JPS62222668A - Organic thin-film element - Google Patents

Organic thin-film element

Info

Publication number
JPS62222668A
JPS62222668A JP61066275A JP6627586A JPS62222668A JP S62222668 A JPS62222668 A JP S62222668A JP 61066275 A JP61066275 A JP 61066275A JP 6627586 A JP6627586 A JP 6627586A JP S62222668 A JPS62222668 A JP S62222668A
Authority
JP
Japan
Prior art keywords
organic thin
thin film
molecules
film
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61066275A
Other languages
Japanese (ja)
Inventor
Koichi Mizushima
公一 水島
Nobuhiro Motoma
信弘 源間
Akira Miura
明 三浦
Toshio Nakayama
中山 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61066275A priority Critical patent/JPS62222668A/en
Publication of JPS62222668A publication Critical patent/JPS62222668A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the efficiency of charge transfer by forming an organic thin-film containing donor molecules and acceptor molecules between first and second electrodes as an active layer and utilizing a charge transfer phenomenon among organic molecules. CONSTITUTION:A first organic thin-film (a donor molecular film) 3 containing donor molecules and a second organic thin-film (an acceptor molecular film) 4 containing acceptor molecules are laminated onto a first metallic electrode 1 in succession through an insulating organic thin-film 2 and active layers are shaped, and a second metallic electrode 6 is formed onto the active layers through an insulating organic thin-film 5. Accordingly, charges transfer among donor molecules and acceptor molecules in the organic thin-films as the active layers by applying voltage between the first and second electrodes, thus controlling the absorptivity, conductivity characteristics, etc. of the active layers.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、有機薄膜を電子素子や光学素子の活性層とし
て用いた有機薄膜素子に関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to an organic thin film device using an organic thin film as an active layer of an electronic device or an optical device.

(従来の技術) 近年、ラングミーア・プロジェット法(以下、LB法と
いう)に代表される有機分子の超薄膜形成技術の進展に
よシ、有機薄膜各種素子への応用技術開発が活発化して
いる。ダーラム(Duhram)大学のロパーツ(G、
 G、 Rob・rts )の、有機薄膜を用いたMI
S累子の研究を代表として、この種の研究が各所で行わ
れている。しかし現状では、有機薄膜の性質を有効に利
用した新しい機能の素子は未だ実現されていない。
(Conventional technology) In recent years, with the progress of ultra-thin film formation technology of organic molecules represented by the Langmeer-Prodgett method (hereinafter referred to as LB method), the development of applied technology to various organic thin film devices has become active. . Loparts (G) of Durham University
G, Rob・rts), MI using organic thin films
This type of research is being conducted in various places, with research by S. Yuko being a representative example. However, at present, no element with new functions that effectively utilizes the properties of organic thin films has yet been realized.

素子応用の面から見て有機材料の特性の中で特に注目さ
れるのは、分子間の電荷移動の現象である。有機材料に
は、イオン化ポテンシャルが小さく他の分子に電子を供
給して自らは正のイオン状態になり易いドナー性分子と
、電子親和力が大きく他の分子から電子を受取シ自らは
負のイオン状態になり易いアクセプタ性分子とがある。
Among the characteristics of organic materials from the perspective of device applications, the phenomenon of intermolecular charge transfer is particularly noteworthy. Organic materials have donor molecules, which have a small ionization potential and easily become positive ions by supplying electrons to other molecules, and donor molecules, which have a large electron affinity and which accept electrons from other molecules and which themselves become negative ions. There are some acceptor molecules that are susceptible to

これら二種の分子間には電荷移動錯体と総称される化合
物が形成されることはよく知られている。例えは、ベレ
リンとテトラシアツキ7ノメタン(TCNQ)との間の
化合物は電荷の移動しない中性分子からなる化合物であ
るが、テトラメチルフェニレンジytン(TMPD)と
TCNQではそれぞれ分子が正、負となりたイオン性の
化合物となる。また、テトラチアフルバレン(TTF 
)とクロラニルの場合のように、温度や圧力によって中
性からイオン性への転移が観測されることも知られてい
る。
It is well known that a compound collectively called a charge transfer complex is formed between these two types of molecules. For example, the compound between belerin and tetracytoxy-7-methane (TCNQ) is a compound consisting of neutral molecules that do not transfer charges, but in tetramethylphenylene diethylene (TMPD) and TCNQ, the molecules are positive and negative, respectively. It becomes an ionic compound. In addition, tetrathiafulvalene (TTF
) and chloranil, it is also known that a transition from neutrality to ionicity is observed depending on temperature and pressure.

この様な有機材料の電荷移動の現象を素子の動作原理と
して応用する場合、電荷移動の効率、応答速度、制御性
等の電荷移動の特性そのものが優れていること、及び電
荷移動を起こすような材料、素子が容易に形成できるこ
と、等が要求される。
When applying the phenomenon of charge transfer in organic materials as the operating principle of an element, it is important that the charge transfer characteristics themselves, such as charge transfer efficiency, response speed, and controllability, are excellent, and that the charge transfer phenomenon that causes charge transfer is excellent. Materials and elements that can be easily formed are required.

