JPS62222562A - Manufacture of lithium battery - Google Patents

Manufacture of lithium battery

Info

Publication number
JPS62222562A
JPS62222562A JP61063773A JP6377386A JPS62222562A JP S62222562 A JPS62222562 A JP S62222562A JP 61063773 A JP61063773 A JP 61063773A JP 6377386 A JP6377386 A JP 6377386A JP S62222562 A JPS62222562 A JP S62222562A
Authority
JP
Japan
Prior art keywords
separator
electrolyte
internal resistance
lithium
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61063773A
Other languages
Japanese (ja)
Inventor
Tatsu Nagai
龍 長井
Kozo Kajita
梶田 耕三
Toshikatsu Manabe
真辺 俊勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61063773A priority Critical patent/JPS62222562A/en
Publication of JPS62222562A publication Critical patent/JPS62222562A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)

Abstract

PURPOSE:To improve wettability of a separator with an electrolyte when a high boiling point solvent is used to decrease internal resistance by treating a separator made of a microporous polypropylene film with a specific surface active agent. CONSTITUTION:A separator made of a microporous polypropylene film is treated with a surface active agent separated from a group of oleic amid-ethylene oxide addition product, oleic amide, oleic diethanolamide, and oleoyl diethanolamine. By this treatment, affinity to an organic solvent is given to the separator, and wettability of the separator to the solvent having high surface tension is improved. Althrough these surface active agents are soluble in the organic solvent, they have not so much harmful effect on battery performance. Thereby, wettability of the separator to the gelled organic electrolyte is improved, yield in production is increased, internal resistance is decreased, and the scattering of the internal resistance is reduced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はリチウム電池の製造方法に係り、さらに詳しく
はそのセパレータの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a lithium battery, and more particularly to an improvement in a separator thereof.

〔従来の技術〕[Conventional technology]

従来、リチウム電池では、セパレータに微孔性ポリプロ
ピレンフィルムを用い、電解液には電導度などの関係か
ら1.2−ジメトキシエタン、テトラヒドロフランなど
の低沸点有機溶媒を主溶媒とする有機電解液が用いられ
ていた(例えば特開昭57−76763号公報)。
Conventionally, in lithium batteries, a microporous polypropylene film is used as a separator, and an organic electrolyte whose main solvent is a low-boiling point organic solvent such as 1,2-dimethoxyethane or tetrahydrofuran is used for reasons such as conductivity. (for example, Japanese Patent Application Laid-Open No. 57-76763).

ところが、電池応用機器の薄形化に伴って、電池需要者
からは、電池をより薄くすることが増々強く要請され、
リチウム電池に関しても、そのような要請に応えるため
、さらに薄くする必要が生じてきた。
However, as battery-applied devices become thinner, battery consumers are increasingly demanding that batteries be made even thinner.
In order to meet such demands, lithium batteries also need to be made thinner.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、リチウム電池では、上記のような要請に応え
て薄形電池を作製する場合、ガスヶ・ノドによる封止で
は薄くできる限界があるため、ホットメルト接着剤によ
る封止が採用されるが、低沸点の溶媒では封止時の熱に
よって溶媒が気化して、封止がしにくく、また、たとえ
封止できたとしても長期貯蔵性に問題が生じるため、プ
ロピレンカーボネート、γ−ブチロラクトン、スルフオ
ランなどの高沸点溶媒が用いられる。
By the way, when producing thin lithium batteries in response to the above-mentioned demands, there is a limit to how thin they can be made by sealing with gas or glue, so sealing with hot melt adhesive is used, but With boiling point solvents, the heat during sealing will vaporize the solvent, making it difficult to seal, and even if sealing is possible, there will be problems with long-term storage. High boiling point solvents are used.

ところが、これらの高沸点溶媒は表面張力が30dLn
fl/cm以上と高く、そのためセパレータの電解液に
対する濡れ性が憩くなり、その結果、内部抵抗が高くな
るという問題があった。
However, these high boiling point solvents have a surface tension of 30 dLn.
fl/cm or more, and as a result, the separator's wettability with the electrolyte becomes weak, resulting in a problem of high internal resistance.

