnets (10) from room temperature, the large temperature difference between the object to be cooled and the supplied refrigerant may cause thermal strain that exceeds the allowable range, which may cause strength problems. According to this method, the supplied refrigerant temperature can be arbitrarily changed by adjusting the opening degree of the control valve (ll), and rational cooling can be performed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の極低温冷却装置は、以上のように構成されている
ので、超電導マグネツ) (10)の温度を検知し、そ
れから室温循環窒素ガスとtOK循環窒素ガスとの混合
比を変えるための調節弁(ll)の開度調節を行なわな
ければならず、そのための制御装置を必要とし、構造が
複雑になるという問題点があった。
Conventional cryogenic cooling equipment is configured as described above, so it detects the temperature of the superconducting magnet (10) and then uses a control valve to change the mixing ratio of room temperature circulating nitrogen gas and tOK circulating nitrogen gas. It is necessary to adjust the opening of (ll), and a control device for this is required, resulting in a problem that the structure becomes complicated.

この発明は、かかる問題点を解決するためになされたも
ので、超電導マグネットの冷却途中において調節弁の開
度調節をすることなく、超電導マグネットと循環窒素ガ
スとの温度差をほぼ一定に維持したまま超電導マグネッ
トを冷却することができる極低温冷却装置を得ることを
目的とする。
This invention was made to solve this problem, and maintains the temperature difference between the superconducting magnet and the circulating nitrogen gas almost constant without adjusting the opening of the control valve during cooling of the superconducting magnet. The purpose is to obtain a cryogenic cooling device that can cool a superconducting magnet while it is still in operation.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る極低温冷却装置は、LN、冷却器とクラ
イオスタットとり間に設けられ、LN、冷却器からの循
環窒素ガスと超電導マグネットを冷却後のクライオスタ
ットからの戻り循環窒素ガスとを熱交換する第1の熱交
換器を備えたものである。
The cryogenic cooling device according to the present invention is provided between the LN, the cooler and the cryostat, and exchanges heat between the circulating nitrogen gas from the LN and the cooler and the circulating nitrogen gas returned from the cryostat after cooling the superconducting magnet. It is equipped with a first heat exchanger.

〔作用〕[Effect]

この発明においては、超電導マグネットの温度降下に伴
って戻り循環窒素ガスの温度は低下し、クライオスタッ
トに供給される循環窒素ガスの温度も低下する結果、超
電導マグネットは超電導マグネットと循環窒素ガスとを
所定の温度差を維持しながら冷却される。
In this invention, as the temperature of the superconducting magnet decreases, the temperature of the returning circulating nitrogen gas decreases, and the temperature of the circulating nitrogen gas supplied to the cryostat also decreases. is cooled while maintaining a temperature difference of .

〔実施例〕〔Example〕

以下、この発明の実施例を図について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第7図はこの発明の一実施例を示す概略構成図であり、
第夕図と同一または相当部分は同一符号を付し、その説
明は省略する。
FIG. 7 is a schematic configuration diagram showing an embodiment of the present invention,
The same or corresponding parts as in the second figure are given the same reference numerals, and the explanation thereof will be omitted.

