JPS62221413A - Manufacture of ceramics filter - Google Patents

Manufacture of ceramics filter

Info

Publication number
JPS62221413A
JPS62221413A JP6548886A JP6548886A JPS62221413A JP S62221413 A JPS62221413 A JP S62221413A JP 6548886 A JP6548886 A JP 6548886A JP 6548886 A JP6548886 A JP 6548886A JP S62221413 A JPS62221413 A JP S62221413A
Authority
JP
Japan
Prior art keywords
tube
filter
boron
fine particles
mandrel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6548886A
Other languages
Japanese (ja)
Inventor
Makoto Furuguchi
古口 誠
Akira Iino
顕 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP6548886A priority Critical patent/JPS62221413A/en
Publication of JPS62221413A publication Critical patent/JPS62221413A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B23/00Re-forming shaped glass
    • C03B23/04Re-forming tubes or rods
    • C03B23/047Re-forming tubes or rods by drawing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • C03C11/005Multi-cellular glass ; Porous or hollow glass or glass particles obtained by leaching after a phase separation step
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • C03B2203/16Hollow core

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Filtering Materials (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To manufacture a ceramics filter of high quality without splitting by manufacturing a capillary by means of heat stretching and eluating boron by acid treatment, after sintering finely divided particle of SiO2-B series to be formed into a tube-shaped glass. CONSTITUTION:SiCl4 and BBr3 as liquid raw materials are contained in two bubbling tanks 11 and 12. After inactive gas is blown into these bubbling tanks 11 and 12 to evaporate raw material, finely divided particle of SiO2-B series is formed by flame hydrolyzing reaction through a burner 13. The finely divided particle is injected and piled up on the outer circumference of a mandrel 14 to form up a tube-shaped glass 18 after sintering. After being removed from the mandrel 14, said particle is extended and reduced in diameter in an electric furnace 21 to be turned into a filter capillary to less than 1mm outer diameter. Then, the same is dipped in acid treatment liquid 25 such as nitric acid to eluate boron. A porous ceramics filter 26 is thus prepared.

Description

【発明の詳細な説明】 r産業上の利用分野1 本発明は汚水処理に用いて好適なセラミックスフィルタ
を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION r Industrial Application Field 1 The present invention relates to a method for manufacturing a ceramic filter suitable for use in sewage treatment.

曽゛従来の技術1 ビルディング等の建造物から排出される汚水をi1T利
用する際の処理手段として、好気性微生物による活性汚
泥法が知られているが、最近では、小型化、省エネルギ
化などの観点から、嫌気性微生物とフィルタとによる汚
水処理システムが注目されている。
Traditional technology 1 The activated sludge method using aerobic microorganisms is known as a treatment method for using i1T for wastewater discharged from buildings and other structures. From this point of view, wastewater treatment systems using anaerobic microorganisms and filters are attracting attention.

通常、この際のフィルタとして、ホローファイバ()f
ollow Fiber)と称される外径的!龍、厚さ
約2001Lm 、 Iiさ約1mの細管が用いられて
いるが、かかる細管の場合、その材料が高分子物質であ
るため機械的特性が低く、酸やアルカリにも侵されやす
い欠点がある。
Usually, a hollow fiber ()f is used as a filter in this case.
The outer diameter is called ``ollow Fiber''! A thin tube with a thickness of about 2001 Lm and a diameter of about 1 meter is used, but since the material of such a thin tube is a polymer, its mechanical properties are low and it is easily attacked by acids and alkalis. be.

これに対処するため、セラミックス酸のホローファイバ
が案出され、その製造手段として第4図に示す方法がす
でに提供されている。
In order to cope with this problem, a ceramic acid hollow fiber has been devised, and the method shown in FIG. 4 has already been provided as a means for manufacturing it.

