JPS62219902A - Manufacture of metal magnetic powder - Google Patents

Manufacture of metal magnetic powder

Info

Publication number
JPS62219902A
JPS62219902A JP61063777A JP6377786A JPS62219902A JP S62219902 A JPS62219902 A JP S62219902A JP 61063777 A JP61063777 A JP 61063777A JP 6377786 A JP6377786 A JP 6377786A JP S62219902 A JPS62219902 A JP S62219902A
Authority
JP
Japan
Prior art keywords
nickel
metal magnetic
powder
magnetic powder
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61063777A
Other languages
Japanese (ja)
Inventor
Shigeo Hirai
茂雄 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61063777A priority Critical patent/JPS62219902A/en
Publication of JPS62219902A publication Critical patent/JPS62219902A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the needle-shaped or square-shaped metal magnetic powder having good coersive force by heating the suspension of powder mainly consisting of oxyironhydroxide or iron oxide up to the temperature higher than the predetermined temperature under the existence of nickel salt and urea causing the nickel compound to be adhered to the surface thereof and reducing such powder through the heating under the gas phase. CONSTITUTION:The nickel salt and urea form stable composite salt in the water. This composite salt is decomposed by the hydrolysis when it is heated up to 80 deg.C or higher and the nickel compound is adhered to the surface of particles of powder suspension mainly consisting of oxyironhydroxide or iron oxide. The metal magnetic powder obtained by heating and reducing the raw material powder adhering such nickel compound under the gas phase conforming to the ordinary method has a low coersive force even in case amount of nickel is small. Therefore, according to this method, the metal magnetic powder consisting of square type needle-shaped particles having a high axial ratio can be obtained easily with the coersive force as small as about 1,000Oe.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は各種磁気記録媒体の磁気記録素子としてを用
な金属磁性粉末の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing metal magnetic powder used as a magnetic recording element of various magnetic recording media.

〔従来の技術〕[Conventional technology]

一般に鉄を主体とした金属磁性粉末は、第一鉄塩水溶液
にアルカリ水溶液を加えて生成する水酸化第一鉄の沈澱
物を生成し、これを空気酸化するなどの方法で得られた
針状のα−オキシ水酸化鉄やこれを焼成した針状のγ−
Fe2O3あるいはFe3O4を原料とし、これを加熱
還元して針状の金属鉄とすることにより製造されており
、酸化物系磁性粉末に比較して非常に高い保磁力を備え
ている。しかるに、このような高保磁力の金属磁性粉末
を用いた磁気記録媒体は消去特性および記録再生のポジ
ションなどの面から専用の記録再生機器が必要であるた
め、近年においては酸化物系磁性粉末を用いた磁気記録
媒体との互換性をもたらす消去特性およびポジションに
対応できるように、1.000工ルステツド程度以下の
保磁力を備えた金属磁性粉末が要望されている。
In general, metal magnetic powder mainly composed of iron is produced by adding an alkaline aqueous solution to a ferrous salt aqueous solution to produce a ferrous hydroxide precipitate, which is then oxidized in the air. α-Iron oxyhydroxide and acicular γ-
It is manufactured by using Fe2O3 or Fe3O4 as a raw material and heating and reducing it to form needle-shaped metallic iron, and has a much higher coercive force than oxide-based magnetic powder. However, magnetic recording media using such metal magnetic powders with high coercive force require specialized recording and reproducing equipment in terms of erase characteristics and recording/reproducing positions, so in recent years, oxide-based magnetic powders have been used. There is a need for a metal magnetic powder having a coercive force on the order of 1.000 millimeters or less to accommodate erasing characteristics and positions that provide compatibility with other magnetic recording media.