電荷移動錯体結晶については、結晶作成が極めて難しい
こと、および電荷移動を外部で制御することが難しいこ
と、等の問題がある。また、金属と有機分子膜の間の電
荷移動を光や電界により制御してスイッチング素子ある
いはメモリ素子に利用する試みもなされているが、これ
らの電荷移動の効率、応答速度、寿命等に大きな問題を
抱えている。この様に電荷移動の現象は、素子応用の可
能性が期待されつつも、現状では未だ実用に供されてい
ない。
There are problems with charge transfer complex crystals, such as that it is extremely difficult to create the crystal and that it is difficult to control charge transfer externally. In addition, attempts have been made to control the charge transfer between metals and organic molecular films using light or electric fields and use them in switching devices or memory devices, but there are major problems with the efficiency of charge transfer, response speed, lifespan, etc. I am holding. Although the phenomenon of charge transfer is expected to have potential for device applications, it has not yet been put to practical use.

(発明が解決しようとする問題点) 以上のように有機薄膜は、新しい機能の素子への応用が
期待されながら、未だその様な素子は実現されていない
(Problems to be Solved by the Invention) As described above, although organic thin films are expected to be applied to devices with new functions, such devices have not yet been realized.

本発明は上記の点に鑑みなされたもので、有機薄膜の電
荷移動現象を動作原理としてその電荷移動の効率向上を
図9、かつ信頼性向上を図りた有機薄膜素子を提供する
ことを目的とする。
The present invention has been made in view of the above points, and aims to improve the efficiency of charge transfer using the charge transfer phenomenon of organic thin films as the operating principle, and to provide an organic thin film element with improved reliability. do.

[発明の構成コ (問題点を解決するだめの手段) 本発明にかかる有機薄膜素子は、第1、第2の電極の間
に、ドナー性分子とアクセプタ性分子を含む有機薄膜を
活性層として設け、有機分子間の電荷移動現象を利用す
る素子である。具体的には、第1、第2の電極間に電圧
を印加した時の活性層の吸光率、伝導度特性、防電率、
膜内電位分布等の変化を利用する。この様な素子におい
て本発明は、活性層と第1.$2の電極との間に絶縁性
有機薄膜を介在させたことを特徴とする。
[Configuration of the Invention (Means for Solving the Problems)] The organic thin film device according to the present invention has an organic thin film containing donor molecules and acceptor molecules as an active layer between the first and second electrodes. This is an element that utilizes the phenomenon of charge transfer between organic molecules. Specifically, the absorbance of the active layer when a voltage is applied between the first and second electrodes, the conductivity characteristics, the electrical resistivity,
Utilizes changes in intramembrane potential distribution, etc. In such a device, the present invention provides an active layer and a first . The feature is that an insulating organic thin film is interposed between the $2 electrode and the $2 electrode.

ここで活性層は、ドナー性分子を含む第1の有機薄膜と
7クセブタ性分子を含む第2の有機薄膜の積層構造とし
てもよいし、ドナー性分子とアクセプタ性分子を共に含
む混合薄膜としてもよい。
Here, the active layer may have a laminated structure of a first organic thin film containing donor molecules and a second organic thin film containing seven receptor molecules, or a mixed thin film containing both donor molecules and acceptor molecules. good.

また、ドナー性分子を含む第1の有機薄膜とアクセプタ
性分子を含む第2の有機薄膜の間に絶縁性有機薄膜を介
在させてもよいし、ドナー性分子を含む第1の有機薄膜
とアクセプタ性分子を含む第2の有機薄膜の積層構造を
繰返し積層した超格子構造としてもよい。更にこれらの
有機薄膜において、複数種のドナー性分子、複数種のア
クセプタ性分子を適宜組合わせることができる。
Further, an insulating organic thin film may be interposed between the first organic thin film containing donor molecules and the second organic thin film containing acceptor molecules, or an insulating organic thin film may be interposed between the first organic thin film containing donor molecules and the acceptor molecules. The layered structure of the second organic thin film containing the organic molecules may be a superlattice structure in which layers are repeatedly layered. Furthermore, in these organic thin films, a plurality of types of donor molecules and a plurality of types of acceptor molecules can be appropriately combined.

本発明においては、有機薄膜の厚さを制御することも素
子特性上重要である。従って有機薄膜としては、LB法
によシ形成される単分子膜あるいはこれを複数層累積し
た超薄膜を用いることが好ましい。有機物質中を動く電
子または正孔は一般に半導体中のそれより速度は遅いが
、数X〜数10スといった超薄膜を用いることにより、
十分高速度の電荷移動が可能であり、また実際にLB法
によりその様な膜形成が可能である。
In the present invention, controlling the thickness of the organic thin film is also important in terms of device characteristics. Therefore, as the organic thin film, it is preferable to use a monomolecular film formed by the LB method or an ultra-thin film obtained by stacking a plurality of monomolecular films. The speed of electrons or holes moving in organic materials is generally slower than that in semiconductors, but by using ultra-thin films of several times to several tens of times,
Charge transfer at a sufficiently high rate is possible, and such a film can actually be formed by the LB method.