また、薄形のリチウム電池を作製するにあたって、封止
時の加熱による溶媒の蒸発をできるだけ抑制するために
、前記のような高沸点溶媒の使用に加えて、電解液にポ
リメチルメタクリレートなどの高分子材料を加えてゲル
状にした、いわゆるゲル状有機電解質が用いられる。そ
のため、セパレータの濡れ性が増々悪くなり、これを少
しでも改良しようとして、セパレータにゲル状有機電解
質を押し付けているが、そのためにセパレータに亀裂が
生じて、内部短絡が発生するという問題も生起した。
In addition to using a high boiling point solvent as mentioned above, in order to suppress evaporation of the solvent due to heating during sealing as much as possible when manufacturing thin lithium batteries, in addition to using a high boiling point solvent as described above, we also add a high boiling point solvent such as polymethyl methacrylate to the electrolyte. A so-called gel-like organic electrolyte, which is made into a gel by adding molecular materials, is used. As a result, the wettability of the separator has become increasingly poor, and in an attempt to improve this even a little, gel-like organic electrolytes have been pressed onto the separator, but this has also caused problems such as cracks in the separator and internal short circuits. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、微孔性ポリプロピレンフィルムからなるセパ
レータをオレイン酸アミドエチレンオキサイド付加物、
オレイン酸アミド、オレイン酸ジェタノールアミドおよ
びオレイルジェタノールアミンよりなる群から選ばれた
少なくとも1種の界面活性剤で処理することによって、
セパレータに有ta溶媒に対する親和性を付与して、セ
パレータの高表面張力溶媒への濡れ性を改善し、高沸点
溶媒を用いたゲル状有機電解質を使用しても内部抵抗増
加の少ないリチウム電池を提供したものである。
The present invention provides a separator made of a microporous polypropylene film containing an oleic acid amide ethylene oxide adduct,
By treating with at least one surfactant selected from the group consisting of oleic acid amide, oleic jetanolamide, and oleyl jetanolamine,
By giving the separator an affinity for TA solvents and improving the separator's wettability to high surface tension solvents, we can create lithium batteries with less increase in internal resistance even when using gel organic electrolytes with high boiling point solvents. This is what was provided.

本発明において、セパレータを処理するための界面活性
剤としては、オレイン酸アミドエチレンオキサイド付加
物、オレイン酸アミド、オレイン酸ジェタノールアミド
、オレイルジェタノールアミンなどが用いられる。本発
明において、セパレータの処理にあたって、上記の界面
活性剤を用いるのは、これらの界面活性剤がセパレーク
に有機溶媒に対する親和性を付与する性質を有すること
はもとより、有機溶媒に可溶で、かつ電池内に入っても
電池性能に悪影響を及ぼすことが少ないからである。
In the present invention, as the surfactant for treating the separator, oleic acid amide ethylene oxide adduct, oleic acid amide, oleic acid jetanolamide, oleyl jetanolamine, etc. are used. In the present invention, the above-mentioned surfactants are used in the treatment of the separator not only because these surfactants have the property of imparting affinity to organic solvents to the separator, but also because they are soluble in organic solvents and This is because even if it enters the battery, it will rarely have an adverse effect on battery performance.

処理にあたって界面活性剤は有機溶媒に溶解される。そ
の際の濃度は、特に重要ではないが、通常0.5〜5重
量%にされる。界面活性剤を溶解するための有機溶媒と
しては、メチルアルコール、エチルアルコール、1,2
−ジメトキシエタン、1.2−ジェトキシエタン、テト
ラヒドロフランなどの低沸点で処理後の除去が容易な低
沸点有機溶媒か、または処理後の除去を要しない電解質
用有機溶媒が好ましい。
During processing, the surfactant is dissolved in an organic solvent. The concentration at that time is not particularly important, but it is usually 0.5 to 5% by weight. Examples of organic solvents for dissolving the surfactant include methyl alcohol, ethyl alcohol, 1,2
- A low-boiling organic solvent such as dimethoxyethane, 1,2-jethoxyethane, and tetrahydrofuran that is easy to remove after treatment, or an organic solvent for electrolyte that does not require removal after treatment is preferred.

