JPS6222481B2 - - Google Patents

Info

Publication number
JPS6222481B2
JPS6222481B2 JP55175494A JP17549480A JPS6222481B2 JP S6222481 B2 JPS6222481 B2 JP S6222481B2 JP 55175494 A JP55175494 A JP 55175494A JP 17549480 A JP17549480 A JP 17549480A JP S6222481 B2 JPS6222481 B2 JP S6222481B2
Authority
JP
Japan
Prior art keywords
magnetic resonance
resonance element
coil
signal
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55175494A
Other languages
Japanese (ja)
Other versions
JPS5799002A (en
Inventor
Masaaki Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advantest Corp
Original Assignee
Advantest Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corp filed Critical Advantest Corp
Priority to JP17549480A priority Critical patent/JPS5799002A/en
Priority to US06/327,473 priority patent/US4460879A/en
Publication of JPS5799002A publication Critical patent/JPS5799002A/en
Publication of JPS6222481B2 publication Critical patent/JPS6222481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/16Tuning without displacement of reactive element, e.g. by varying permeability
    • H03J3/18Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance
    • H03J3/185Tuning without displacement of reactive element, e.g. by varying permeability by discharge tube or semiconductor device simulating variable reactance with varactors, i.e. voltage variable reactive diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/215Frequency-selective devices, e.g. filters using ferromagnetic material
    • H01P1/218Frequency-selective devices, e.g. filters using ferromagnetic material the ferromagnetic material acting as a frequency selective coupling element, e.g. YIG-filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/16Tuning without displacement of reactive element, e.g. by varying permeability

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Non-Reversible Transmitting Devices (AREA)

Description

【発明の詳細な説明】 この発明は一般にYIG球と呼ばれる磁気共鳴素
子を用いた可変同調装置に関し、特に構成を簡素
化し、製造が容易な可変同調装置を提供しようと
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention generally relates to a variable tuning device using a magnetic resonance element called a YIG sphere, and particularly aims to provide a variable tuning device that has a simplified configuration and is easy to manufacture.

主に500MHz以上の超高周波領域で用いられる
同調装置の一つとして例えばYIG球と呼ばれる磁
気共鳴素子を利用したものがある。この磁気共鳴
素子を利用した同調装置はQが高い選択特性が得
られることから例えばスペクトラムアナライザの
可変同調手段等として広く利用されている。第1
図は従来の装置の構造を示す。図中1は磁気共鳴
素子を示す。2は駆動コイル、3は出力コイルを
示す。即ち駆動コイル2と出力コイル3は互に直
交する方向に配置され、その交叉点に磁気共鳴素
子1が配置される。磁気共鳴素子1には磁界Hが
与えられる。駆動コイル2と出力コイル3は互に
直交して配置されていることから駆動コイル2と
出力コイル3が直接磁気的に結合することはな
い。然し駆動コイル2を流れる電流の周波数が磁
気共鳴素子1の共鳴周波数と一致したときは駆動
コイル2を流れる電流により磁気共鳴素子1が共
鳴し、その共鳴により出力コイル3にその共鳴周
波数と同一の周波数の電流が誘起される。磁気共
鳴素子1に印加される磁界Hを変化させることに
より、磁気共鳴素子1の共鳴周波数は磁界Hに比
例して変化する。
One of the tuning devices mainly used in the ultra-high frequency region of 500 MHz or higher is one that uses a magnetic resonance element called a YIG sphere, for example. A tuning device using this magnetic resonance element is widely used as a variable tuning means of a spectrum analyzer, etc., because it can obtain a selection characteristic with a high Q. 1st
The figure shows the structure of a conventional device. In the figure, 1 indicates a magnetic resonance element. 2 represents a drive coil, and 3 represents an output coil. That is, the drive coil 2 and the output coil 3 are arranged in directions perpendicular to each other, and the magnetic resonance element 1 is arranged at the intersection point. A magnetic field H is applied to the magnetic resonance element 1 . Since the drive coil 2 and the output coil 3 are arranged orthogonal to each other, the drive coil 2 and the output coil 3 are not directly magnetically coupled. However, when the frequency of the current flowing through the drive coil 2 matches the resonant frequency of the magnetic resonance element 1, the magnetic resonance element 1 resonates due to the current flowing through the drive coil 2, and this resonance causes the output coil 3 to generate a signal with the same resonance frequency as the resonant frequency. A current of frequency is induced. By changing the magnetic field H applied to the magnetic resonance element 1, the resonance frequency of the magnetic resonance element 1 changes in proportion to the magnetic field H.