(作用) 本発明の構成によれば、第1、第2の電極間に電圧を印
加することによシ、活性層としての有機薄膜のドナー性
分子とアクセプタ性分子間で電荷移動が生じ、これによ
フ活性層の吸光率、伝導度特性等が制御される。このと
き、活性層と第1、第2の電極との間に絶縁性有機薄膜
を介在させているため、電極と活性層との間の電荷移動
が阻止ないし抑制される。この結果活性層中のドナー性
分子とアクセプタ性分子間での電荷移動確率(効率)が
高いものとなる。また電極に金属を用いた場合、一般に
金属はそれ自身強いドナー性、アクセプタ性を示し、ま
た高い拡散能を示すため、ドナー性分子あるいはアクセ
プタ性分子と錯体を形成し易い。これは素子特性の劣化
の原因となる。
(Function) According to the configuration of the present invention, by applying a voltage between the first and second electrodes, charge transfer occurs between donor molecules and acceptor molecules of the organic thin film as the active layer. This controls the absorbance, conductivity characteristics, etc. of the active layer. At this time, since the insulating organic thin film is interposed between the active layer and the first and second electrodes, charge transfer between the electrodes and the active layer is prevented or suppressed. As a result, the probability (efficiency) of charge transfer between donor molecules and acceptor molecules in the active layer becomes high. Furthermore, when a metal is used for the electrode, since the metal itself generally exhibits strong donor properties and acceptor properties, and also exhibits high diffusion ability, it is easy to form a complex with donor molecules or acceptor molecules. This causes deterioration of device characteristics.

この点本発明では活性層と電極の間に絶縁性有機薄膜を
介在させているため、活性層との化学反応を抑制するこ
とができ、素子の寿命特性を向上させることかできる。
In this regard, in the present invention, since an insulating organic thin film is interposed between the active layer and the electrode, chemical reaction with the active layer can be suppressed, and the life characteristics of the element can be improved.

(実施例) 以下本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は一実施例の有機薄膜素子である。図において、
1は第1の金属電極であジ、この上に絶縁性有機薄膜2
を介してドナー性分子を含む第1の有機薄膜(ドナー性
分子膜)3、アクセプタ性分子を含む第2の有機薄膜(
アクセプタ性分子膜)4が順次積層されて活性層が形成
され、更にこの上に絶縁性有機薄膜5を介して第2の金
属電極6が形成されている。
FIG. 1 shows an example of an organic thin film device. In the figure,
1 is a first metal electrode, on which is an insulating organic thin film 2.
A first organic thin film containing donor molecules (donor molecule film) 3, a second organic thin film containing acceptor molecules (
An active layer is formed by sequentially stacking acceptor molecular films 4, and a second metal electrode 6 is further formed on this layer with an insulating organic thin film 5 interposed therebetween.

この素子の具体的な製造工程列は次の通りである。ポリ
ーL−7エニルアラニンを1=5の体積比のソクロル酢
酸−クロロホルム溶液に約11蜂曾の濃度となるように
溶解してLB膜展開溶液を形成した。この製膜分子は1
3 dyner7ら以上の表面圧で凝縮膜となることが
表面圧−分子占有面積曲線から知られた。LH膜形成装
置は市販の垂直引上は方式のものを用い、展開、累積に
先だって水相を−=6.0に設定し、共存塩として2価
カドミウム塩を約0.05mM添加し、水温を20℃に
保った。
The specific manufacturing process sequence for this device is as follows. An LB membrane developing solution was prepared by dissolving poly-L-7 enylalanine in a sochloroacetic acid-chloroform solution having a volume ratio of 1=5 to a concentration of about 11%. This film forming molecule is 1
It was known from the surface pressure-molecular occupied area curve that a condensed film was formed at a surface pressure of 3 dyner 7 or higher. A commercially available vertical pulling type LH film forming apparatus was used. Prior to development and accumulation, the aqueous phase was set to -=6.0, about 0.05mM of divalent cadmium salt was added as a coexisting salt, and the water temperature was was maintained at 20°C.

第1の金属電極1となるB膜を形成したガラス基板をこ
の水相に設置し、上記製膜分子を600μ!トラニ、ト
法により展開して、表面圧を20dynLVfrItに
設定して単分子膜を安定させた。そして引上げ速度70
μmrn/mi nでこの基板を引上げ、単分子からな
るLB膜を累積した。累積数は10層とした。
A glass substrate on which a B film, which will become the first metal electrode 1, has been formed is placed in this aqueous phase, and the above film-forming molecules are added to 600μ! The monomolecular film was stabilized by developing it by the Toranito method and setting the surface pressure at 20 dynLVfrIt. and pulling speed 70
This substrate was pulled up at μmrn/min to accumulate an LB film consisting of a single molecule. The cumulative number of layers was 10.