第4図の方法では、はじめ、同図(a)のごとくボール
ミルl内に金属酸化物粉、添加剤、バインダなどの各材
料を入れ、つぎに、同図(b)のごとくボールミルlに
よりこれら材料を混練してスラリ2をつくり、その後、
同図(C)のごとくスラリ2をダイス3により加圧成形
して未焼結管4をつくり、さらにその後、同図(d)の
ごとく未焼結管4を電気炉5の保護管6内に入れて焼結
し、かくてホローファイバたる所望の細管7を得ている
In the method shown in Fig. 4, materials such as metal oxide powder, additives, and binders are first placed in a ball mill l as shown in Fig. 4 (a), and then these materials are placed in a ball mill l as shown in Fig. 4 (b). Knead the ingredients to create slurry 2, then
As shown in the same figure (C), the slurry 2 is pressure-formed with a die 3 to make an unsintered tube 4, and then, as shown in the same figure (d), the unsintered tube 4 is placed in the protective tube 6 of the electric furnace 5. In this way, the desired thin tube 7, which is a hollow fiber, is obtained.

1発明が解決しようとする問題点1 上述した従来法の場合、未焼結管4は単なるスラリ成形
物であり、しかも、その成形形態を支持するものがない
ため、焼結時に管の曲がりや割れが発生しやすく、良質
の細管7が得られる歩留りが低い。
1 Problem to be Solved by the Invention 1 In the case of the conventional method described above, the unsintered tube 4 is simply a slurry molded product, and there is nothing to support its molded form, so the tube does not bend or bend during sintering. Cracks are likely to occur and the yield of good quality thin tubes 7 is low.

本発明は上記の問題点に鑑み、良質の細管が歩留りよく
製造できるセラミックスフィルタの製造方法を提供しよ
うとするものである。
In view of the above-mentioned problems, the present invention aims to provide a method for manufacturing a ceramic filter that can produce high-quality thin tubes with a high yield.

r問題点を解決するための手段」 本発明に係るセラミックスフィルタの製造方法は、所定
の気相原料を火炎加水分解反応させることにより生成し
たS im?−B系の微粒子を1回転しているマンドレ
ルの外周に層状に堆積させるとともに、その層状微粒子
を焼結一体化することにより管状ガラスとなし、マンド
レルから離脱させた後の管状ガラスを加熱延伸手段によ
り減径して外径1m鵬φ以下のフィルタ用細管をつくり
、そのフィルタ用細管を酩で処理して該細管からホウ素
を溶出させることを特徴とし、これにより所期の[1的
を達成する。
"Means for Solving Problems" The method for manufacturing a ceramic filter according to the present invention is based on the method of manufacturing a ceramic filter according to the present invention. - B-based fine particles are deposited in a layer on the outer periphery of a mandrel rotating once, and the layered fine particles are sintered and integrated to form a tubular glass, and after being separated from the mandrel, the tubular glass is heated and drawn by heating and stretching means. The method is characterized in that a filter tube with an outer diameter of 1 mφ or less is made by reducing the diameter, and the filter tube is treated with alcohol to elute boron from the tube. do.

Y作用1 本発明方法の場合、層状微粒子の焼結が完了するまでの
間、その層状微粒子がマンドレルに保持されるから、こ
うして得られる管状ガラスに曲がりや破損などを生じる
Jjgれがなく、その後、マンドレルから離脱させた管
状ガラスを加熱延伸手段で減径するだけで、所定外径フ
ィルタ用細管が容易に得られる。
Effect 1 In the case of the method of the present invention, the layered fine particles are held on the mandrel until the sintering of the layered fine particles is completed. A thin filter tube with a predetermined outer diameter can be easily obtained by simply reducing the diameter of the tubular glass separated from the mandrel using a heating drawing means.

つぎに、こうして得られたフィルタ用細管を酸で処理し
て該細管からホウ素を溶出させるから、ホローファイバ
としてポーラスな構造を有する細管、すなわちセラミッ
クスフィルタが得られる。
Next, the filter capillary thus obtained is treated with acid to elute boron from the capillary, resulting in a capillary having a porous structure as a hollow fiber, that is, a ceramic filter.

もちろん、かかるフィルタはセラミックス酸であるから
、十分な機械的特性、耐酸性、耐アルカリ性を有する。
Of course, since such a filter is made of ceramic acid, it has sufficient mechanical properties, acid resistance, and alkali resistance.

r実 施 例J 以下、本発明方法の実施例につき1図面を参照して説1
gIする。
rExample J Hereinafter, explanation 1 will be given with reference to one drawing for each example of the method of the present invention.
I do gI.

本発明方法では、第1図(a) (b) (c) (d
)に示す各工程を所定の順序で実施して、セラミックス
フィルタを製造する。
In the method of the present invention, FIGS.
) A ceramic filter is manufactured by performing the steps shown in (1) in a predetermined order.