ゲル状有機電解質を調製するための表面張力の大きな有
機溶媒としては、例えばプロピレンカーボネート(沸点
241.7℃、表面張力40.8dyne/am)、ス
ルフオラン(沸点285℃、表面張力3s、5dyne
/cm) 、r−ブチロラクトン(沸点204℃)、エ
チレンカーボネート(沸点248℃)などの高沸点有機
溶媒が用いられる。リチウム塩としては、例えばL i
B (C6Hs)a、L 1CF3303、LiClO
4、LiPF6、LtA3F6、Li5bF6、LiB
F4などが用いられる。これらリチウム塩の濃度は、通
常0.3〜2mol/ffiにされる。また、高分子材
料としては、例えばポリエチレンオキサイド、ポリメチ
ルメタクリレート、ポリエチルメタクリレート、ポリプ
ロピルメタクリレート、ポリブチルメタクリレートなど
のポリアルキルメタクリレート、ポリメチルアクリレー
ト、ポリエチルアクリレート、ポリプロピルアクリレー
ト、ポリブチルアクリレートなどのポリアルキルアクリ
レート、ポリビニリデンフルオライド、ポリビニルメチ
ルエーテル、ポリビニルホルマール、ポリアクリロニト
リル、ポリアクリロニトリルや、それらのポリマーを構
成する七ツマ−の2種以上の共重合体などが用いられる
。そして、ゲル状有機電解質の調製にあたっては、これ
らの高分子材料は電解液に対して、通常5〜40重量%
程度添加される。
Examples of organic solvents with high surface tension for preparing a gel organic electrolyte include propylene carbonate (boiling point 241.7°C, surface tension 40.8 dyne/am), sulfuran (boiling point 285°C, surface tension 3s, 5 dyne/am),
/cm), r-butyrolactone (boiling point: 204°C), and ethylene carbonate (boiling point: 248°C). As the lithium salt, for example, Li
B (C6Hs)a, L 1CF3303, LiClO
4, LiPF6, LtA3F6, Li5bF6, LiB
F4 etc. are used. The concentration of these lithium salts is usually 0.3 to 2 mol/ffi. Examples of polymeric materials include polyalkyl methacrylates such as polyethylene oxide, polymethyl methacrylate, polyethyl methacrylate, polypropyl methacrylate, and polybutyl methacrylate, polymethyl acrylate, polyethyl acrylate, polypropyl acrylate, and polybutyl acrylate. Used are polyalkyl acrylate, polyvinylidene fluoride, polyvinyl methyl ether, polyvinyl formal, polyacrylonitrile, polyacrylonitrile, and copolymers of two or more of heptamers constituting these polymers. When preparing a gel-like organic electrolyte, these polymeric materials are usually used in an amount of 5 to 40% by weight based on the electrolyte.
Added to a certain extent.

正極活物質としては、例えば二硫化チタン(TiS2)
、二硫化モリブデン(MO32)、三硫化モリブデン(
MO33)、硫化ジルコニウム(ZrS2)、二硫化ニ
オブ(NbS2)、三硫化リンニッケル(NiPS3)
、バナジウムセレナイド(VSe2)、五酸化バナジウ
ム(v205)、十三酸化バナジウム(VsO+i)な
どが用いられる。また、負極にはリチウムまたはリチウ
ム合金が用いられる。リチウム合金としては、例えばリ
チウム−アルミニウム、リチウム−鉛、リチウム−ガリ
ウム、リチウム−インジウム、リチウム−ガリウム−イ
ンジウム、リチウム−マグネシウム、リチウム−亜鉛な
どのリチウム合金が用いられる。
As the positive electrode active material, for example, titanium disulfide (TiS2)
, molybdenum disulfide (MO32), molybdenum trisulfide (
MO33), zirconium sulfide (ZrS2), niobium disulfide (NbS2), nickel phosphorous trisulfide (NiPS3)
, vanadium selenide (VSe2), vanadium pentoxide (v205), vanadium doxoxide (VsO+i), etc. are used. Furthermore, lithium or a lithium alloy is used for the negative electrode. As the lithium alloy, for example, lithium alloys such as lithium-aluminum, lithium-lead, lithium-gallium, lithium-indium, lithium-gallium-indium, lithium-magnesium, and lithium-zinc are used.

〔実施例〕〔Example〕

つぎに実施例をあげて本発明をさらに詳細に説明する。 Next, the present invention will be explained in more detail by giving Examples.