これが絶縁性有機薄膜2である。This is the insulating organic thin film 2.

ドナー性分子膜3としては、パラフェニレンジアミンと
ポリーL−フェニルアラニンを1:1に混合したものを
上記と同様の方法で10層累積形成した。アクセプタ性
分子膜4としては、テトラシアノキノソメタンをポリー
L−フェニルアラニンと1:1に混合したものをやはり
同様の方法で10層累積形成した。
As the donor molecular film 3, 10 layers of a 1:1 mixture of para-phenylenediamine and poly-L-phenylalanine were formed in the same manner as above. As the acceptor molecular film 4, 10 layers of a mixture of tetracyanoquinosomethane and poly-L-phenylalanine in a ratio of 1:1 were formed in the same manner.

このようにして形成された活性層上に、先の絶縁性有機
薄膜2と同様の絶縁性有機薄膜5を形成した後、第2の
金属電極6としてAu電極を形成した。
After forming an insulating organic thin film 5 similar to the above-mentioned insulating organic thin film 2 on the active layer thus formed, an Au electrode was formed as the second metal electrode 6.

第2図はこのように構成された素子に、Au電極が正、
U電極側が負となる電圧を印加した時の、波長500 
nmにおける吸光率の変化を示したものである。図には
、比較例として、第1図の絶縁性有機薄膜2および5を
省略した素子の特性を併せて示した。
Figure 2 shows an element configured in this way with a positive Au electrode and
Wavelength 500 when applying a negative voltage to the U electrode side
It shows the change in absorbance in nm. The figure also shows, as a comparative example, the characteristics of an element in which the insulating organic thin films 2 and 5 of FIG. 1 are omitted.

図から明らかなようにこの実施例の素子では大きい吸光
率変化が認められる。これは比較例と具なシ、活性層と
電極の間に絶縁性有機薄膜を介在させた結果、ドナー性
分子とアクセプタ性分子間の電荷移動の効率が向上した
結果である。この様な吸光率の変化を、具体的な素子と
しては例えば光スイッチング素子あるいは表示素子等に
応用することができる。
As is clear from the figure, a large change in absorbance is observed in the element of this example. This is a result of the fact that, as in the comparative example, the insulating organic thin film was interposed between the active layer and the electrode, and as a result, the efficiency of charge transfer between donor molecules and acceptor molecules was improved. Such a change in absorbance can be applied to specific devices such as optical switching devices or display devices.

第3図は他の実施例の有機薄膜素子である。第1図の実
施例と異なる点は、第1の金属電極1に代わって、Ga
As基板7を電極として用いていることである。GaA
s基板7は、Slを1×101シマ添加したn型基板を
用いた。
FIG. 3 shows an organic thin film device of another example. The difference from the embodiment shown in FIG. 1 is that instead of the first metal electrode 1, a Ga
The As substrate 7 is used as an electrode. GaA
As the s-substrate 7, an n-type substrate doped with 1×10 1 sl of Sl was used.

このMIS型素子は、逆バイアス約2vでキャノ4シタ
ンスの急激な変化が観測され、GaAg基板70表面が
反転したことが確認された。
In this MIS type element, a rapid change in capacitance was observed at a reverse bias of about 2 V, and it was confirmed that the surface of the GaAg substrate 70 was reversed.

絶縁性有機薄膜2及び5を省略した他、この実施例と同
様に構成したMIS型素子では、明瞭なキャパシタンス
変化は認められなかった。
In the MIS type device configured in the same manner as in this example except that the insulating organic thin films 2 and 5 were omitted, no clear change in capacitance was observed.

本発明は更に種々変形して実施することができる。第4
図は、第1図の構成における活性層部分に、ドナー性分
子とアクセプタ性分子を共に含む混合薄膜34を用いた
ものである。第5図はドナー性分子膜3とアクセプタ性
分子膜5の間にも絶縁性有機薄膜8を介在させたもので
ある。更に第6図は、ドナー性分子膜31+3M+・・
・とアクセプタ性分子膜41  + 42  +・・・
を交互に例えばそれぞれを単分子膜として積層して超格
子構造の活性層としたものである。この様な構成として
も、第1図の素子と同様の特性が得られる。
The present invention can be further modified and implemented in various ways. Fourth
The figure shows the structure of FIG. 1 in which a mixed thin film 34 containing both donor molecules and acceptor molecules is used in the active layer portion. In FIG. 5, an insulating organic thin film 8 is also interposed between the donor molecular film 3 and the acceptor molecular film 5. Furthermore, FIG. 6 shows a donor molecular film 31+3M+...
・and acceptor molecular film 41 + 42 +...
For example, each layer is laminated alternately as a monomolecular film to form an active layer with a superlattice structure. Even with such a configuration, characteristics similar to those of the device shown in FIG. 1 can be obtained.