この共鳴周波数の変化を利用して例えばスペク
トラムアナライザでは入力周波数をスイープさせ
ることに利用されている。
This change in resonance frequency is used, for example, in a spectrum analyzer to sweep the input frequency.

ところで第1図に示した装置は実際は第2図に
示すように絶縁板4に支持されて作られる。即ち
絶縁板4に孔5が形成され、この孔5の内に磁気
共鳴素子1が装着される。孔5に向つて互に直交
する方向に二本のストリツプライン6,7が形成
され、このストリツプラインが孔4を跨ぐ位置に
コイル2と3が接続される。ストリツプライン6
及び7の他端側はアース導体10に接続される。
このように従来は駆動コイル2と出力コイル3を
孔5の部分において互に直交して配置しなければ
ならないために立体的な構造となる。然も磁気共
鳴素子1の直径はわずか0.66mm程度である。コイ
ル2と3はこの球の表面に沿つて配置しなければ
ならないため高精度が要求され製造がむずかしい
ものとされている。更に磁気共鳴素子1はコイル
2と3に対してその結晶軸方向を或る特定の関係
となるように配置しなければならない。従つてそ
の位置関係を調整することがむずかしく、この点
でも製造を困難化している。
Incidentally, the device shown in FIG. 1 is actually supported by an insulating plate 4 as shown in FIG. 2. That is, a hole 5 is formed in the insulating plate 4, and the magnetic resonance element 1 is mounted in the hole 5. Two striplines 6 and 7 are formed in mutually orthogonal directions toward the hole 5, and the coils 2 and 3 are connected at positions where the striplines straddle the hole 4. strip line 6
and 7 are connected to the ground conductor 10.
In this way, conventionally, the drive coil 2 and the output coil 3 have to be arranged perpendicularly to each other in the hole 5, resulting in a three-dimensional structure. However, the diameter of the magnetic resonance element 1 is only about 0.66 mm. Since the coils 2 and 3 must be placed along the surface of the sphere, high precision is required and manufacturing is difficult. Furthermore, the magnetic resonance element 1 must be arranged so that its crystal axis direction has a certain relationship with respect to the coils 2 and 3. Therefore, it is difficult to adjust their positional relationship, which also makes manufacturing difficult.

この発明の目的は磁気共鳴素子に対して互に直
交する二つのコイルを配置しなくともよく、従つ
て構造が簡単で製造が容易な可変同調装置を提供
するにある。
An object of the present invention is to provide a variable tuning device that does not require two mutually orthogonal coils to be arranged with respect to a magnetic resonance element, and is therefore simple in structure and easy to manufacture.

この発明では一端が無反射終端とされ所定の特
性インピーダンスを持つ信号路に対して磁気共鳴
素子を結合させ、その磁気共鳴素子の結合点にお
いてその共鳴素子の共鳴周波数と同一の周波数の
信号だけを反射させ、その反射波を方向弁別作用
を持つ反射波取出手段によつて信号伝送路8から
分離して取出すように構成したものである。
In this invention, a magnetic resonance element is coupled to a signal path having a non-reflection termination at one end and a predetermined characteristic impedance, and only a signal having the same frequency as the resonant frequency of the resonance element is transmitted at the coupling point of the magnetic resonance element. The reflected wave is reflected, and the reflected wave is separated and extracted from the signal transmission path 8 by a reflected wave extracting means having a direction discrimination function.

従つてこの発明によれば磁気共鳴素子に関して
は一つのコイルだけを結合させる構造とすること
ができる。
Therefore, according to the present invention, the magnetic resonance element can have a structure in which only one coil is coupled.

以下にこの発明の一実施例を図面を用いて詳細
に説明する。
An embodiment of the present invention will be described in detail below with reference to the drawings.