図において、液体窒素槽(1)内には液体窒素(3)の
窒素ガスと圧縮機(夕)から吐出管(6)を通じて吐出
される循環窒素ガスとを熱交換し、循環窒素ガスを予冷
する第一〇熱交換器(,2/)が設けられている。また
、液体窒素′J9I(1)内にはLN、冷却器(7)で
約gOKに冷却された循環窒素ガスとフライオスクツ)
 (tr)から戻る循環窒素ガスとを熱交換する第/の
熱交換器(−2)が設けられている。第1のM交換器(
ココ)とクジ・fオスタット(ざ)との間は低温配管(
,23)で接続されている。低温配管(コ3)はその内
に第/の熱交換器(,2コ)からの循環窒素ガスをクラ
イオスタット(g)内に供給する窒素ガス配管0II)
と、クライオスタット(g)からの循環窒素ガスを第1
の熱交換器(S、2)に供給する窒素ガス戻り配管(コ
タ)とが熱的に離隔されて配設され、全体に断熱を施し
て構成されている。
In the figure, in the liquid nitrogen tank (1), heat is exchanged between the nitrogen gas of the liquid nitrogen (3) and the circulating nitrogen gas discharged from the compressor (yellow) through the discharge pipe (6), and the circulating nitrogen gas is precooled. Heat exchanger No. 1 (2/) is installed. In addition, there is LN in the liquid nitrogen 'J9I (1), circulating nitrogen gas cooled to about 100 g in the cooler (7), and frying shoes).
A third heat exchanger (-2) is provided for exchanging heat with the circulating nitrogen gas returning from (tr). The first M exchanger (
The low-temperature piping (here) and Kuji f Ostat (za)
, 23). The low-temperature pipe (3) is a nitrogen gas pipe (0II) that supplies circulating nitrogen gas from the second/second heat exchanger (2) into the cryostat (g).
and circulating nitrogen gas from the cryostat (g) to the first
A nitrogen gas return pipe (cota) for supplying the heat exchanger (S, 2) is disposed in a thermally isolated manner, and the entire structure is thermally insulated.

窒素ガス戻り配管(2り)の第1の熱交換器(ココ)入
口部と戻り管(/3)の第2の熱交換器(コ/)入口部
との間にはクライオスタット(ざ)からの循環窒素ガス
を第/の熱交換器(,2コ)を通過せずして第一の熱交
換器(2/)に流入させるバイパス弁(,24)が設け
られている。
A cryostat is connected between the first heat exchanger (here) inlet of the nitrogen gas return pipe (2) and the second heat exchanger (here) inlet of the return pipe (/3). A bypass valve (24) is provided that allows the circulating nitrogen gas to flow into the first heat exchanger (2/) without passing through the second heat exchanger (2/2).

吐出管(A)と戻り管(13)との間には圧縮器(夕)
の吐出側の圧力を−・定に維持する保持弁(,2?)が
設けられている。吐出管(6)の第一の熱交換器(コア
)出口側には絞り弁(2g)が設けられており、この絞
り弁(,2g)は、クライオスタット(g)に供給する
循環窒素ガスを所定の圧力に減圧し流量を制御するよう
になっている。なお、符号(,29)はフライオスクツ
) (g)から圧縮器(夕)の吸入側に至る系をほぼ大
気圧下に保持しながら液体窒素槽(1)から蒸発した余
分の窒素ガスを系外に放出するリリーフ弁を示すもので
ある。
A compressor (Y) is installed between the discharge pipe (A) and the return pipe (13).
A holding valve (2?) is provided to maintain the pressure on the discharge side at a constant value. A throttle valve (2g) is provided on the outlet side of the first heat exchanger (core) of the discharge pipe (6), and this throttle valve (2g) controls the circulating nitrogen gas to be supplied to the cryostat (g). The pressure is reduced to a predetermined level and the flow rate is controlled. In addition, while maintaining the system from (g) to the suction side of the compressor (2) at approximately atmospheric pressure, the excess nitrogen gas evaporated from the liquid nitrogen tank (1) is removed from the system. This shows a relief valve that releases water to the water.

上記のよ5に構成された極低温冷却装置では、圧縮機(
夕)から吐出された循環窒素ガスは、第一〇熱交換器(
2/)で液体窒素槽(1)の蒸発窒素ガスおよびクライ
オスタット(1)からの戻り循環窒素ガスにより冷却さ
れる。この循環窒素ガスは絞り弁(ig)で所定の圧力
に減圧された後、LN、冷却器(り)で約ざθKに冷却
され、第1の熱交換器(,2,2)から窒素ガス配管(
All )を経てクライオスタット(g)に導かれる。
In the cryogenic cooling system configured as described in 5 above, the compressor (
The circulating nitrogen gas discharged from the 10th heat exchanger (
2/) is cooled by evaporated nitrogen gas from the liquid nitrogen tank (1) and return circulating nitrogen gas from the cryostat (1). This circulating nitrogen gas is reduced to a predetermined pressure by the throttle valve (ig), then cooled to approximately θK by the LN cooler (ri), and the nitrogen gas is passed from the first heat exchanger (, 2, 2). Piping(
All) is guided to the cryostat (g).