本発明でのドナー性分子膜やアクセプタ性分子膜におい
て、ドナー性分子やアクセプタ性分子と混合して用いら
れる絶縁性分子、あるいは絶縁性分子膜に用いられる絶
縁性分子としては、以下のような分子が用いられる。
In the donor molecule film and acceptor molecule film in the present invention, the insulating molecules used in combination with the donor molecule and acceptor molecule, or the insulating molecules used in the insulating molecule film, are as follows. molecules are used.

(1)下記一般式で表わされる置換可能な飽和及び不飽
和炭化水素誘導体 −X ここで、Rは置換可能なCH3(CH2)n−あるいは
CM、+CH2カ景CH2= CH2六HCH2f  
(但し、n及びp+q十)は8以上)からなる疎水基で
ある。またXは親水基を表わし、−COOHl−OH,
−8o、)l。
(1) Substitutable saturated and unsaturated hydrocarbon derivatives represented by the following general formula -X Here, R is substitutable CH3(CH2)n- or CM, +CH2 background CH2= CH26HCH2f
(where n and p+q10) are 8 or more). Moreover, X represents a hydrophilic group, -COOHl-OH,
-8o,)l.

−COOR’、−NH2、−Ne(R’ )5Y−(Y
ハハロr ン) ナトが挙げられる。
-COOR', -NH2, -Ne(R')5Y-(Y
Ha ha ron) Nato is an example.

(2)種々の重合性分子 例えば、置換可能なアクリレート、メタクリレート、ビ
ニルエーテル、スチレン、ビニルアルコール、アクリル
アミド、アクリルなどのビニル重合体。あるいは、アラ
ニン、グルタメート、アクリレ−ト、などのα−アミノ
酸、ε−アミツカグロン酸等のα−アミノ酸以外のアミ
ノ酸。ヘキサメチレンジアミン等のジアミンと、ヘキサ
メチレンジアミン酸等のノカルゴン酸1;1混合物より
なるポリアミド重合体。
(2) Various polymerizable molecules, such as vinyl polymers such as substitutable acrylates, methacrylates, vinyl ethers, styrene, vinyl alcohols, acrylamides, and acrylics. Alternatively, α-amino acids such as alanine, glutamate, acrylate, etc., and amino acids other than α-amino acids such as ε-amitsukagulonic acid. A polyamide polymer consisting of a 1:1 mixture of a diamine such as hexamethylene diamine and a nocargonic acid such as hexamethylene diamic acid.

これらの分子はそれ自身累積が可能な場合は単独で用い
ることができる。単独で製膜できないような分子は■で
示したような単独で製膜できる絶縁性分子と混合して用
いる。
These molecules can be used alone if they themselves can be accumulated. Molecules that cannot be formed into a film by themselves are mixed with insulating molecules such as those shown in (3) that can be formed into a film by themselves.

ドナー性分子としては、以下に示すようなものを用い得
る。
As the donor molecule, the following can be used.

(3)  以下のような構造式をもつフルバレン壓ドナ
ー (4)以下のような構造式をもつ含S複素環型ドナー Se−8s Se−8・ T・−T。
(3) A fullvalene donor having the following structural formula. (4) An S-containing heterocyclic donor Se-8s Se-8·T·-T having the following structural formula.

ここでφはフェニル基を表わす。Here, φ represents a phenyl group.

(5)以下のような構造式をもつアミン型ドナーN−メ
チルアニリン H2 テトラメチルベンジジン (6)以下のような構造式をもつ金属化合物型す 0・・・■・・・0 0・・・■・・・O (7)以下のような構造式をもつシアニン色素ドナー RR RR MI                 M・(8)以
下のような構造式をもつ含N複素環型′ナー Rフェノチアノン (9)以下のような構造式をもつポリマー型ドナー (3)から(9)に示したドナー性分子はその構造式の
ままでも、あるいはそれ全骨格として、 CH3(CH
2+n。
(5) Amine-type donor N-methylaniline H2 having the following structural formula Tetramethylbenzidine (6) Metal compound-type donor having the following structural formula 0...■...0 0... ■・・・O (7) Cyanine dye donor RR RR MI M・(8) N-containing heterocyclic type 'ner R phenothianone having the following structural formula (9) As shown below. The donor molecules shown in (3) to (9) having structural formulas are CH3(CH
2+n.

CH,刊H2[CH2鑓CH2早CH2t(n及びp 
+ q + Lは8以上)からなる疎水基を有しt誘導
体でも、あるいは−COOH、−OH。
CH, published H2 [CH2 Yari CH2 early CH2t (n and p
+ q + L is 8 or more) and a t derivative, or -COOH, -OH.

−8o、H、−COOR’  、  −NH2,−昶(
R’)3Y″″ (Yはハロダン)からなる親水基を有
する誘導体でも、あるいはこれら疎水基と親水基を共に
有する誘導体でもよい。
-8o, H, -COOR', -NH2, -昶(
It may be a derivative having a hydrophilic group such as R')3Y'''' (Y is halodane), or a derivative having both of these hydrophobic and hydrophilic groups.