第3図にこの発明の一実施例を示す。この図に
おいて8は例えばストリツプラインのように所定
の特性インピーダンスを持つ信号路である。この
信号路8の一端は入力端子9とされ他端には信号
路8と同じインピーダンスを持つ抵抗器11が接
続されて無反射端12が構成される。信号路8に
コイル13を直列接続し、このコイル13に磁気
共鳴素子1を結合させる。磁気共鳴素子1には磁
界Hを印加すると共に信号路8上において入力端
子9と磁気共鳴素子1の結合点との間に磁気共鳴
素子1からの反射波を取出す手段14を挿入す
る。この例ではサーキユレータを用いた場合を示
し、15はその分岐端子を示す。
FIG. 3 shows an embodiment of the present invention. In this figure, 8 is a signal path having a predetermined characteristic impedance, such as a stripline. One end of this signal path 8 is an input terminal 9, and the other end is connected to a resistor 11 having the same impedance as the signal path 8, thereby forming a non-reflection end 12. A coil 13 is connected in series to the signal path 8, and the magnetic resonance element 1 is coupled to this coil 13. A magnetic field H is applied to the magnetic resonance element 1, and means 14 for extracting reflected waves from the magnetic resonance element 1 is inserted between the input terminal 9 and the coupling point of the magnetic resonance element 1 on the signal path 8. This example shows a case where a circulator is used, and 15 indicates its branch terminal.

第3図のように構成することにより入力端子9
に与えられた信号Sinは反射波取出手段14を通
じて無反射終端12側に伝送される。磁気共鳴素
子1の共鳴周波数以外の信号はコイル13を通過
して無反射終端12に吸収されるが磁気共鳴素子
1の共鳴周波数と同一の周波数を持つ信号に対し
てはコイル13のインピーダンスがほぼ無限大と
なる。このためその共鳴周波数と同一周波数の信
号はコイル13において反射され入力信号の進行
方向と逆向に伝送される。この反射波Srはサー
キユレータ14において分岐され端子15に出力
される。
By configuring as shown in Figure 3, the input terminal 9
The signal Sin given to is transmitted to the non-reflection termination 12 side through the reflected wave extraction means 14. Signals other than the resonant frequency of the magnetic resonance element 1 pass through the coil 13 and are absorbed by the non-reflection termination 12, but for signals having the same frequency as the resonant frequency of the magnetic resonance element 1, the impedance of the coil 13 is almost the same. Becomes infinity. Therefore, a signal having the same frequency as the resonant frequency is reflected by the coil 13 and transmitted in the opposite direction to the traveling direction of the input signal. This reflected wave Sr is branched at the circulator 14 and output to the terminal 15.

従つて入力端子9と分岐出力端子15の間の特
性は磁気共鳴素子1の共鳴特性と同一の特性を持
つバンドパス特性いわゆる選択同調特性となる。
更に磁気共鳴素子1に印加している磁界Hを変化
させることによりその選択同調特性の中心周波数
を変化させることができる。磁界発生手段(特に
図示しない)が発生する磁界を鋸歯状波によつて
制御することにより同調特性の中心周波数を周波
数掃引させることができる。
Therefore, the characteristic between the input terminal 9 and the branch output terminal 15 becomes a bandpass characteristic, so-called selective tuning characteristic, which has the same characteristic as the resonance characteristic of the magnetic resonance element 1.
Furthermore, by changing the magnetic field H applied to the magnetic resonance element 1, the center frequency of its selective tuning characteristic can be changed. By controlling the magnetic field generated by a magnetic field generating means (not particularly shown) using a sawtooth wave, the center frequency of the tuning characteristic can be swept in frequency.

上述したようにこの発明によれば信号路8に磁
気共鳴素子1を結合させるだけでよい。特に磁気
共鳴素子1に対して第4図に示すように一つのコ
イル13を結合させればよいから構造を簡単にす
ることができ、製造が容易となる。然も無反射終
端12を構成する抵抗器11も例えばスクリーン
印刷によつて形成することができる。よつて磁気
共鳴素子1の周辺の構造を簡素化でき製造が容易
となる。
As described above, according to the present invention, it is only necessary to couple the magnetic resonance element 1 to the signal path 8. In particular, since it is sufficient to connect one coil 13 to the magnetic resonance element 1 as shown in FIG. 4, the structure can be simplified and manufacturing can be facilitated. However, the resistor 11 constituting the non-reflective termination 12 can also be formed, for example, by screen printing. Therefore, the structure around the magnetic resonance element 1 can be simplified and manufacturing can be facilitated.