実施例1 微孔性ポリプロピレンフィルム(最大孔径0.2X0.
02μ輌、開孔率38%、商品名ジュラガード2400
、ポリプラスチックス社製)をオレイン酸アミドエチレ
ンオキサイド付加物の2重量%メチルアルコール溶液に
浸漬し、引き上げた後、真空乾燥して、メチルアルコー
ルを除去した。
Example 1 Microporous polypropylene film (maximum pore size 0.2×0.
02μ vehicle, open area rate 38%, product name Juraguard 2400
(manufactured by Polyplastics Co., Ltd.) was immersed in a 2% by weight methyl alcohol solution of an oleic acid amide ethylene oxide adduct, pulled up, and vacuum dried to remove the methyl alcohol.

このように界面活性剤(オレイン酸アミドエチレンオキ
サイド付加物)で処理した微孔性ポリプロピレンフィル
ムをセパレータとし、これにLiB(CaH2)a・3
DME−PC−ポリアルキルメタクリレート系ポリマー
からなるゲル状有機電解質(L i13 (C6H5)
 41モルに対してDME(1,2−ジメトキシエタン
)3モルが付加した付加物をPC(プロピレンカーボネ
ート)に0.8 mol / l溶解した電解液に、ポ
リアルキルメタクリレート系ポリマー(メタクリル酸メ
チルとメタクリル酸エチルとメタクリル酸ブチルの共重
合体)を20重量%添加して混合したゲル状有機電解質
〕を塗付し、リチウムと二硫化チタンとを活物質として
、第1図に示す構造の電池を作製した。
A microporous polypropylene film treated with a surfactant (oleic acid amide ethylene oxide adduct) was used as a separator, and LiB(CaH2)a.3
Gel-like organic electrolyte (L i13 (C6H5) consisting of DME-PC-polyalkyl methacrylate polymer
Polyalkyl methacrylate polymer (methyl methacrylate and A gel-like organic electrolyte containing 20% by weight of a copolymer of ethyl methacrylate and butyl methacrylate (a copolymer of ethyl methacrylate and butyl methacrylate) was applied, and lithium and titanium disulfide were used as active materials to form a battery with the structure shown in Figure 1. was created.

第1図において、lは二硫化チタンを活物質とする正極
、2はリチウムからなる負極、3は前述のように界面活
性剤で処理した微孔性ポリプロピレンフィルムからなる
セパレータで、4はポリプロピレン不織布からなる電解
液吸収体である。5は負極板で、この負極板は厚さ0.
1mmのステンレス鋼板からなり、容器状に形成され、
その凹部内面にリチウム板を圧着して前記の負極2が形
成されている。6は正極板で、厚さ0.1)で平面形状
が34m+w x 10wmの長方形状のステンレス鋼
板よりなり、この内面に二硫化チタンと前記ゲル状有機
電解質との重量比1:1の混合物を約8 m A h相
当量塗付することによって前記の正極1が形成されてい
る。7は正極1、負極2、ゲル状有機電解質などの発電
要素の周縁部外方で正極板6の周縁部と負極板5の周縁
部とを接着封止する変性ポリオレフィン系のホントメル
ト接着剤であり、この電池の総高は0.5snである。
In Figure 1, 1 is a positive electrode made of titanium disulfide as an active material, 2 is a negative electrode made of lithium, 3 is a separator made of a microporous polypropylene film treated with a surfactant as described above, and 4 is a polypropylene nonwoven fabric. It is an electrolyte absorber consisting of. 5 is a negative electrode plate, and this negative electrode plate has a thickness of 0.
It is made of a 1mm stainless steel plate and is shaped like a container.
The negative electrode 2 is formed by pressing a lithium plate onto the inner surface of the recess. 6 is a positive electrode plate, which is made of a rectangular stainless steel plate with a thickness of 0.1) and a planar shape of 34 m + w x 10 wm, and a mixture of titanium disulfide and the gelled organic electrolyte in a weight ratio of 1:1 is coated on the inner surface of the plate. The above-mentioned positive electrode 1 is formed by applying an amount equivalent to about 8 mAh. Reference numeral 7 denotes a modified polyolefin-based true-melt adhesive for adhesively sealing the periphery of the positive electrode plate 6 and the periphery of the negative electrode plate 5 on the outside of the periphery of the power generation elements such as the positive electrode 1, the negative electrode 2, and the gelled organic electrolyte. The total height of this battery is 0.5 sn.