アクセプタ性分子としては、以下に示すような分子を用
いることができる。
As the acceptor molecule, the following molecules can be used.

αQ 以下のような構造式をもつシアン化合物型アクセ
プタ F NCCN αυ 以下のような構造式をもつキノン型アクセプタ ct    ct aり  以下のような構造式をもつニトロ化合物型アク
セグタ αQからα2に示したアクセプタ性分子はその構造式の
ままでも、あるいはそれを骨格として、CH3(CH2
+n、 CH3−eCH2−)−(CH2−CH2早C
H2# (n及びp+q+tは8以上)からなる疎水基
を有しt誘導体でも、あるいは−COOH、−OH、−
3o3H。
αQ Cyanide type acceptor with the following structural formula F NCCN αυ Quinone type acceptor with the following structural formula ct ct a nitro compound type acceptor with the following structural formula αQ to α2 Acceptors shown in αQ to α2 CH3 (CH2
+n, CH3-eCH2-)-(CH2-CH2 early C
H2# (n and p+q+t are 8 or more) with a hydrophobic group and a t derivative, or -COOH, -OH, -
3o3H.

−COOR’ 、 −NH、−N”(Rつ、Y−(Yは
〕・ロダン)からなる親水基を有する誘導体でも、ある
いはこれら疎水基と親水基を共に有する誘導体でもよい
It may be a derivative having a hydrophilic group consisting of -COOR', -NH, -N" (R, Y- (Y is].rodan), or a derivative having both of these hydrophobic and hydrophilic groups.

[発明の効果] 以上述べたように本発明によれば、ドナー性分子とアク
セプタ性分子を含む有機薄膜を活性層として、電圧印加
によりドナー性分子とアクセプタ性分子1m41の電荷
移動を利用する有機薄膜素子において、各分子のイオン
化の確率を増大することができる。例えば、表示素子あ
るいは光学素子の場合には、電圧印加による吸光率、屈
折率の変化を大きくすることができ、ま之電子素子の場
合は電圧印加による伝導度、誘を率の変化を大きくする
ことができる。また本発明によれば、金属電極を用いた
場合にこれと活性層との化学反応を抑制して信頼性の旨
い素子を実現することができる。
[Effects of the Invention] As described above, according to the present invention, an organic thin film containing donor molecules and acceptor molecules is used as an active layer, and an organic film that utilizes charge transfer between donor molecules and acceptor molecules 1m41 by applying a voltage. In thin film devices, the probability of ionization of each molecule can be increased. For example, in the case of display elements or optical elements, changes in absorbance and refractive index can be increased by applying voltage, and in the case of electronic devices, changes in conductivity and permittivity can be increased by applying voltage. be able to. Further, according to the present invention, when a metal electrode is used, a chemical reaction between the metal electrode and the active layer can be suppressed to realize a highly reliable element.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の有機薄膜素子を示す図、第
2図はその特性を比較例と共に示す図、第3図〜第6図
は他の実施例の有機薄膜素子を示す図である。 l・・・第1の金属電極、2・・・絶縁性有機薄膜、3
・・・ドナー性分子展、4・・・アクセプタ性分子膜、
5・・・絶縁性有機薄膜、6・・・第2の金属電極、7
・・・GaAa基板、34・・・混合薄膜、8・・・絶
縁性有機薄膜。 田願人代理人 弁理士 鈴 江 武 彦第1FXJ 0  1  2  3  電圧 I¥ 2M 第 3 Lニコ 第4と 第S ハ
FIG. 1 is a diagram showing an organic thin film device according to an example of the present invention, FIG. 2 is a diagram showing its characteristics together with comparative examples, and FIGS. 3 to 6 are diagrams showing organic thin film devices according to other examples. It is. l: first metal electrode, 2: insulating organic thin film, 3
... Donor property molecule exhibition, 4... Acceptor property molecule membrane,
5... Insulating organic thin film, 6... Second metal electrode, 7
. . . GaAa substrate, 34 . . . Mixed thin film, 8 . . . Insulating organic thin film. Tagani's agent Patent attorney Suzue Takehiko 1st FXJ 0 1 2 3 Voltage I ¥ 2M 3rd L Nico 4th and S C

Claims (8)