第1図(a)の工程では、既知の構成からなる一つのバ
ブリング槽11.12内に液状原料としてそれぞれ5i
ll^、BBr3を収容しておき、これらバブリング槽
11.12内に不活性ガス、例えばArを吹きこんで上
記各原料を蒸発させた後、その気相原料たる5iG14
.BBr3をA「により担持して多重管構造のバーナ1
3へ供給する。
In the process shown in FIG. 1(a), each bubbling tank 11.
After evaporating the above raw materials by blowing an inert gas such as Ar into these bubbling tanks 11 and 12, 5iG14, which is the gas phase raw material, is stored.
.. BBr3 is supported by A and the burner 1 has a multi-tube structure.
Supply to 3.

多重管構造のバーナ13は、複数かつ相互に同心状の流
路な有し、かかるバーナ13の各流路には、前述した気
相原料のほか、水素(H2)、酸素(02)。
The burner 13, which has a multi-tube structure, has a plurality of mutually concentric flow paths, and each flow path of the burner 13 contains hydrogen (H2) and oxygen (02) in addition to the gas phase raw material described above.

シールガス(Ar)が供給され、当該バーナ13を介し
た各ガスの火炎加水分解反応により、S 102−B系
の微粒子が生成される。
Seal gas (Ar) is supplied, and S 102-B-based fine particles are generated by a flame hydrolysis reaction of each gas via the burner 13 .

こうして生成された微粒子は、バーナ13からマンドレ
ル14の外周に噴射かつ堆積されるが、この際のバーナ
13がマンドレル14の長手力向沿いに往復動するため
、当該マンドレル14の外周には所定長さ、厚さの層状
微粒子15が形成される。
The fine particles thus generated are injected and deposited on the outer periphery of the mandrel 14 from the burner 13, but since the burner 13 at this time reciprocates along the longitudinal direction of the mandrel 14, the outer periphery of the mandrel 14 has a predetermined length. Layered fine particles 15 having a thickness of .

なお、マンドレル14は断面円形のロッドまたはパイプ
からなり、その材質はカーボン製、アルミナ製などであ
る。
The mandrel 14 is made of a rod or pipe having a circular cross section, and is made of carbon, alumina, or the like.

第1図(b)の工程では、電気炉16の保護管17内に
前記層状微粒子15が入れられ、当該層状微粒子15が
焼結されて管状ガラス18となる。
In the step shown in FIG. 1(b), the layered fine particles 15 are put into the protective tube 17 of the electric furnace 16, and the layered fine particles 15 are sintered to form the tubular glass 18.

その後、管状ガラス18はマンドレル14から離脱され
る。
Thereafter, the glass tube 18 is removed from the mandrel 14.

第1図(C)の工程では、管状ガラス18の両端に支持
棒19.20が取りつけられ、かかる状態の管状ガラス
18が電気炉21の保護管22内に挿入される。
In the process shown in FIG. 1(C), support rods 19 and 20 are attached to both ends of the tubular glass 18, and the tubular glass 18 in this state is inserted into the protective tube 22 of the electric furnace 21.

この際、支持棒!9は電気炉21の上位、支持棒20は
電気炉21の下位に位置してこれらが同一方向へ等速回
転し、かつ、保護管22の軸心線沿いに降下するが、支
持棒19の降下速度をvl、支持棒20の降下速度をv
lとした場合、これらはvl<vlのように、投置され
る。
At this time, support stick! 9 is located above the electric furnace 21, and the support rod 20 is located below the electric furnace 21, and these rotate in the same direction at a constant speed, and descend along the axis of the protection tube 22. The descending speed is vl, and the descending speed of the support rod 20 is v
If l, these are placed such that vl<vl.

したがって、保護管22内で加熱軟化された管状ガラス
18は、上記Vl<V2による引張力を受けて延伸かつ
減径され、外径l■膳φ以下のフィルタ用細管23とな
る。
Therefore, the tubular glass 18 heated and softened in the protective tube 22 is stretched and reduced in diameter under the tensile force of Vl<V2 described above, and becomes a thin filter tube 23 having an outer diameter of less than l x φ.