比較例1 実施例1と同様の微孔性ポリプロピレンフィルムを界面
活性剤処理することなくセパレータとして用い、これに
実施例1と同様のゲル状有機電解質を金属ヘラで押し付
けて微孔性ポリプロピレンフィルムが透明になるまで圧
力を加えた。この際、微孔性ポリプロピレンフィルムは
、孔が方向性を有するため、圧力によって亀裂を生じ、
短絡発生の原因になることが多い。
Comparative Example 1 A microporous polypropylene film similar to that in Example 1 was used as a separator without being treated with a surfactant, and a gel-like organic electrolyte similar to that in Example 1 was pressed onto it with a metal spatula to form a microporous polypropylene film. Pressure was applied until it became transparent. At this time, the microporous polypropylene film cracks due to pressure because the pores have directionality.
This often causes short circuits.

上記セパレータとゲル状有機電解質を用いたほかは、実
施例1と同様にして第1図に示す構造の電池を作製した
A battery having the structure shown in FIG. 1 was produced in the same manner as in Example 1 except that the above separator and gel organic electrolyte were used.

上記実施例1および比較例1に示す電池をそれぞれ10
01)1ずつ製造し、電池作製時の良品の歩留りを調べ
た結果を第1表に示す。また、それぞれの良品について
内部抵抗を測定(測定温度;20℃)しか結果を第2表
に示す。
100% of each of the batteries shown in Example 1 and Comparative Example 1 above
01) Table 1 shows the results of manufacturing one cell at a time and examining the yield of non-defective products during battery fabrication. Furthermore, the internal resistance of each non-defective product was measured (measurement temperature: 20° C.) and the results are shown in Table 2.

第    1    表 第    2    表 第1表に示すように、実施例1では、界面活性剤による
処理により、セパレータへのゲル状有機電解質の塗付に
際して加圧を要しなかったので、セパレータが損傷を受
けず、したがって短絡発生がまワたくなく、不良品の発
生がなかった。また、第2表に示すように、実施例1の
電池は、セパレータへのゲル状有機電解質の塗付に際し
て加圧していないにもかかわらず、内部抵抗が小さく、
そのバラツキも小さかった。これに対し、比較例1では
、セパレータの電解質へのなじみが悪いため、セパレー
タへのゲル状有機電解質の塗付に際し、圧力を加えたた
め、セパレータが損傷を受け、それによって短絡と思わ
れる不良が発生し、その結果、第1表に示すように歩留
りが65%になった。また、比較例1の電池では、良品
についても、内部抵抗が高く、そのバラツキも大きかっ
た。
As shown in Table 1 and Table 2, in Example 1, no pressure was required when applying the gel organic electrolyte to the separator due to the treatment with a surfactant, so the separator was not damaged. Therefore, short circuits were not likely to occur, and there were no defective products. Furthermore, as shown in Table 2, the battery of Example 1 had a small internal resistance even though no pressure was applied when applying the gel organic electrolyte to the separator.
The variation was also small. On the other hand, in Comparative Example 1, the separator was not compatible with the electrolyte, so pressure was applied when applying the gel organic electrolyte to the separator, which caused damage to the separator, which caused a defect that was thought to be a short circuit. As a result, the yield was 65% as shown in Table 1. In addition, in the battery of Comparative Example 1, even the non-defective products had high internal resistance and large variations in internal resistance.

これはセパレータと電解質とのなじみが悪いため、セパ
レータの微孔内に入る電解質量が不均一になるためと思
われる。
This seems to be because the separator and electrolyte are not compatible with each other, so that the amount of electrolyte entering the pores of the separator becomes non-uniform.

また、実施例1の電池および比較例1の電池について、
50μ人定電流で放電したときの放電特性を第2図に示
す。
Furthermore, regarding the battery of Example 1 and the battery of Comparative Example 1,
Figure 2 shows the discharge characteristics when discharged at a constant current of 50μ.

第2図に示すように、実施例1の電池は比較例1の電池
に比べて、放電容量が大きかった。これも、実施例1で
は、セパレータを界面活性剤で処理して、セパレータと
電解質とのなじみを改善した結果に基づくものと考えら
れる。
As shown in FIG. 2, the battery of Example 1 had a larger discharge capacity than the battery of Comparative Example 1. This is also considered to be based on the result that in Example 1, the separator was treated with a surfactant to improve the compatibility between the separator and the electrolyte.