ところで、鉄を主体とした金属磁性粉末はその粒子中に
ニッケル成分が存在すると保磁力の低下を招くことが知
られている。そこで上記要望に対処する有用な一手段と
してニッケル成分を上記金属磁性粉末に含有させて1,
000工ルステツド程度以下の適度の保磁力とすること
が考えられる。
By the way, it is known that the presence of a nickel component in the particles of metal magnetic powder mainly composed of iron causes a decrease in coercive force. Therefore, as a useful means to meet the above requirements, a nickel component is included in the metal magnetic powder.
It is conceivable to have an appropriate coercive force of about 0,000 millimeters or less.

従来、金属磁性粉末にニッケル成分を含有させる代表的
方法としては、オキシ水酸化鉄または酸化鉄のアルカリ
性懸濁液にニッケル塩の水溶液を添加し、懸濁粒子の表
面に水酸化ニッケルを沈着させ、これを気相中で加熱還
元することにより、粉末粒子表面にニッケルまたはその
化合物からなる被覆層を有する金属磁性粉末を得る方法
が提案されている(特願昭57−141399号)。
Conventionally, a typical method for incorporating nickel into metal magnetic powder is to add an aqueous solution of nickel salt to an alkaline suspension of iron oxyhydroxide or iron oxide, and deposit nickel hydroxide on the surface of the suspended particles. A method has been proposed in which a metal magnetic powder having a coating layer of nickel or its compound on the surface of the powder particles is obtained by thermally reducing the nickel in a gas phase (Japanese Patent Application No. 141399/1983).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記提案法によって保磁力が、1、00
0エルステツド以下の金属磁性粉末を得ようとする場合
、多量のニッケルを添加する必要があり、これにより針
状形状の崩壊を伴う軸比の低下ならびに角型(σr/σ
S)の大幅な低下を招くという問題点があった。
However, the above proposed method reduces the coercive force to 1,00
When trying to obtain metal magnetic powder with a particle size of 0 oersted or less, it is necessary to add a large amount of nickel, which causes a decrease in the axial ratio accompanied by the collapse of the acicular shape and a square shape (σr/σ
There was a problem in that it caused a significant decrease in S).

したがって、この発明は、上記問題点を解決し、少量の
ニッケルの添加により保磁力が低く良好な針状形状およ
び角型を有する金属磁性粉末を得る方法を提供すること
を目的としている。
Therefore, an object of the present invention is to solve the above-mentioned problems and provide a method for obtaining a metal magnetic powder having a low coercive force and a good acicular shape and square shape by adding a small amount of nickel.

〔問題点を解決するための手段〕 この発明者らは、上記目的において鋭意検討を重ねた結
果、原料であるオキシ水酸化鉄または酸化鉄を主体とす
る粉末にニッケル成分を付着させるにあたり、ニッケル
塩と特定成分とを上記粉末の懸濁液中に存在させて加熱
する方法を採用することにより、上記ニッケル塩の使用
量を少なくしても最終的に得られる金属磁性粉末の保磁
力が非常に低くなり、かつ針状形状が損なわれず高軸比
で角型も良好となることを見い出し、この発明をなすに
至った。
[Means for Solving the Problems] As a result of intensive studies for the above-mentioned purpose, the inventors found that when attaching a nickel component to powder mainly composed of iron oxyhydroxide or iron oxide, which is a raw material, nickel By adopting a method in which the salt and specific components are present in a suspension of the above-mentioned powder and then heated, the coercive force of the final metal magnetic powder obtained is extremely high even if the amount of the above-mentioned nickel salt used is reduced. The inventors have discovered that the angular shape can be improved with a high axial ratio without impairing the acicular shape, and have achieved this invention.

すなわちこの発明は、オキシ水酸化鉄または酸化鉄を主
体とした粉末の懸濁液をニッケル塩と尿素の存在下で8
0℃以上に加熱して上記粉末の粒子表面にニッケル化合
物を付着させたのち、この粉末を気相中で加熱還元して
ニッケルを主体とした金属磁性粉末を得ることを特徴と
する金属磁性粉末の製造方法に係る。
That is, in this invention, a suspension of powder mainly composed of iron oxyhydroxide or iron oxide is heated to 80% in the presence of nickel salt and urea.
A metal magnetic powder characterized in that a nickel compound is attached to the particle surface of the powder by heating to 0°C or higher, and then the powder is heated and reduced in a gas phase to obtain a metal magnetic powder mainly composed of nickel. It pertains to the manufacturing method.