この際、vl、vlの設定値によりフィルタ用細管23
の外径が[1山に制御できる。
At this time, depending on the setting values of vl and vl, the filter capillary tube 23
The outer diameter of can be controlled to one peak.

第1図(d)の工程では1例えば塩化ビニル製からなる
容器24内に硝酸、塩酸の水溶液、すなわち処理液25
を収容しておさ、その処理液25中に前記フィルタ用細
管23を浸清し、酸処理して該細管23からホウ素を溶
出させる。
In the step shown in FIG. 1(d), an aqueous solution of nitric acid or hydrochloric acid, that is, a treatment liquid 25 is placed in a container 24 made of vinyl chloride, for example.
The filter capillary tube 23 is immersed in the treatment liquid 25, and boron is eluted from the capillary tube 23 by acid treatment.

かくて第2図に示すごとく、ポーラスな構造を有するセ
ラミックスフィルタ26が得られる。
In this way, as shown in FIG. 2, a ceramic filter 26 having a porous structure is obtained.

上述した実施例において、ホウ素を含むハロゲン化物と
してBE r:+を用いた理由は、BBr3の場合、室
温で液体であり、微粒子を生成する際の取り扱いが容易
なためである。
In the above examples, BE r:+ was used as the boron-containing halide because BBr3 is liquid at room temperature and is easy to handle when producing fine particles.

これ以外として、室温で気体となる例えばBCl2を用
いてもよい。
Other than this, for example, BCl2, which becomes a gas at room temperature, may be used.

火炎加水分解反応により微粒子を生成する際の火炎は、
その微粒子中の不純物が少なくできる点で既述の醜水素
炎が望ましいが、コストを低減する上では、酸素と炭化
水素とからなる火炎も有望である。
The flame when generating fine particles by flame hydrolysis reaction is
The aforementioned ugly hydrogen flame is desirable because it can reduce the amount of impurities in the fine particles, but flames made of oxygen and hydrocarbons are also promising in terms of cost reduction.

L記微粒子をS 1o2−B系とした理由は、フィルタ
用細管23を硝酸、塩酸などで処理した際、ホウ素を容
易に溶出させることができるためである。
The reason why the L particulates are S 1o2-B is that boron can be easily eluted when the filter tube 23 is treated with nitric acid, hydrochloric acid, or the like.

この際の処理液25として硝酸、1′!!酸などを用い
た理由は、高純度のものが容易に入手できるからである
At this time, the treatment liquid 25 is nitric acid, 1'! ! The reason why acids and the like are used is that highly pure ones are easily available.

処理液25としては硫酸、酢酸なども用いることができ
る。
As the treatment liquid 25, sulfuric acid, acetic acid, etc. can also be used.

具体例 第1図(a) (b) (c) (d)の各工程により
、セラミックスフィルタを製造するとき、第1図(a)
の工程を表1の条件で実施し、第1図(b)の工程を表
2の条件で実施した。
Specific example: When manufacturing a ceramic filter through the steps shown in Fig. 1(a), (b), (c), and (d), Fig. 1(a)
The process shown in FIG. 1(b) was carried out under the conditions shown in Table 1, and the process shown in FIG. 1(b) was carried out under the conditions shown in Table 2.

表   1 表   2 七記玉程により得たSiO2−B系の透明な管状ガラス
18を、第1図(C)の各工程における加熱延伸により
、外径1m履φ、厚さ150pa+のフィルタ用細管2
3とした後、そのフィルタ用細管23を、第1図(d)
の工程での処理液(硝酸、11!酸の水溶液)25で酸
処理して該細管23からホウ素を溶出させた。
Table 1 Table 2 The SiO2-B-based transparent tubular glass 18 obtained in the seven-day process was heated and stretched in each step of FIG. 2
3, the filter thin tube 23 is shown in FIG. 1(d).
The boron was eluted from the capillary tube 23 by acid treatment with the treatment solution 25 (nitric acid, aqueous solution of 11! acid) in step .

こうして得られたセラミックスフィルタ26につき、そ
の細孔分布を水銀圧入法にて測定したところ、第3図に
示すごとく、平均細孔径は0.1 grsであった。
The pore distribution of the ceramic filter 26 thus obtained was measured by mercury porosimetry, and as shown in FIG. 3, the average pore diameter was 0.1 grs.