【特許請求の範囲】[Claims] (1)第1、第2の電極間にドナー性分子とアクセプタ
性分子を含む有機薄膜を有する活性層を挾んだ有機薄膜
素子において、前記活性層と第1、第2の電極との間に
絶縁性有機薄膜を介在させたことを特徴とする有機薄膜
素子。
(1) In an organic thin film element in which an active layer having an organic thin film containing donor molecules and acceptor molecules is sandwiched between first and second electrodes, the active layer and the first and second electrodes are An organic thin film element characterized by having an insulating organic thin film interposed therebetween.
(2)前記活性層は、ドナー性分子を含む第1の有機薄
膜とアクセプタ性分子を含む第2の有機薄膜の積層構造
からなる特許請求の範囲第1項記載の有機薄膜素子。
(2) The organic thin film device according to claim 1, wherein the active layer has a laminated structure of a first organic thin film containing donor molecules and a second organic thin film containing acceptor molecules.
(3)前記活性層は、ドナー性分子とアクセプタ性分子
を共に含む混合薄膜からなる特許請求の範囲第1項記載
の有機薄膜素子。
(3) The organic thin film device according to claim 1, wherein the active layer is a mixed thin film containing both donor molecules and acceptor molecules.
(4)前記活性層は、ドナー性分子を含む第1の有機薄
膜とアクセプタ性分子を含む第2の有機薄膜の間に絶縁
性有機薄膜を介在させて構成されている特許請求の範囲
第1項記載の有機薄膜素子。
(4) The active layer is constructed by interposing an insulating organic thin film between a first organic thin film containing donor molecules and a second organic thin film containing acceptor molecules. The organic thin film device described in .
(5)前記活性層は、ドナー性分子を含む第1の有機薄
膜とアクセプタ性分子を含む第2の有機薄膜の積層構造
が複数層繰返し積層されて超格子を構成する特許請求の
範囲第1項記載の有機薄膜素子。
(5) The active layer constitutes a superlattice by repeatedly laminating multiple layers of a first organic thin film containing donor molecules and a second organic thin film containing acceptor molecules. The organic thin film device described in .
(6)前記第1、第2の電極は金属電極である特許請求
の範囲第1項記載の有機薄膜素子。
(6) The organic thin film device according to claim 1, wherein the first and second electrodes are metal electrodes.
(7)前記第1、第2の電極は少なくとも一方が半導体
である特許請求の範囲第1項記載の有機薄膜素子。
(7) The organic thin film device according to claim 1, wherein at least one of the first and second electrodes is a semiconductor.
(8)前記活性層を構成する有機薄膜及び絶縁性有機薄
膜は、ラングミュア・プロジェット法により形成された
ものである特許請求の範囲第1項記載の有機薄膜素子。
(8) The organic thin film device according to claim 1, wherein the organic thin film and the insulating organic thin film constituting the active layer are formed by the Langmuir-Prodgett method.
JP61066275A 1986-03-25 1986-03-25 Organic thin-film element Pending JPS62222668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61066275A JPS62222668A (en) 1986-03-25 1986-03-25 Organic thin-film element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61066275A JPS62222668A (en) 1986-03-25 1986-03-25 Organic thin-film element

Publications (1)

Publication Number Publication Date
JPS62222668A true JPS62222668A (en) 1987-09-30

Family

ID=13311123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61066275A Pending JPS62222668A (en) 1986-03-25 1986-03-25 Organic thin-film element

Country Status (1)

Country Link
JP (1) JPS62222668A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116981A (en) * 1989-09-29 1991-05-17 Toshiba Corp Organic thin film element
JPH0779005A (en) * 1992-09-11 1995-03-20 Res Dev Corp Of Japan Organic superlattice optical response device
JPH0794690A (en) * 1993-09-21 1995-04-07 Toshiba Corp Image sensor
JPH09221459A (en) * 1996-02-15 1997-08-26 Toshiba Corp Charge transfer complex and organic thin film element
JP2001007366A (en) * 1999-06-25 2001-01-12 Sony Corp Charge transfer heterojunction structure, and manufacture thereof
JP2003158254A (en) * 2001-11-22 2003-05-30 Nippon Hoso Kyokai <Nhk> Photoconductive film and solid-state image pickup device
JP2003282934A (en) * 2002-03-25 2003-10-03 Japan Science & Technology Corp Rapid response photoelectric current multiplying device formed of mixed thin film of heterologous organic semiconductor
JP2006073856A (en) * 2004-09-03 2006-03-16 Konica Minolta Medical & Graphic Inc Photoelectric conversion element and radiation image detector
JP2006245616A (en) * 2000-02-09 2006-09-14 Cambridge Display Technol Ltd Optoelectronic device
KR100714127B1 (en) 2005-11-28 2007-05-02 한국전자통신연구원 Molecular electronic device having organic conductive protective layer
WO2007108385A1 (en) * 2006-03-20 2007-09-27 Matsushita Electric Works, Ltd. Organic thin film solar cell
JP2008153632A (en) * 2006-12-15 2008-07-03 Ind Technol Res Inst Photovoltaic cell
JP2009117480A (en) * 2007-11-02 2009-05-28 Nippon Hoso Kyokai <Nhk> Organic photoelectric conversion element, photosensor using the same, and color image pickup device
JP2014022525A (en) * 2012-07-17 2014-02-03 Nippon Hoso Kyokai <Nhk> Organic photoelectric conversion element and light-receiving element including the same
JP2017228786A (en) * 2012-08-09 2017-12-28 ソニー株式会社 Photoelectric conversion element, imaging apparatus and optical sensor
US10658430B2 (en) 2015-11-12 2020-05-19 Panasonic Intellectual Property Management Co., Ltd. Photosensor