〔発明の構成・作用〕[Structure and operation of the invention]

この発明方法の特徴点は、上述の如く、金属磁性粉末の
原料となるオキシ水酸化鉄または酸化鉄を主体とした粉
末にニッケル化合物を付着させるために、上記原料粉末
の懸濁液をニッケル塩と尿素の存在下で80℃以上に加
熱することにある。
The feature of the method of this invention is that, as mentioned above, in order to attach a nickel compound to powder mainly composed of iron oxyhydroxide or iron oxide, which is the raw material for metal magnetic powder, a suspension of the raw material powder is mixed with nickel salt. and heating to 80°C or higher in the presence of urea.

すなわち、ニッケル塩と尿素とは水′中において安定な
複合塩を形成しているが、この複合塩が80℃以上の加
熱によって加水分解し、懸濁しているオキシ水酸化鉄ま
たは酸化鉄を主体としな粉末の粒子表面にニッケル化合
物が付着される。そしてこのニッケル化合物を付着した
原料粉末を常法に準じて気相中で加熱還元して得られる
金属磁性粉末は、ニッケルの含有量が少なくても低い保
磁力を有するものとなる。したがって、この発明方法に
よれば1.000工ルステツド程度以下の低い保磁力を
備えてかつ高軸比で角型も良好な針状粒子からなる金属
磁性粉末が容易に得られる。
In other words, nickel salt and urea form a stable composite salt in water, but this composite salt is hydrolyzed by heating above 80°C, and the suspended iron oxyhydroxide or iron oxide becomes the main component. A nickel compound is attached to the surface of the toshina powder particles. The metal magnetic powder obtained by heating and reducing the raw material powder to which the nickel compound is attached in a gas phase according to a conventional method has a low coercive force even if the nickel content is small. Therefore, according to the method of the present invention, a metal magnetic powder comprising acicular particles having a low coercive force of about 1.000 millimeters or less, a high axial ratio, and a good square shape can be easily obtained.

上述のようにこの発明方法によってニッケルの含有量が
少なくても低い保磁力の金属磁性粉末が得られる理由は
明確ではないが、オキシ水酸化鉄または酸化鉄を主体と
した粉末の粒子表面にニッケル化合物を被着させる場合
、既述提案法の如くニッケル塩にアルカリを作用させる
よりも、尿素の存在下での加水分解の方が形成されるニ
ッケル化合物の沈澱が均一になり、粒子表面に均質にニ
ッケル化合物が沈着する結果、最終的に得られる金属磁
性粉末の粒子内部にニッケルがより均一に分布する状態
になるためと推測される。
As mentioned above, it is not clear why a metal magnetic powder with a low coercive force can be obtained even with a small nickel content by the method of this invention, but it is possible to When depositing a compound, hydrolysis in the presence of urea makes the precipitate of the nickel compound more uniform than that of applying an alkali to the nickel salt as in the previously proposed method, resulting in a more uniform precipitate of the nickel compound on the particle surface. It is presumed that this is because nickel is more uniformly distributed inside the particles of the finally obtained metal magnetic powder as a result of the nickel compound being deposited on the particles.

この発明において使用する上記ニッケル塩としてはこれ
と尿素とを含む水溶液を酸性とする硫酸ニッケル、硝酸
ニッケル、塩化ニッケルなどが好適であり、これらは既
述の如く水中において尿素との間で安定な複合塩を形成
する。
As the nickel salt used in this invention, nickel sulfate, nickel nitrate, nickel chloride, etc., which make an acidic aqueous solution containing the nickel salt and urea, are suitable, and as mentioned above, these are stable with urea in water. Forms complex salts.