比較例 第1図(a)の工程と同様の八−すを使用し、表1の条
件でS 102−B系の微粒子を生成した後、この微粒
子にポリビニルアルコールを加え、これらを第4図(b
)の手段で12時間、混合かつ粉砕し、こうして得たス
ラリ2を第4図(C)の手段で加圧成形して外径3mm
φ、厚さ1msの未焼結管4をつくり、該未焼結管4を
第4図(d)の7段で焼結して細管7を得た。
Comparative Example Using the same eight-stage as in the process shown in Figure 1(a), S 102-B type fine particles were produced under the conditions shown in Table 1, then polyvinyl alcohol was added to the fine particles, and these were produced in the process shown in Figure 4. (b
) was mixed and pulverized for 12 hours, and the slurry 2 thus obtained was pressure-molded using the means shown in Figure 4(C) to give an outer diameter of 3 mm.
An unsintered tube 4 having a diameter of 1 ms and a thickness of 1 ms was prepared, and the unsintered tube 4 was sintered in seven stages as shown in FIG. 4(d) to obtain a thin tube 7.

この焼結細管7の長子方向には、径方向にも派生するか
なり長い割れが生じた。
A fairly long crack was generated in the longitudinal direction of this sintered thin tube 7, which also extended in the radial direction.

r発明の効果j 以上説明した通り、本発明方法によるときは、所定の反
応により生成したSiO2−B系の微粒子を、マンドレ
ルの外周に層状に堆積させ、該層状微粒子を焼結一体化
して管状ガラスとなし、該管状ガラスを加熱延伸手段に
より減径して外径1厘lφ以下のフィルタ用細管をつく
り、該フィルタ用細管を酸で処理して該m管からホウ素
を溶出させるから、良質のセラミックスフィルタが割れ
なく製造でき、製品の歩留りが向上する。
r Effects of the Invention j As explained above, when using the method of the present invention, SiO2-B-based fine particles produced by a predetermined reaction are deposited in a layered manner on the outer periphery of a mandrel, and the layered fine particles are sintered and integrated to form a tubular shape. The diameter of the tubular glass is reduced by heating and drawing means to create a filter tube with an outer diameter of 1 liter or less, and the filter tube is treated with acid to elute boron from the m tube, resulting in high quality. Ceramic filters can be manufactured without cracking, improving product yield.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) (b) (c) (d)は本発明方法の
一実施例における工程説明図、第2図は本発明方法によ
り製造されたセラミックスフィルタの斜視図、第3図は
そのフィルタの細孔径分布図、第4図(a) (b)(
c) (d)は従来法の工程説明図である。 11、12@・参へブリング槽 13・・Φ・・バーナ 14・・・・・マンドレル 15・・・−・層状微粒子 16・・・−・電気炉 1B−−・−・管状ガラス 19.20−−・支持体 21・・・φ・電気炉 23−@・−拳フィルタ用細管 25・・・−・処理液 26・・・・・セラミックスフィルタ 代理人 弁理士 斎 藤 義 雄 第1121 第3111 第4WJ
Figures 1 (a), (b), (c), and (d) are process explanatory diagrams of an embodiment of the method of the present invention, Figure 2 is a perspective view of a ceramic filter manufactured by the method of the present invention, and Figure 3 is a perspective view of the ceramic filter manufactured by the method of the present invention. Pore size distribution diagram of the filter, Figure 4 (a) (b) (
c) (d) is a process explanatory diagram of the conventional method. 11, 12@・Reference tank 13・・Φ・・Burner 14・・・・・Mandrel 15・・・Layered fine particles 16・・・Electric furnace 1B・・・・・Tubular glass 19.20 --・Support body 21...φ・Electric furnace 23-@・-Fist filter thin tube 25...--Treatment liquid 26... Ceramic filter agent Patent attorney Yoshio Saito No. 1121 No. 3111 4th WJ

Claims (4)