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03116981A (en) * 1989-09-29 1991-05-17 Toshiba Corp Organic thin film element
JPH0779005A (en) * 1992-09-11 1995-03-20 Res Dev Corp Of Japan Organic superlattice optical response device
JPH0794690A (en) * 1993-09-21 1995-04-07 Toshiba Corp Image sensor
JPH09221459A (en) * 1996-02-15 1997-08-26 Toshiba Corp Charge transfer complex and organic thin film element
JP2001007366A (en) * 1999-06-25 2001-01-12 Sony Corp Charge transfer heterojunction structure, and manufacture thereof
JP2006245616A (en) * 2000-02-09 2006-09-14 Cambridge Display Technol Ltd Optoelectronic device
JP2003158254A (en) * 2001-11-22 2003-05-30 Nippon Hoso Kyokai <Nhk> Photoconductive film and solid-state image pickup device
JP2003282934A (en) * 2002-03-25 2003-10-03 Japan Science & Technology Corp Rapid response photoelectric current multiplying device formed of mixed thin film of heterologous organic semiconductor
JP2006073856A (en) * 2004-09-03 2006-03-16 Konica Minolta Medical & Graphic Inc Photoelectric conversion element and radiation image detector
KR100714127B1 (en) 2005-11-28 2007-05-02 한국전자통신연구원 Molecular electronic device having organic conductive protective layer
WO2007108385A1 (en) * 2006-03-20 2007-09-27 Matsushita Electric Works, Ltd. Organic thin film solar cell
US9040817B2 (en) 2006-03-20 2015-05-26 Panasonic Corporation Organic thin film solar cell
JP2008153632A (en) * 2006-12-15 2008-07-03 Ind Technol Res Inst Photovoltaic cell
JP2009117480A (en) * 2007-11-02 2009-05-28 Nippon Hoso Kyokai <Nhk> Organic photoelectric conversion element, photosensor using the same, and color image pickup device
JP2014022525A (en) * 2012-07-17 2014-02-03 Nippon Hoso Kyokai <Nhk> Organic photoelectric conversion element and light-receiving element including the same
JP2017228786A (en) * 2012-08-09 2017-12-28 ソニー株式会社 Photoelectric conversion element, imaging apparatus and optical sensor
JP2019096900A (en) * 2012-08-09 2019-06-20 ソニー株式会社 Photoelectric conversion element, imaging device and optical sensor
US10665802B2 (en) 2012-08-09 2020-05-26 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor
JP2021177567A (en) * 2012-08-09 2021-11-11 ソニーグループ株式会社 Photoelectric conversion element, imaging device, and optical sensor
US11183654B2 (en) 2012-08-09 2021-11-23 Sony Corporation Photoelectric conversion element, imaging device, and optical sensor
US10658430B2 (en) 2015-11-12 2020-05-19 Panasonic Intellectual Property Management Co., Ltd. Photosensor
US11228725B2 (en) 2015-11-12 2022-01-18 Panasonic Intellectual Property Management Co., Ltd. Photosensor

Similar Documents

Publication Publication Date Title
JPS62222668A (en) Organic thin-film element
US5854139A (en) Organic field-effect transistor and production thereof
US5206525A (en) Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials
TWI356470B (en) Self assembly of conducting polymer for formation
EP0239368B1 (en) Field-effect transistor
KR20060123368A (en) Non-volatile ferroelectric thin film device using an organic ambipolar semiconductor and method for processing such a device
JP4433746B2 (en) Organic field effect transistor and manufacturing method thereof
JPS62222669A (en) Organic thin-film element
JPH0469971A (en) Field effect transistor
JP2004179542A (en) Organic thin-film transistor and manufacturing method of the same
JPS62222670A (en) Organic thin-film element
JP2004235277A (en) Organic semiconductor element, organic semiconductor device, organic electroluminescent element, and organic electroluminescent equipment
Van Keuren et al. Polydiacetylene ribbons formed using the controlled evaporative self-assembly (CESA) method
JPS63161433A (en) Display device
JP3283916B2 (en) Charge transfer complex
WO2023004874A1 (en) Method for preparing domain wall memory, and domain wall memory
WO2000029779A1 (en) Process for generating luminescence emissions from polymer solutions, gels, and liquid polymers in a compact cell configuration, and device employing same
JP2509567B2 (en) Organic thin film multicolor display element
JPS63146464A (en) Semiconductor element
JP4799826B2 (en) Organic diode and manufacturing method thereof
JPS6265477A (en) Organic thin film rectifying device
JPS63140576A (en) Field-effect transistor
JPH0616551B2 (en) Organic thin film multi-valued device
JP2004015007A (en) Organic transistor and its fabricating process
JPH0212871A (en) Organic thin film element