このようなニッケル塩と尿素との使用割合は、ニッケル
塩/尿素のモル比で0.5〜5程度とするのがよく、尿
素が多すぎるとニッケル化合物の沈澱化に使用されない
尿素が多くなり、効率が悪くなる。また尿素が少なすぎ
ると加熱によるニッケル化合物の原料粉末の粒子表面へ
の付着がうまく進まない。
The ratio of nickel salt and urea to be used is preferably about 0.5 to 5 in molar ratio of nickel salt/urea; if there is too much urea, a lot of urea will not be used for precipitation of the nickel compound. , efficiency becomes worse. Moreover, if the amount of urea is too small, the adhesion of the raw material powder of the nickel compound to the particle surface due to heating will not proceed properly.

またニッケル塩の使用量は、必要とする金属磁性粉末の
保磁力、軸比、角型などによって異なるが、磁気記録媒
体の消去特性などに好結果を与える1、 o o oエ
ルステッド程度以下の保磁力を有する金属磁性粉末を対
象とする場合、原料のオキシ水酸化鉄または酸化鉄を主
体とした粉末100重量部に対して10〜80重量部程
度とするのがよい。
The amount of nickel salt to be used varies depending on the coercive force, axial ratio, square shape, etc. of the metal magnetic powder required, but it is necessary to obtain a coercive force of less than 1,000 Oersted, which gives good results for the erasing characteristics of the magnetic recording medium. When the target is metal magnetic powder having magnetic force, the amount is preferably about 10 to 80 parts by weight per 100 parts by weight of powder mainly composed of iron oxyhydroxide or iron oxide as a raw material.

なお、ニッケル塩と尿素とを原料粉末の懸濁液中に存在
させる手段としては、通常ニッケル塩と尿素とを含む水
溶液中に原料粉末を添加して懸濁液とする方法が採用さ
れるが、原料粉末を水中に懸濁した液中にニッケル塩と
尿素とを添加混合しても差し支えない。
In addition, as a means for making the nickel salt and urea exist in the suspension of the raw material powder, a method is usually adopted in which the raw material powder is added to an aqueous solution containing the nickel salt and urea to form a suspension. , nickel salt and urea may be added and mixed into a solution in which the raw material powder is suspended in water.

この発明では既述の如く原料粉末の懸濁液をニッケル塩
と尿素の存在下で80℃以上に加熱することにより原料
粉末の粒子表面にニッケル化合物を付着させるが、この
加熱温度が80℃より低(なると、加水分解がうまく起
こらず、ニッケル化合物の付着を定量的に行うことが困
難になるので好ましくない。なお、上記付着したニッケ
ル化合物は明確ではないが水酸化ニッケルないし酸化ニ
ッケルの形態であるものと推定される。
In this invention, as described above, a nickel compound is attached to the particle surface of the raw material powder by heating the suspension of the raw material powder to 80°C or higher in the presence of nickel salt and urea, but this heating temperature is higher than 80°C. This is not desirable because hydrolysis does not occur well and it becomes difficult to quantify the adhesion of nickel compounds.Although it is not clear that the nickel compounds adhered above are in the form of nickel hydroxide or nickel oxide, It is estimated that there is.

一方、原料粉末であるオキシ水酸化鉄または酸化鉄とし
ては、たとえば第一鉄塩水溶液とアルカリとから生成す
る水酸化第一鉄を空気酸化して得られるα−オキシ水酸
化鉄(α−FeOOH)などの種々の方法で得られた針
状粒子からなるオキシ水酸化鉄、ならびにこれを焼成し
て得られる針状粒子からなるγ−Fe、O8またはFe
:104あるいはこれらの中間的酸化物が挙げられる。
On the other hand, as the raw material powder iron oxyhydroxide or iron oxide, for example, α-iron oxyhydroxide (α-FeOOH ) Iron oxyhydroxide consisting of acicular particles obtained by various methods such as γ-Fe, O8 or Fe consisting of acicular particles obtained by firing the iron oxyhydroxide
:104 or intermediate oxides thereof.