そして、循環窒素ガスは超電導マグネツ) (10)と
熱交換して超電導マグネツ) (10)を冷却し、その
分温度上昇した循環窒素ガスは窒素ガス戻り配管(、l
k)に流入する。
The circulating nitrogen gas then cools the superconducting magnet (10) by exchanging heat with the superconducting magnet (10), and the circulating nitrogen gas whose temperature has increased by that amount is returned to the nitrogen gas return pipe (10).
k).

そして、戻り循環窒素ガスの一部は、第1の熱交換器(
コ、2)に流入しLNユ冷却器(り)でgOKに冷却さ
れた循環窒素ガスと対向流的に熱交換する。
A part of the return circulating nitrogen gas is then transferred to the first heat exchanger (
2) and exchanges heat in a countercurrent manner with the circulating nitrogen gas which has been cooled to OK by the LN cooler (2).

また、戻り循環窒素ガスの一部はバイパス弁(ム)を経
て第1の熱交換器(,2,2)の出口側で第/の熱交換
器(,2コ)から流出した循環窒素ガスと合流した後、
第一の熱交換器(,2/)に流入し、循環窒素ガスは吐
出管(6)からの循環窒素ガスと熱交換な行ってほぼ室
温で戻り管(/3)に戻る。そして、この戻り循環窒素
ガスは第一の熱交換器(,2/)を経由し液体窒素槽(
1)の蒸発窒素ガスと合流しその一部は圧縮機(r)の
吸入側から吐出管(6)に送られ再び前述のサイクルを
繰返す。また、残りはリリーフ弁(コ?)から系外に放
出される。
In addition, a part of the return circulating nitrogen gas passes through the bypass valve (mu), and the circulating nitrogen gas flows out from the first heat exchanger (,2,2) at the outlet side of the first heat exchanger (,2,2). After joining with
The circulating nitrogen gas flows into the first heat exchanger (,2/), exchanges heat with the circulating nitrogen gas from the discharge pipe (6), and returns to the return pipe (/3) at approximately room temperature. This return circulating nitrogen gas then passes through the first heat exchanger (2/) and the liquid nitrogen tank (2/).
It joins with the evaporated nitrogen gas of step 1), and a part of it is sent from the suction side of the compressor (r) to the discharge pipe (6), and the above-mentioned cycle is repeated again. Also, the remainder is released from the system through the relief valve.

ところで、LNユ冷却器(7)で冷却された30に循環
窒素ガスは、第1の熱交換器(:1λ)においてクライ
オスタット(g)からの戻り循環窒素ガスと熱交換され
ると、授受熱量相当分だけ温度上昇してクライオスタッ
ト(g)に供給される。その温度は、バイパス弁(コロ
)の開度な適当に変えて熱交換量を調節することにより
、容易に設定することができる。そして、超電導マグネ
ツ) (10)の温度降下に伴って、クライオスタット
(1)からの戻り循環窒素ガスの温度は低下し、その結
果クライオスタットツ(1)に供給される循環窒素ガス
の温度も低下する。したがって、最初に超電導マグネッ
ト(lO)と供給循環窒素ガスとの温度差が初期の値に
なるようにバイパス弁(,2t )の開度を設定すると
、途中でバイパス弁(,2t、 )の開度操作をせずに
ほぼ一様の温度差が維持されて超電導マグネツ) (1
0)の冷却を行なうことができる。
By the way, when the circulating nitrogen gas cooled by the LN cooler (7) is heat exchanged with the circulating nitrogen gas returned from the cryostat (g) in the first heat exchanger (1λ), the amount of heat exchanged and received is The temperature rises by a corresponding amount and the temperature is increased and the temperature is supplied to the cryostat (g). The temperature can be easily set by adjusting the amount of heat exchange by appropriately changing the opening degree of the bypass valve (roller). As the temperature of the superconducting magnet (10) decreases, the temperature of the circulating nitrogen gas returned from the cryostat (1) decreases, and as a result, the temperature of the circulating nitrogen gas supplied to the cryostat (1) also decreases. . Therefore, if the opening degree of the bypass valve (,2t, ) is initially set so that the temperature difference between the superconducting magnet (lO) and the supplied circulating nitrogen gas is the initial value, the bypass valve (,2t, ) will open midway. Superconducting magnets (superconducting magnets) maintain an almost uniform temperature difference without any degree of operation
0) cooling can be performed.

