JPS62218804A - Non-contact displacement measuring apparatus - Google Patents

Non-contact displacement measuring apparatus

Info

Publication number
JPS62218804A
JPS62218804A JP6085286A JP6085286A JPS62218804A JP S62218804 A JPS62218804 A JP S62218804A JP 6085286 A JP6085286 A JP 6085286A JP 6085286 A JP6085286 A JP 6085286A JP S62218804 A JPS62218804 A JP S62218804A
Authority
JP
Japan
Prior art keywords
displacement
measurement
secondary electrons
amplitude
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6085286A
Other languages
Japanese (ja)
Inventor
Iwao Yamazaki
岩男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ya Man Ltd
Original Assignee
Ya Man Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ya Man Ltd filed Critical Ya Man Ltd
Priority to JP6085286A priority Critical patent/JPS62218804A/en
Publication of JPS62218804A publication Critical patent/JPS62218804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Optical Transform (AREA)

Abstract

PURPOSE:To perform a measurement of displacement in a non-contact manner, by making a light receiving cathode surface planar to use an image detector tube for electromagnetically focusing secondary electrons therefrom. CONSTITUTION:An incident light is received by a cathode surface 2 from the left to generate corresponding secondary electrons on the back thereof and the secondary electrons are turned to a beam with a focusing coil 3. The secondary electrons passing through a light opening 4 are multiplied to be taken out from an anode 6 with a displacement of the incident light, the beam not allowed to pass increases. So, a feedback control is performed utilizing an output of an anode 6 to apply a voltage with a proper frequency and amplitude to a deflection coil 7, an adjustment by which the secondary electron beam is always allowed to pass through the opening 4. In this case, the frequency and amplitude of the voltage to the coil 7 is proportional to the displacement and amplitude of the incident light. This voltage is properly processed, displayed or recorded thus, enabling the measurement of displacement measurement in the non-contact manner.

Description

【発明の詳細な説明】 本発明は、変位する被測定部から入射する光線を受光し
て、受光光学像による二次電子ビームの変位を電気的に
補償して静止させ、この場合に必要とされる電気信号か
ら被測定部の変位を測定する非接触変位測定装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention receives a light beam incident from a displaced measurement target part, electrically compensates for the displacement of the secondary electron beam due to the received optical image, and makes the secondary electron beam stand still. The present invention relates to a non-contact displacement measuring device that measures the displacement of a part to be measured from electrical signals generated by the sensor.

非接触変位測定装置は、非接触で変位測定が可能である
ことから、変位の大小や被測定部の遠近にかかわらず測
定可能であることから、各種の製造ラインや検査工程等
において多用されている。
Non-contact displacement measurement devices are widely used in various manufacturing lines and inspection processes because they can measure displacement without contact, regardless of the size of the displacement or the distance of the part to be measured. There is.

従来の非接触変位測定装置は、イメージディセクタ管の
フォトカソードで被測定部からの変位光を受光し、アパ
ーチャを通過して光電子増倍部に到る電子ビームに偏向
を加え、アパーチャを通過する電子ビームが常時一定で
あるように制御し、この偏向電圧の周波数及び振幅から
変位測定を行うものである。この場合のイメージディセ
クタ管の光入射面は曲面であるため、入射角度が制限さ
れ、しなかって測定範囲も大幅に制限されていた。
Conventional non-contact displacement measurement devices receive displacement light from the part to be measured using the photocathode of the image dissector tube, deflect the electron beam that passes through the aperture, and reach the photomultiplier. The deflection voltage is controlled so that the electron beam is always constant, and the displacement is measured from the frequency and amplitude of this deflection voltage. Since the light incident surface of the image dissector tube in this case is a curved surface, the angle of incidence is limited, and the measurement range is also significantly limited.

また従来のイメージディセクタ管は静電集束が採用され
ており、フォトカソードがレンズとして機能していた。
Furthermore, conventional image dissector tubes employ electrostatic focusing, with the photocathode functioning as a lens.

したがってフォトカソード面における光学的収差等によ
る誤差による精度も管によってばらつきがあり、その他
製造上の要因により約25χはどの誤差があワた。
Therefore, the accuracy due to errors due to optical aberrations etc. on the photocathode surface varies depending on the tube, and the error is about 25χ due to other manufacturing factors.