そしてこれらは軸比3〜15、平均長軸径0.05〜1
μm程度のものが好適である。
And these have an axial ratio of 3 to 15 and an average major axis diameter of 0.05 to 1.
A thickness on the order of μm is suitable.

この発明では、上述のようにして得られたニッケル化合
物を付着した原料粉末を常法に準じて加熱還元すること
により、ニッケルを含有する鉄を主体とした金属磁性粉
末とする。
In this invention, the raw material powder to which the nickel compound adhered obtained as described above is heated and reduced in accordance with a conventional method to obtain a metal magnetic powder mainly composed of iron containing nickel.

この場合、上記加熱還元の前に原料粉末の粒子表面にケ
イ酸被膜を形成する表面処理を施してもよい。すなわち
ケイ酸被膜は加熱還元に際して粉末粒子相互間の焼結を
防ぎ、原料粉末の針状形状を保つ機能を示し、最終的に
得られる金属磁性粉末の磁気特性に好結果を与える。こ
の処理手段としては、たとえばニッケル化合物を付着し
た原料粉末を水中に再分散させ、この懸濁液中に水溶性
ケイ酸塩を添加混合したのち、炭酸ガスを吹き込んで中
和する方法がある。なおケイ酸の付着量は金属鉄に対す
るケイ素原子換算重量が0.1〜15重量%となるよう
にするのがよい。
In this case, a surface treatment may be performed to form a silicic acid film on the particle surface of the raw material powder before the thermal reduction. In other words, the silicic acid coating prevents sintering between powder particles during thermal reduction and maintains the acicular shape of the raw material powder, giving good results to the magnetic properties of the finally obtained metal magnetic powder. As a method for this treatment, for example, there is a method of redispersing the raw material powder to which the nickel compound is attached in water, adding and mixing a water-soluble silicate to this suspension, and then neutralizing it by blowing carbon dioxide gas. The amount of silicic acid deposited is preferably 0.1 to 15% by weight in terms of silicon atoms relative to metal iron.

またこの発明においては通常、上記加熱還元に先立って
300〜1.000℃程度で加熱処理することが推奨さ
れる。すなわち、この加熱処理によって原料粉末の粒子
表面に付着したニッケル化合物が完全な酸化物になると
共に、加熱還元時に鉄とニッケルとが合金化され易くな
る。
Further, in the present invention, it is usually recommended to perform a heat treatment at about 300 to 1,000°C prior to the above-mentioned thermal reduction. That is, by this heat treatment, the nickel compound attached to the particle surface of the raw material powder becomes a complete oxide, and at the same time, iron and nickel are easily alloyed during thermal reduction.

このような加熱処理後に行う上記加熱還元は、一般に水
素ガス中300〜600℃程度の温度とすればよい。そ
してこの加熱還元を経ることによって原料粉末はニッケ
ルを含む鉄を主体とした金属磁性粉末となる。
The above-mentioned thermal reduction performed after such heat treatment may generally be carried out at a temperature of about 300 to 600° C. in hydrogen gas. Through this thermal reduction, the raw material powder becomes a metal magnetic powder mainly composed of iron containing nickel.

なお、このようにして得られる金属磁性粉末は、その酸
化安定性を向上させるために、トルエンなどの有機溶媒
中に分散させてこれに空気を吹き込むなどの方法によっ
て粒子表面に薄い酸化被膜を設けることが望ましい。
In order to improve the oxidation stability of the metal magnetic powder obtained in this way, a thin oxide film is formed on the particle surface by dispersing it in an organic solvent such as toluene and blowing air into it. This is desirable.