また、フライオスタラ) (g)の戻り循環窒素ガスの
寒冷は第一の熱交換器Ot)で回収されるのでその分液
体窒素(3)の消費量は低減される。
Furthermore, since the chilled return circulating nitrogen gas (Fry Ostara) (g) is recovered in the first heat exchanger Ot), the amount of liquid nitrogen (3) consumed is reduced accordingly.

さらに、絞り弁(コざ)の開度な変えることにより、ク
ライオスタット(g)への循環窒素ガスの流量調節がで
きるので、超電導マグネット(10)の冷却速度を自由
に制御することができる。また、液体窒素槽(1)の液
体窒素(3)を抜きとると、そのまま超電導マグネツ)
 (10)の昇温運転も行なうことができる。
Furthermore, by changing the opening degree of the throttle valve, the flow rate of circulating nitrogen gas to the cryostat (g) can be adjusted, so the cooling rate of the superconducting magnet (10) can be freely controlled. Also, if you remove the liquid nitrogen (3) from the liquid nitrogen tank (1), it will become a superconducting magnet).
The temperature increasing operation (10) can also be performed.

なお、上記実施例ではイ(イパス弁(,21!、 )を
窒素ガス戻り配管(8)に設けたが、第2図に示すよう
に窒素ガス配管(,2q)に設けてもよい。
In the above embodiment, the Ipass valve (, 21!, ) was provided in the nitrogen gas return pipe (8), but it may also be provided in the nitrogen gas pipe (, 2q) as shown in FIG.

また、上記実施例では第一の熱又換器(コ/)を3流路
構成としたが、第3図に示すようにフライオスタラ) 
(1)からの戻り窒素循環ガスを第一の熱交換器(コ/
)の液体窒素槽(1)の蒸発窒素ガス管路に合流させた
一流路構成にしてもよい。
In addition, in the above embodiment, the first heat exchanger (co/) had a three-channel configuration, but as shown in FIG.
(1) Return nitrogen circulating gas is transferred to the first heat exchanger (co/
It is also possible to have a one-channel configuration in which the evaporated nitrogen gas pipe of the liquid nitrogen tank (1) is merged with the pipe of the liquid nitrogen tank (1).

また、第り図に示すようにクライオスタット(f)から
の戻り窒素循環ガスのム↓/の熱交換器(−一)の出口
側の管路を液体窒素槽(1)内圧開口させてもよい。こ
の場合液体窒素槽(1)内に放出される戻り循環窒素ガ
スの温度は約gOKであり、液体窒素槽(1)の蒸発ガ
スと合流させ、第一の熱交換:Ll 器(a==Z )の液体窒素槽(1)の蒸発窒素ガス管
路を通過させることにより、戻り循環窒素ガスの寒冷回
収効率がより向上し、その分液体窒素(3)の消費量が
減少する。
Alternatively, as shown in Figure 1, the pipe line on the outlet side of the heat exchanger (-1) of the return nitrogen circulating gas from the cryostat (f) may be opened to the internal pressure of the liquid nitrogen tank (1). . In this case, the temperature of the return circulating nitrogen gas discharged into the liquid nitrogen tank (1) is approximately gOK, and it is combined with the evaporated gas of the liquid nitrogen tank (1) to perform the first heat exchange: Ll vessel (a== By passing the evaporated nitrogen gas pipe of the liquid nitrogen tank (1) of Z), the cold recovery efficiency of the return circulating nitrogen gas is further improved, and the consumption of liquid nitrogen (3) is reduced accordingly.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、LN。 As explained above, according to the present invention, LN.