第5図はこの発明の他の実施例を示す。この例
では第3図で説明した可変同調装置を縦続接続
し、選択特性いわゆるQを改善するようにした例
を示す。即ち一段目の可変同調装置の分岐出力端
子15に得られた分岐出力を2段目のサーキユレ
ータ16に供給し、このサーキユレータ16を通
じて第2の磁気共鳴素子1′が結合された信号路
8′に供給する。従つて1段目の磁気共鳴素子1
によつて選択されて分岐された信号は2段目の磁
気共鳴素子1′によつて更に選択され、その反射
波が出力端子17に出力される。
FIG. 5 shows another embodiment of the invention. This example shows an example in which the variable tuning devices described in FIG. 3 are connected in cascade to improve the selection characteristic, so-called Q. That is, the branch output obtained at the branch output terminal 15 of the first stage variable tuning device is supplied to the second stage circulator 16, and through this circulator 16, it is connected to the signal path 8' to which the second magnetic resonance element 1' is coupled. supply Therefore, the first stage magnetic resonance element 1
The signal selected and branched by is further selected by the second stage magnetic resonance element 1', and its reflected wave is outputted to the output terminal 17.

よつて出力端子17に得られる信号は二つの磁
気共鳴特性の和の特性となりより急峻な特性にす
ることができる。尚この図では2段縦続接続とし
たが段数を重ねる程Qの高い可変同調装置が得ら
れることは容易に理解できよう。
Therefore, the signal obtained at the output terminal 17 has a characteristic that is the sum of the two magnetic resonance characteristics, and can have a steeper characteristic. In this figure, two stages are connected in cascade, but it is easy to understand that a variable tuning device with a higher Q can be obtained as the number of stages increases.

第6図はこの発明の更に他の実施例を示す。こ
の例では反射波を取出す手段14として方向性結
合器を用いた場合を示す。このように方向性結合
器を用いても磁気共鳴素子1が持つ共鳴特性と同
一の選択同調特性を得ることができる。また方向
性結合器は上述のサーキユレータに較べて構造が
簡単なため可変同調装置の全体の構造をより一層
簡素化することができる。
FIG. 6 shows yet another embodiment of the invention. In this example, a directional coupler is used as the means 14 for extracting reflected waves. Even when a directional coupler is used in this manner, the same selective tuning characteristics as the resonance characteristics of the magnetic resonance element 1 can be obtained. Furthermore, since the directional coupler has a simpler structure than the above-mentioned circulator, the overall structure of the variable tuning device can be further simplified.

第7図はこの発明の更に他の実施例を示す。こ
の例では可変バイアス型サーキユレータ14′を
用いた場合を示す。この可変バイアス型サーキユ
レータ14′とは周知のようにバイアス磁界H′を
与え、そのバイアス磁界H′を変化させることに
より、その動作中心周波数が変化する特性を持つ
ものである。よつて磁気共鳴素子1に与える磁界
Hを変化させるのと同時に可変バイアス型サーキ
ユレータ14′に与える磁界H′も変化させること
により、極めて広い周波数範囲にわたつて動作さ
せることができる。
FIG. 7 shows yet another embodiment of the invention. In this example, a case is shown in which a variable bias type circulator 14' is used. As is well known, this variable bias type circulator 14' has a characteristic that its operating center frequency changes by applying a bias magnetic field H' and changing the bias magnetic field H'. Therefore, by changing the magnetic field H applied to the magnetic resonance element 1 and simultaneously changing the magnetic field H' applied to the variable bias type circulator 14', it is possible to operate over an extremely wide frequency range.