〔発明の効果〕〔Effect of the invention〕

この発明の製造方法により得られるニッケルを含む鉄を
主体とした金属磁性粉末は、上記ニッケルの含有量が少
なくても低い保磁力を有し、かつ針状形状が損なわれず
高軸比で角型も良好なものとなる。したがって、この発
明によれば磁気記録媒体の消去特性や記録再生における
ポジション面より有用な1.OQOエルステッド程度以
下の磁気特性にすぐれる金属磁性粉末を容易に製造する
ことができる。
The metal magnetic powder mainly composed of iron containing nickel obtained by the production method of the present invention has a low coercive force even if the nickel content is low, and has a square shape with a high axial ratio without losing its acicular shape. will also be good. Therefore, according to the present invention, 1. Metal magnetic powder having excellent magnetic properties of OQO Oersted or less can be easily produced.

〔実施例〕〔Example〕

以下、この発明の実施例を比較例と対比して説明する。 Examples of the present invention will be described below in comparison with comparative examples.

実施例1 硫酸ニッケル1.50 gと尿素3.42 gを水20
0 m 12に溶解させ、これに平均長軸径0.5μm
、軸比15のα−オキシ水酸化鉄100gを加えて懸濁
させた。次いでこの懸濁液を90℃で6時間加熱した。
Example 1 1.50 g of nickel sulfate and 3.42 g of urea were mixed with 20 g of water.
0 m 12 and an average major axis diameter of 0.5 μm.
, 100 g of α-iron oxyhydroxide having an axial ratio of 15 was added and suspended. This suspension was then heated at 90° C. for 6 hours.

そののち、懸濁物を充分水洗し、1゜0℃で乾燥し、さ
らに500mlの水中に懸濁させ、0.5モルのオルト
ケイ酸ナトリウム水溶液35、5 m lを一時に加え
て10分間攪拌したのち、炭酸ガスをIN/分の割合で
液のpHが8以下となるまで吹き込んだ。次に懸濁物を
充分水洗し、100℃で乾燥したのち、この乾燥物をマ
ツフル炉中で800℃で加熱処理し、さらに導入量12
/分の水素気流中で500℃にて4時間の加熱還元処理
を行った。次に還元物をトルエン中に浸漬し、攪拌しな
がら空気を吹き込んで粒子表面に薄い酸化被膜を形成し
、金属磁性粉末を得た。
Thereafter, the suspension was thoroughly washed with water, dried at 1°0°C, further suspended in 500 ml of water, and 35.5 ml of a 0.5 mol sodium orthosilicate aqueous solution was added at once and stirred for 10 minutes. Thereafter, carbon dioxide gas was blown into the solution at a rate of IN/min until the pH of the solution became 8 or less. Next, the suspended matter was thoroughly washed with water and dried at 100°C, and then the dried product was heat-treated at 800°C in a Matsufuru furnace, and the amount introduced was 12°C.
Thermal reduction treatment was performed at 500° C. for 4 hours in a hydrogen flow of 1/min. Next, the reduced product was immersed in toluene, and air was blown in while stirring to form a thin oxide film on the particle surface, thereby obtaining metal magnetic powder.

実施例2 硫酸ニッケルの使用量を3.00 g、尿素の使用量を
6.84 gとした以外は実施例1と同様にして金属磁
性粉末を得た。
Example 2 Metal magnetic powder was obtained in the same manner as in Example 1, except that the amount of nickel sulfate used was 3.00 g, and the amount of urea used was 6.84 g.

実施例3 硫酸ニッケルの使用量を6.OOg、尿素の使用量を1
3.68gとした以外は実施例1と同様にして金属磁性
粉末を得た。
Example 3 The amount of nickel sulfate used was 6. OOg, the amount of urea used is 1
A metal magnetic powder was obtained in the same manner as in Example 1 except that the amount was 3.68 g.