冷却器とクライオスタットとの間に、LN、冷却器から
の循環窒素ガスと超電導マグネットを冷却後のクライオ
スタットからの戻り循環窒素ガスとを熱交換する第1の
熱交換器を設けたので、超電導マグネットの冷却途中に
おいて調節弁の開度調節をすることなく、超電導マグネ
ットと循環窒素ガスとの温度差をほぼ一定に維持したま
ま超電導マグネットを冷却することができる。
A first heat exchanger was installed between the cooler and the cryostat to exchange heat between LN, the circulating nitrogen gas from the cooler, and the returning circulating nitrogen gas from the cryostat after cooling the superconducting magnet. The superconducting magnet can be cooled while maintaining the temperature difference between the superconducting magnet and the circulating nitrogen gas at a substantially constant level without adjusting the opening degree of the control valve during cooling.

【図面の簡単な説明】[Brief explanation of drawings]

第7図をまこの発明の一実施例を示す概略構成図、第一
図はこの発明の他の実施例を示す概略構成図、第3図は
この発明のさらに他の実施例を示す概略構成図、第り図
はこの発明のさらにまた他の実施例を示す概略構成図、
弗夕図は従来の極低温冷却装置の一例を示す概略構成図
である。 O)・・液体窒素槽、(3)・・液体窒素、(夕)・・
圧縮機、(7)・・LNユ冷却器、(r)・・クライオ
スタット、(10)・・超電導マグネット、(:lコ)
・・第/の熱交換器。 なお、各図中、同一符号は同−又は相当部分を示す。 昂1図 1 ゛ 成体窒恭槽 3:5&停!1 5 ;圧締機 7  :  LNz冷印鰺 8 : クライオスタット +O:  111t4マフ゛キ、ト 22   為1り熱交硬き 第3図 η
FIG. 7 is a schematic configuration diagram showing one embodiment of the present invention, FIG. 1 is a schematic configuration diagram showing another embodiment of the invention, and FIG. 3 is a schematic configuration diagram showing still another embodiment of the invention. Figures 1 and 2 are schematic configuration diagrams showing still other embodiments of the present invention,
The diagram is a schematic configuration diagram showing an example of a conventional cryogenic cooling device. O)...Liquid nitrogen tank, (3)...Liquid nitrogen, (evening)...
Compressor, (7)...LN cooler, (r)...cryostat, (10)...superconducting magnet, (:l)
.../th heat exchanger. In each figure, the same reference numerals indicate the same or corresponding parts. Figure 1 ゛ Adult nitrogen tank 3:5 & stop! 1 5; Pressing machine 7: LNz cold press 8: Cryostat + O: 111t4 muff, 22, so the heat exchanger is hard. Fig. 3 η

Claims (4)

【特許請求の範囲】[Claims] (1)液体窒素の入つている液体窒素槽と、前記液体窒
素に浸漬され圧縮機の作動により送られてくる循環窒素
ガスと前記液体窒素との熱交換により循環窒素ガスを冷
却するLN_2冷却器とを備え、前記循環窒素ガスを用
いてクライオスタット内に設けられた超電導マグネット
を冷却する極低温冷却装置において、前記LN_2冷却
器と前記クライオスタットとの間に設けられLN_2冷
却器からの前記循環窒素ガスと前記超電導マグネットを
冷却後のクライオスタットからの戻り循環窒素ガスとを
熱交換する第1の熱交換器を有していることを特徴とす
る極低温冷却装置。
(1) A liquid nitrogen tank containing liquid nitrogen, and an LN_2 cooler that cools the circulating nitrogen gas by heat exchange between the liquid nitrogen and the circulating nitrogen gas immersed in the liquid nitrogen and sent by the operation of the compressor. In a cryogenic cooling device that cools a superconducting magnet provided in a cryostat using the circulating nitrogen gas, the circulating nitrogen gas from the LN_2 cooler is provided between the LN_2 cooler and the cryostat. A cryogenic cooling device characterized by having a first heat exchanger for exchanging heat between the superconducting magnet and the returned circulating nitrogen gas from the cryostat after cooling the superconducting magnet.
(2)第1の熱交換器に入るクライオスタットからの戻
り循環窒素ガスを分流するバイパス弁を第1の熱交換器
に付設した特許請求の範囲第1項記載の極低温冷却装置
(2) The cryogenic cooling device according to claim 1, wherein the first heat exchanger is provided with a bypass valve that diverts the return circulating nitrogen gas from the cryostat that enters the first heat exchanger.
(3)第1の熱交換器に入るLN_2冷却器からの循環
窒素ガスを分流するバイパス弁を第1の熱交換器に付設
した特許請求の範囲第1項記載の極低温冷却装置。
(3) The cryogenic cooling device according to claim 1, wherein the first heat exchanger is provided with a bypass valve that diverts the circulating nitrogen gas from the LN_2 cooler that enters the first heat exchanger.
(4)第1の熱交換器を通過した戻り循環窒素ガスと圧
縮機の作動により送られてくる循環窒素ガスとを熱交換
させる第2の熱交換器が液体窒素槽内に設けられている
特許請求の範囲第1項ないし第3項のいずれかに記載の
極低温冷却装置。
(4) A second heat exchanger is provided in the liquid nitrogen tank to exchange heat between the return circulating nitrogen gas that has passed through the first heat exchanger and the circulating nitrogen gas sent by the operation of the compressor. A cryogenic cooling device according to any one of claims 1 to 3.
JP61067199A 1986-03-27 1986-03-27 Cryogenic cooler Pending JPS62224987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61067199A JPS62224987A (en) 1986-03-27 1986-03-27 Cryogenic cooler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61067199A JPS62224987A (en) 1986-03-27 1986-03-27 Cryogenic cooler