第8図はこの発明の更に他の実施例を示す。こ
の例では方向性プリツジを反射波取出手段14と
して用いた場合を示す。即ち抵抗18,19と端
部に無反射終端11が接続された一対の信号路
8,8′によつてブリツジを構成し一方の信号路
8に磁気共鳴素子1を結合させ、抵抗器18,1
9と信号路8,8′との接続点BとC間に平衡―
不平衡変換用トランスいわゆるバルーントランス
20の一次コイルを接続し、二次コイルから分岐
出力端子15を導出するようにした場合を示す。
FIG. 8 shows yet another embodiment of the invention. This example shows a case where a directional prism is used as the reflected wave extraction means 14. That is, a bridge is constituted by a pair of signal paths 8, 8' having resistors 18, 19 and a non-reflection termination 11 connected to the ends thereof, and magnetic resonance element 1 is coupled to one signal path 8. 1
Balanced between connection points B and C between 9 and signal paths 8 and 8'.
A case is shown in which the primary coil of an unbalanced conversion transformer, so-called balloon transformer 20, is connected and a branch output terminal 15 is led out from the secondary coil.

この構成において抵抗器11と18,19の抵
抗値をR0とすると、この抵抗値R0を信号路8の
特性インピーダンスZ0とR0=Z0の関係に選定す
る。従つてA点からB及びC点を各別に見たイン
ピーダンスはそれぞれ2R0となり、その並列接
続によりA点からブリツジの全体を見たインピー
ダンスはR0となり、信号路8とマツチングされ
る。
In this configuration, assuming that the resistance values of the resistors 11, 18, and 19 are R 0 , this resistance value R 0 is selected to have a relationship with the characteristic impedance Z 0 of the signal path 8 such that R 0 =Z 0 . Therefore, the impedances seen separately at points B and C from point A are 2R0 , and due to their parallel connection, the impedance when looking at the entire bridge from point A is R0 , which is matched with the signal path 8.

入力端子9に磁気共鳴素子1の共鳴周波数から
離れた周波数の信号が入力されたときはブリツジ
は平衡し、バルーントランス20の一次コイルに
は全く電流は流れない。磁気共鳴素子1の共鳴周
波数と同じ周波数の信号が入力されると、その信
号は磁気共鳴素子1によつて反射され、B点に戻
される。よつてその反射波分だけブリツジは不平
衡状態となり、B―C間に反射波による電流が流
れる。その電流が二次コイルに誘起され分岐端子
15に出力される。
When a signal with a frequency far from the resonance frequency of the magnetic resonance element 1 is input to the input terminal 9, the bridge is balanced and no current flows through the primary coil of the balloon transformer 20. When a signal having the same frequency as the resonance frequency of the magnetic resonance element 1 is input, the signal is reflected by the magnetic resonance element 1 and returned to point B. Therefore, the bridge becomes unbalanced by the amount of the reflected wave, and a current due to the reflected wave flows between B and C. The current is induced in the secondary coil and output to the branch terminal 15.

以上説明したようにこの発明によれば磁気共鳴
素子1は一つのコイル13と結合すればよいた
め、特にコイル13の構造を簡単にすることがで
きる。更に磁気共鳴素子1の取付の姿勢もコイル
13に対してだけ決定すればよいため、その取付
を一義的に決めることができる。よつて製造が容
易となり安価にこの種の可変同調装置を提供でき
る。
As explained above, according to the present invention, the magnetic resonance element 1 only needs to be coupled to one coil 13, so that the structure of the coil 13 can be particularly simplified. Furthermore, since the mounting orientation of the magnetic resonance element 1 only needs to be determined with respect to the coil 13, the mounting can be uniquely determined. Therefore, manufacturing becomes easy and this type of variable tuning device can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の可変同調装置の基本的な構造を
説明するための斜視図、第2図はその具体的な構
造を説明するための斜視図、第3図はこの発明の
一実施例を示す接続図、第4図はその要部の具体
的な実施例を示す斜視図、第5図乃至第8図はこ
の発明の他の実施例を示す接続図である。 1:磁気共鳴素子、8:信号路、9:入力端
子、12:無反射終端、13:コイル、14:反
射波取出手段、15:分岐出力端子。
FIG. 1 is a perspective view for explaining the basic structure of a conventional variable tuning device, FIG. 2 is a perspective view for explaining its specific structure, and FIG. 3 is a perspective view for explaining an embodiment of the present invention. FIG. 4 is a perspective view showing a specific embodiment of the main part thereof, and FIGS. 5 to 8 are connection diagrams showing other embodiments of the present invention. 1: Magnetic resonance element, 8: Signal path, 9: Input terminal, 12: Non-reflection termination, 13: Coil, 14: Reflected wave extraction means, 15: Branch output terminal.