比較例1 ニッケル化合物の付着処理を行わなかった以外は実施例
1と同様にして金属磁性粉末を得た。
Comparative Example 1 Metal magnetic powder was obtained in the same manner as in Example 1 except that the nickel compound adhesion treatment was not performed.

比9例2 実施例1と同様のα−オキシ水酸化鉄10gを含むp 
H11以上のアルカリ性懸濁液800mlを調製し、こ
の液中に攪拌下で0.1モルの硫酸ニッケル水溶液57
.1 m lを2.5 m It/分の割合で滴下した
のち、0.5モルのオルトケイ酸ナトリウム水溶液35
.6 m j!を一時に加え、さらに10分間攪拌を続
けたのち、炭酸ガスを117分の割合で液のpHが8以
下となるまで吹き込んだ。つぎに懸濁物を充分に水洗し
たのち吸引ろ過し、100℃で乾燥した。この乾燥物を
用いて実施例1と同様に加熱処理、加熱還元処理、酸化
被膜形成処理を施し、金属磁性粉末を得た。
Ratio 9 Example 2 P containing 10 g of α-iron oxyhydroxide similar to Example 1
Prepare 800 ml of an alkaline suspension of H11 or higher, and add 0.1 mol of nickel sulfate aqueous solution 57 to this solution while stirring.
.. After dropping 1 ml at a rate of 2.5 m It/min, 0.5 mol of sodium orthosilicate aqueous solution 35
.. 6 m j! was added at once, stirring was continued for another 10 minutes, and then carbon dioxide gas was blown into the solution at a rate of 117 minutes until the pH of the liquid became 8 or less. Next, the suspension was thoroughly washed with water, filtered under suction, and dried at 100°C. This dried material was subjected to heat treatment, heat reduction treatment, and oxide film forming treatment in the same manner as in Example 1 to obtain metal magnetic powder.

比較例3 硫酸ニッケルの使用量を114.2mA!、滴下割合を
2.5 m i! /分とした以外は比較例2と同様に
して金属磁性粉末を得た。
Comparative Example 3 The amount of nickel sulfate used was 114.2mA! , the dropping rate was 2.5 m i! A metal magnetic powder was obtained in the same manner as in Comparative Example 2 except that the heating time was changed to /min.

以上の実施例および比較例にて得られた金属磁性粉末の
平均長軸径、軸比、保磁力(Hc)、飽和磁化ff1(
σS)、角型σr/σSを測定した結果を、各実施例お
よび比較例におけるニッケル塩の使用量(Ni/α−F
eOOH重量%)と共に下表で示す。
The average major axis diameter, axial ratio, coercive force (Hc), and saturation magnetization ff1(
σS) and the square shape σr/σS are calculated based on the amount of nickel salt used (Ni/α-F
It is shown in the table below along with eOOH weight %).

上表から明らかなように、この発明方法によれば、ニッ
ケルの含有量が少な(でも(実施例1)1.000工ル
ステツド程度の低い保磁力を有する金属磁性粉末が得ら
れ、しかもこの金属磁性粉末は通常の加熱還元にて得ら
れるニッケルを含まない金属磁性粉末(比較例1)と同
等の平均長軸径および軸比を有し、かつ角型も良好であ
る。これに対して、従来の方法にてニッケルを含有させ
た場合は、ニッケルの含有量が少ない(比較例2)と保
磁力の低下が少なく、しかも平均長軸径および軸比が小
さくなって針状形状の崩壊が生じていることが判る。さ
らに、ニッケル含有量を増大させた場合、この発明によ
る金属磁性粉末(実施例2)に比較して、従来方法によ
る金属磁性粉末(比較例3)は保磁力の低下が少ないに
もかかわらず、角型が著しく悪化し、かつ粒子形状の崩
壊が大きいことが判る。
As is clear from the above table, according to the method of the present invention, a metal magnetic powder having a low nickel content ((Example 1) but a low coercive force of about 1,000 milliseconds) can be obtained. The magnetic powder has the same average major axis diameter and axial ratio as the nickel-free metal magnetic powder obtained by normal thermal reduction (Comparative Example 1), and also has a good square shape. When nickel is added using the conventional method, the lower the nickel content (comparative example 2), the less the coercive force decreases, and the average major axis diameter and axial ratio become smaller, preventing the collapse of the acicular shape. Furthermore, when the nickel content is increased, the coercive force of the metal magnetic powder produced by the conventional method (Comparative Example 3) decreases compared to the metal magnetic powder produced by the present invention (Example 2). It can be seen that even though the particle size is small, the square shape is significantly deteriorated and the particle shape is greatly disrupted.