実施例2 ゲル状有機電解質として、L i CF3303−PC
−ポリアルキルメタクリレート系ポリマーからなるゲル
状有機電解質(L i CF3303をPC(プロピレ
ンカーボネート)に1mol/A溶解した電解液に、ポ
リアルキルメタクリレート系ポリマー(メタクリル酸メ
チルとメタクリル酸エチルとメタクリル酸ブチルの共重
合体)を20重量%添加したゲル状有機電解質〕を用い
たほかは実施例1と同様にして、第1図に示す構造の電
池を作製した。
Example 2 As a gel organic electrolyte, Li CF3303-PC
- Polyalkyl methacrylate polymers (methyl methacrylate, ethyl methacrylate, and butyl methacrylate) were added to an electrolytic solution containing 1 mol/A of polyalkyl methacrylate polymer (L i CF3303 dissolved in PC (propylene carbonate)). A battery having the structure shown in FIG. 1 was produced in the same manner as in Example 1 except that a gel-like organic electrolyte containing 20% by weight of copolymer was used.

比較例2 ゲル状有機電解質として、実施例2と同様のLicF3
303−PC−ポリアルキルメタクリレート系ポリマー
からなるゲル状有機電解質を用い、比較例1と同様にセ
パレータを界面活性剤で処理することなく、第1図に示
す構造の電池を作製した。
Comparative Example 2 As a gel organic electrolyte, LicF3 similar to Example 2 was used.
A battery having the structure shown in FIG. 1 was produced using a gel-like organic electrolyte made of 303-PC-polyalkyl methacrylate polymer and without treating the separator with a surfactant in the same manner as in Comparative Example 1.

上記実施例2および比較例2に示す電池をそれぞれ10
0個ずつ製造し、良品の歩留りおよび内部抵抗を測定(
20℃で測定)した結果を第3表に示す。
100% of each of the batteries shown in Example 2 and Comparative Example 2 above
Manufacture 0 pieces at a time and measure the yield and internal resistance of non-defective products (
The results are shown in Table 3.

第    3    表 比較例2では、電圧がまったく出ず、電池にならなかっ
た。したがって、第3表に示すように歩留りは0%にな
った。このように、比較例2が電池にならなかったのは
、セパレータのゲル状有機電解質に対するなじみが悪か
ったという本質的な原因と、ゲル状有機電解質塗付時の
セパレータの損傷の両方によるものと考えられる。
In Comparative Example 2 of Table 3, no voltage was generated and the battery did not form. Therefore, as shown in Table 3, the yield was 0%. In this way, the reason why Comparative Example 2 did not become a battery was due to both the essential cause of poor compatibility of the separator with the gel organic electrolyte and the damage to the separator when applying the gel organic electrolyte. Conceivable.

これに対し、実施例2では、セパレータを界面活性剤で
処理したことに基づいて、歩留りが向上し、また内部抵
抗も、同じ電解質を用いた比較例2ではまったく電圧が
でなかったのに対して、85Ωと低く、特にそのバラツ
キは小さかった。
On the other hand, in Example 2, the yield was improved because the separator was treated with a surfactant, and the internal resistance was also reduced, whereas in Comparative Example 2, which used the same electrolyte, no voltage was generated. The resistance was as low as 85Ω, and the variation was particularly small.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、セパレータとして微
孔性ポリプロピレンフィルムを用い、ゲル状有機電解質
を用いるリチウム電池において、セパレータを界面活性
剤で処理することにより、セパレータのゲル状有機電解
質に対する濡れ性を改善して、電池作製時の歩留りの向
上、内部抵抗の低減および内部抵抗のバラツキの減少を
実現できた。
As explained above, in the present invention, in a lithium battery using a microporous polypropylene film as a separator and a gel organic electrolyte, the separator is treated with a surfactant to improve the wettability of the separator with the gel organic electrolyte. As a result, we were able to improve yield during battery manufacturing, reduce internal resistance, and reduce internal resistance variation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るリチウム電池の一例を示す断面図
である。第2図は実施例1の電池と比較例1の電池の放
電特性を示す図である。 1・・・正極、  2・・・負極、 3・・・セパレー
タ嘉 1 口 第 2図 族!容量(mAh)
FIG. 1 is a sectional view showing an example of a lithium battery according to the present invention. FIG. 2 is a diagram showing the discharge characteristics of the battery of Example 1 and the battery of Comparative Example 1. 1...Positive electrode, 2...Negative electrode, 3...Separator Ka 1. Second group! Capacity (mAh)