【特許請求の範囲】[Claims] (1)所定の気相原料を火炎加水分解反応させることに
より生成したSiO_2−B系の微粒子を、回転してい
るマンドレルの外周に層状に堆積させるとともに、その
層状微粒子を焼結一体化することにより管状ガラスとな
し、マンドレルから離脱させた後の管状ガラスを加熱延
伸手段により減径して外径1mmφ以下のフィルタ用細
管をつくり、そのフィルタ用細管を酸で処理して該細管
からホウ素を溶出させることを特徴とするセラミックス
フィルタの製造方法。
(1) Depositing SiO_2-B-based fine particles produced by flame hydrolysis reaction of a predetermined gas-phase raw material in a layered manner on the outer periphery of a rotating mandrel, and sintering and integrating the layered fine particles. After separating the tubular glass from the mandrel, the diameter of the tubular glass is reduced by heating and drawing means to create a filter tube with an outer diameter of 1 mm or less, and the filter tube is treated with acid to remove boron from the tube. A method for manufacturing a ceramic filter, characterized by elution.
(2)SiO_2−B系微粒子を生成するための気相原
料が四塩化ケイ素の蒸気、ホウ素を含むハロゲン化物の
蒸気からなる特許請求の範囲第1項記載のセラミックス
フィルタの製造方法。
(2) The method for manufacturing a ceramic filter according to claim 1, wherein the gas phase raw material for producing SiO_2-B-based fine particles is silicon tetrachloride vapor or boron-containing halide vapor.
(3)フィルタ用細管を処理するための酸が硝酸と塩酸
とを含んでいる処理酸特許請求の範囲第1項記載のセラ
ミックスフィルタの製造方法。
(3) The method for manufacturing a ceramic filter according to claim 1, wherein the acid for treating the filter capillary contains nitric acid and hydrochloric acid.
(4)ホウ素を含むハロゲン化物がBBr_3からなる
特許請求の範囲第3項記載のセラミックスフィルタの製
造方法。
(4) The method for manufacturing a ceramic filter according to claim 3, wherein the boron-containing halide is BBr_3.
JP6548886A 1986-03-24 1986-03-24 Manufacture of ceramics filter Pending JPS62221413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6548886A JPS62221413A (en) 1986-03-24 1986-03-24 Manufacture of ceramics filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6548886A JPS62221413A (en) 1986-03-24 1986-03-24 Manufacture of ceramics filter

Publications (1)

Publication Number Publication Date
JPS62221413A true JPS62221413A (en) 1987-09-29

Family

ID=13288528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6548886A Pending JPS62221413A (en) 1986-03-24 1986-03-24 Manufacture of ceramics filter

Country Status (1)

Country Link
JP (1) JPS62221413A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012119712A1 (en) * 2011-03-04 2012-09-13 Boraident Gmbh Process and device for producing a porous glass template

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012119712A1 (en) * 2011-03-04 2012-09-13 Boraident Gmbh Process and device for producing a porous glass template

Similar Documents

Publication Publication Date Title
EP0473104B1 (en) Method for manufacturing a silica glass base material
AU3467093A (en) Sol-gel process for forming a germania-doped silica glass rod
JP4043768B2 (en) Manufacturing method of optical fiber preform
CN1219713C (en) Process for producing light fiber mother material
JPS62221413A (en) Manufacture of ceramics filter
JPH0243720B2 (en) HANDOTAISHORYOSEKIEIGARASUSEIROSHINKAN
JPS58199745A (en) Manufacture of tubular porous glass film
JP2836302B2 (en) Method for manufacturing glass articles
JP2000327341A (en) Multiple pipe burner for producing porous glass base material and method and device for producing porous glass base material by use of the same
JPH02204340A (en) Production of optical fiber base material
CN110845133A (en) Method for preparing boron-doped stress bar by gradual change of isolation layer
JP2002154838A (en) Method for manufacturing glass preform for optical fiber
JP2001199733A (en) Method for producing synthetic quartz glass member
JPS62108744A (en) Transparent vitrification method of porous glass base material
JPS60264338A (en) Manufacture of optical fiber preform
JPS6356178B2 (en)
JPH03187933A (en) Production of silica glass
JPS6065742A (en) Production of porous glass base material for optical fiber by vad method
JP2001139333A (en) Method for manufacturing synthetic quartz glass ingot and synthetic quartz glass preform
JP4252871B2 (en) Optical fiber preform manufacturing method
JP2551642B2 (en) Glass base material heating furnace for optical fiber
JP2622214B2 (en) Support member for stretching optical fiber preform
JPH0615413B2 (en) Method for manufacturing glass particulate deposit
JPH01275441A (en) Production of preform for optical fiber
JPH0672723A (en) Production of synthetic quartz glass pipe stock