Claims (1)

【特許請求の範囲】[Claims] (1)オキシ水酸化鉄または酸化鉄を主体とした粉末の
懸濁液をニッケル塩と尿素の存在下で80℃以上に加熱
して上記粉末の粒子表面にニッケル化合物を付着させた
のち、この粉末を気相中で加熱還元してニッケルを含有
する鉄を主体とした金属磁性粉末を得ることを特徴とす
る金属磁性粉末の製造方法。
(1) After heating a suspension of powder mainly composed of iron oxyhydroxide or iron oxide to 80°C or higher in the presence of nickel salt and urea to attach a nickel compound to the particle surface of the powder, A method for producing metal magnetic powder, which comprises heating and reducing the powder in a gas phase to obtain a metal magnetic powder mainly composed of iron containing nickel.
JP61063777A 1986-03-20 1986-03-20 Manufacture of metal magnetic powder Pending JPS62219902A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61063777A JPS62219902A (en) 1986-03-20 1986-03-20 Manufacture of metal magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61063777A JPS62219902A (en) 1986-03-20 1986-03-20 Manufacture of metal magnetic powder

Publications (1)

Publication Number Publication Date
JPS62219902A true JPS62219902A (en) 1987-09-28

Family

ID=13239141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61063777A Pending JPS62219902A (en) 1986-03-20 1986-03-20 Manufacture of metal magnetic powder

Country Status (1)

Country Link
JP (1) JPS62219902A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507638B1 (en) * 2002-11-29 2005-08-10 한국화학연구원 A method for producing ultrafine spherical nickel particles

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507638B1 (en) * 2002-11-29 2005-08-10 한국화학연구원 A method for producing ultrafine spherical nickel particles

Similar Documents

Publication Publication Date Title
JPH0725531B2 (en) Magnetic ultrafine particles composed of ε'iron carbide and method for producing the same
EP0041257B1 (en) Process for preparing ferromagnetic particles comprising metallic iron
JPH0368923B2 (en)
JPH01164006A (en) Ferromagnetic metal powder and manufacture thereof
JPH0420241B2 (en)
JPS62219902A (en) Manufacture of metal magnetic powder
US4664947A (en) Multi-layer process for cobalt treatment of ferromagnetic oxides
JPS6021307A (en) Production of ferromagnetic metallic powder
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPS5919169B2 (en) Manufacturing method of metal magnetic powder
JPS5931003A (en) Metal magnetic powder and manufacture thereof
JPH0434902A (en) Preparation of needle alloy magnetic powder
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS63140005A (en) Production of fine ferromagnetic metal particle powder
JP2958370B2 (en) Method for producing composite ferrite magnetic powder
JPS5919162B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JP3049374B2 (en) Method for producing acicular oxide magnetic powder
JPH0147882B2 (en)
JPS607105A (en) Manufacture of magnetic powder
JPS60170906A (en) Spindle shaped gamma-fe2o3 magnetic powder including co and manufacture of the same
JPS63102304A (en) Fe-ni alloy magnetic particle powder and manufacture thereof
JPS58161723A (en) Production of magnetic metallic powder
JPH03199301A (en) Magnetic metallic powder and production thereof and magnetic recording medium
JPS619504A (en) Manufacture of magnetic metallic powder