Claims (1)

【特許請求の範囲】[Claims] 1 所定の特性インピーダンスを持ち一端側が入
力端子とされ他端側が無反射終端とされた信号路
と、この信号路のみに結合された磁気共鳴素子
と、この磁気共鳴素子の結合点と上記入力端子の
間に挿入され上記磁気共鳴素子の結合点から反射
される反射波を入力端子からの信号と分離して取
出す手段とから成る可変同調回路。
1. A signal path with a predetermined characteristic impedance, one end of which is an input terminal and the other end of which is a non-reflection termination, a magnetic resonance element coupled only to this signal path, a coupling point of this magnetic resonance element, and the input terminal. a variable tuning circuit comprising means for separating a reflected wave reflected from a coupling point of the magnetic resonance element from a signal from an input terminal and extracting the signal from the input terminal.
JP17549480A 1980-12-12 1980-12-12 Variable tuner Granted JPS5799002A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17549480A JPS5799002A (en) 1980-12-12 1980-12-12 Variable tuner
US06/327,473 US4460879A (en) 1980-12-12 1981-12-04 Variable tuning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17549480A JPS5799002A (en) 1980-12-12 1980-12-12 Variable tuner

Publications (2)

Publication Number Publication Date
JPS5799002A JPS5799002A (en) 1982-06-19
JPS6222481B2 true JPS6222481B2 (en) 1987-05-18

Family

ID=15997015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17549480A Granted JPS5799002A (en) 1980-12-12 1980-12-12 Variable tuner

Country Status (1)

Country Link
JP (1) JPS5799002A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108508A (en) * 1975-02-25 1976-09-25 Hewlett Packard Yokogawa
JPS51146154A (en) * 1975-05-10 1976-12-15 Tsukasa Nagao Complex type resonator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51108508A (en) * 1975-02-25 1976-09-25 Hewlett Packard Yokogawa
JPS51146154A (en) * 1975-05-10 1976-12-15 Tsukasa Nagao Complex type resonator

Also Published As

Publication number Publication date
JPS5799002A (en) 1982-06-19

Similar Documents

Publication Publication Date Title
US4498061A (en) Microwave receiving device
EP0586760B1 (en) Single toroid hybrid mode RF phase shifter
US6850127B2 (en) Laminated electronic component
US6825742B1 (en) Apparatus and methods for split-feed coupled-ring resonator-pair elliptic-function filters
US4197517A (en) High speed frequency tunable microwave filter
EP0751616B1 (en) Matching arrangement (SAW)
KR20000062617A (en) Dielectric filter, dielectric duplexer, and communication device
US6411175B1 (en) Power distribution/synthesis apparatus
US4231001A (en) Constant resistance coupling network
US6690177B2 (en) Frequency selective improvement of the directivity of a return loss bridge
US4460879A (en) Variable tuning device
JPS6222481B2 (en)
JPS6219081B2 (en)
KR20010021163A (en) Dielectric Duplexer and Communication Apparatus
JPH0130321B2 (en)
JP3624679B2 (en) Dielectric filter, duplexer and communication device
JPS60236301A (en) Receiver for high frequency signal
US4472692A (en) Tunable selective device using magnetostatic bulk waves
CN110350279A (en) A kind of chip integrated waveguide power distributor with filter function
JPH0993004A (en) Nonreversible circuit element
JPH0221761Y2 (en)
JPS6038884B2 (en) Electromagnetic wave synthesizer
US6822527B2 (en) Isolator for greatly attenuating signal transmitted in reverese direction over wide frequency band
SU1513543A1 (en) Mocrostrip rejector filter
JP2658306B2 (en) Ferrimagnetic thin film filter