Publications (1)

Publication Number Publication Date
JPS62224987A true JPS62224987A (en) 1987-10-02

Family

ID=13337995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61067199A Pending JPS62224987A (en) 1986-03-27 1986-03-27 Cryogenic cooler

Country Status (1)

Country Link
JP (1) JPS62224987A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119966A (en) * 2002-09-26 2004-04-15 Praxair Technol Inc Cryogenic superconductor cooling system
US20130091870A1 (en) * 2011-10-17 2013-04-18 Bruker Biospin Cold gas supply device and NMR installation comprising such a device
US20130205826A1 (en) * 2010-07-12 2013-08-15 Johannes Wild Cooling apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004119966A (en) * 2002-09-26 2004-04-15 Praxair Technol Inc Cryogenic superconductor cooling system
US20130205826A1 (en) * 2010-07-12 2013-08-15 Johannes Wild Cooling apparatus
US9851126B2 (en) * 2010-07-12 2017-12-26 Johannes Wild Cooling apparatus
US20130091870A1 (en) * 2011-10-17 2013-04-18 Bruker Biospin Cold gas supply device and NMR installation comprising such a device
US10041629B2 (en) * 2011-10-17 2018-08-07 Bruker Biospin Cold gas supply device and NMR installation comprising such a device

Similar Documents

Publication Publication Date Title
CA2373718A1 (en) Cryogenic cooling system with cooldown and normal modes of operation
JPH06100408B2 (en) Cooling system
JP2002174438A (en) Cooling system
JPS62224987A (en) Cryogenic cooler
CA2240828A1 (en) A system and method for regulating the flow of a fluid refrigerant to a cooling element
JPH10103834A (en) Refrigerator
JPH0689955B2 (en) Cryogenic refrigerator
JP3113990B2 (en) Helium liquefaction refrigeration apparatus and operating method thereof
JP2512041B2 (en) Operation control method for cryogenic refrigerator
JP3113992B2 (en) Helium liquefaction refrigeration equipment
JP2926541B2 (en) Spindle temperature control method and apparatus for machine tools
JPS63194163A (en) Cryogenic refrigerator
JPH0814607A (en) Chilled water circulating method and system for cooler
JPH06123508A (en) Refrigeration plant
JP3216075B2 (en) Cooling system
JPS60100406A (en) Superconductive device
JPH0248783Y2 (en)
JPS61214403A (en) Cryogenic apparatus
JPS643470A (en) Refrigeration cycle
JPH06101918A (en) Cryogenic refrigerator
JPH0828911A (en) Heat supply apparatus
JPH04181100A (en) Cooling standby holding method for shell-and-tube type liquefied gas vaporizer using intermediate heat medium
JPH07117307B2 (en) Cryogenic cooling device
JPH06272988A (en) Chilled water system controlling method for air conditioning facility
JPH0486430A (en) Cooling device