Claims (1)

【特許請求の範囲】[Claims] (1)電解質として表面張力の大きな有機溶媒にリチウ
ム塩と高分子材料を溶解したゲル状有機電解質を用い、
セパレータとして微孔性ポリプロピレンフィルムを用い
るリチウム電池の製造にあたり、セパレータをオレイン
酸アミドエチレンオキサイド付加物、オレイン酸アミド
、オレイン酸ジエタノールアミドおよびオレイルジエタ
ノールアミンよりなる群から選ばれた少なくとも1種の
界面活性剤で処理することを特徴とするリチウム電池の
製造方法。
(1) Using a gel-like organic electrolyte in which lithium salt and polymer material are dissolved in an organic solvent with high surface tension as the electrolyte,
When manufacturing a lithium battery using a microporous polypropylene film as a separator, the separator is made of at least one surfactant selected from the group consisting of oleic acid amide ethylene oxide adduct, oleic acid amide, oleic acid diethanolamide, and oleyl diethanolamine. A method for producing a lithium battery, characterized in that it is treated with.
JP61063773A 1986-03-20 1986-03-20 Manufacture of lithium battery Pending JPS62222562A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61063773A JPS62222562A (en) 1986-03-20 1986-03-20 Manufacture of lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61063773A JPS62222562A (en) 1986-03-20 1986-03-20 Manufacture of lithium battery

Publications (1)

Publication Number Publication Date
JPS62222562A true JPS62222562A (en) 1987-09-30

Family

ID=13239023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61063773A Pending JPS62222562A (en) 1986-03-20 1986-03-20 Manufacture of lithium battery

Country Status (1)

Country Link
JP (1) JPS62222562A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173235A (en) * 1988-09-10 1992-12-22 Ube Industries, Ltd. Method of producing microporous film
JP2006260945A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte primary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173235A (en) * 1988-09-10 1992-12-22 Ube Industries, Ltd. Method of producing microporous film
JP2006260945A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte primary battery

Similar Documents

Publication Publication Date Title
KR100281589B1 (en) Blended Polymer Gel Electrolytes
JP6469879B2 (en) Gel polymer electrolyte, method for producing the same, and electrochemical device including gel polymer electrolyte
JP3948838B2 (en) HYBRID POLYMER ELECTROLYTE, ITS MANUFACTURING METHOD, AND LITHIUM BATTERY PRODUCED BY USING THE SAME
US5720780A (en) Film forming method for lithium ion rechargeable batteries
DE112015004696B4 (en) Manufacturing process for a secondary battery with non-aqueous electrolyte
JP4108981B2 (en) Hybrid polymer electrolyte, lithium secondary battery including the same, and method for producing the same
US4740433A (en) Nonaqueous battery with special separator
JPH08507407A (en) Rechargeable Lithium Insertion Battery Using Hybrid Polymer Electrolyte
US7150768B2 (en) Method of assembling a cell comprising a plurality of anode and cathode plates stacked together
JPH08509100A (en) Polymer electrolytic cell separator membrane and method for producing the same
GB2329513A (en) A method of preparing an electrode for lithium based secondary cell
EP1229603A1 (en) Lithium cell
JP2007066619A (en) Non-aqueous electrolytic battery and portable information device
US6852138B1 (en) Method of making polymer electrolyte electrochemical cells
KR100560533B1 (en) Binder for lithium secondary battery and lithium secondary battery comprising the same
JPS62222562A (en) Manufacture of lithium battery
EP1293008A1 (en) A cell incorporating a porous membrane
KR100322373B1 (en) Polymer solid electrolyte and lithium secondary battery using the same
JP3287927B2 (en) Non-aqueous electrolyte secondary battery
KR20040042749A (en) Porous Polymer-Coated Gelling Separators and Electrochemical Cells Using the Same
JP3902349B2 (en) Polymer electrolyte battery
JPH01140554A (en) Nonaqueous electrolytic liquid battery
JPH02304864A (en) Nonaqueous electrolyte battery
JPS62222568A (en) Manufacture of lithium battery
JP2002190319A (en) Solid state electrolyte and battery using the electrolyte