本発明の目的は、測定可能範囲が拡大した上に測定精度
の大幅に向上した非接触変位測定装置を提供することで
ある。
An object of the present invention is to provide a non-contact displacement measuring device with an expanded measurable range and significantly improved measurement accuracy.

この目的は、特許請求の範囲に記載の構成を有する非接
触変位測定装置、すなわち、変位する被測定部から入射
する光線を受光するフォトカソード面が平面であり、フ
ォトカソードからの二次電子を電磁集束するように構成
されたイメージディセクタ管を具備する非接触変位測定
装置によって達成される。
This purpose is to provide a non-contact displacement measuring device having the configuration described in the claims, that is, a photocathode surface that receives a light beam incident from a displaced measurement target part is flat, and secondary electrons from the photocathode are This is accomplished by a non-contact displacement measurement device with an image dissector tube configured for electromagnetic focusing.

本発明にかかる装置によれば、測定可能範囲は長さで約
2倍、面積で4倍に拡大され、また偏向電圧を上昇し得
ることから測定精度も大幅に向上する。さらにフォトカ
ソード面のスペクトルレスポンスが向上していることか
ら測定可能光が可視領域から赤外領域まで拡張される。
According to the device according to the present invention, the measurable range is expanded approximately twice in length and four times in area, and since the deflection voltage can be increased, measurement accuracy is also significantly improved. Furthermore, the improved spectral response of the photocathode surface extends the measurable light from the visible region to the infrared region.

なお、ここで対象とするイメージディセクタ管のアパー
チャ径は、電磁集束を採用する結果、比較的自由に選定
され、大径とすることによって外部ノイズに対する抗性
を強めることができ、反対に小径とすることによって小
さなターゲットを測定することができる。かかるアパー
チャ径を適宜採用することによって測定目的に応じた装
置を構成することができる。
The aperture diameter of the image dissector tube considered here can be selected relatively freely as a result of adopting electromagnetic focusing; a large diameter can strengthen resistance to external noise, whereas a small diameter can strengthen the resistance to external noise. By doing so, small targets can be measured. By appropriately adopting such an aperture diameter, it is possible to configure an apparatus according to the purpose of measurement.

以下実施例を示す添付図を参照しながら本発明を詳述す
る。
The present invention will now be described in detail with reference to the accompanying drawings showing examples.

添付図は、本発明°にかがる装置を構成するのに適した
イメージディセクタ管1の構造を示す断面図である。図
において、フォトカソード面2は、図示のように平面に
形成されている。このフォトカソード面2は、図左方か
らの入射光を受けて、対応する二次電子をその裏側に発
生する。ここで発生した二次電子は、集束コイル3によ
ってビーム状になり右方向に指向してアパーチャ4に到
る。
The attached figure is a sectional view showing the structure of an image dissector tube 1 suitable for constructing the device according to the present invention. In the figure, the photocathode surface 2 is formed flat as shown. This photocathode surface 2 receives incident light from the left side of the figure and generates corresponding secondary electrons on its back side. The secondary electrons generated here are turned into a beam by the focusing coil 3 and directed to the right to reach the aperture 4 .

アパーチャ4を通過した二次電子は、二次電子増倍部(
フォトマルチプライヤ一部)5において増倍され、アノ
ード6から出力として取り出される。
The secondary electrons that have passed through the aperture 4 are transferred to the secondary electron multiplier (
It is multiplied in a photomultiplier (part) 5 and taken out as an output from an anode 6.

この場合、入射光が直進していれば、アパーチャ4を通
過するが、もし変位するとすれば、アパーチャ4周辺を
移動して通過しないビームが多くなる。そこで、アノー
ド6からの出力を利用してフィードバック制御を行い、
偏向コイル7に適当な周波数及び振幅の電圧を加えて、
二次電子ビームが常にアパーチャ4を通過するように調
整すれば、この場合の偏向コイル7に加えられる電圧の
周波数及び振幅は、入射光の変位及び振幅に比例するこ
とになる。この電圧を適当に処理して表示又は記録する
ことにより非接触で変位測定を行うことができる。なお
、このイメージディセクタ管のアパーチャ径は、電磁集
束を採用する結果、比較的自由に選定され、大径とする
ことによって外部ノイズに対する抗性を強めることがで
き、反対に小径とすることによって小さなターゲットを
測定することができる。かかるアパーチャ径を適宜選択
採用することによって測定目的に応じた装置を構成する
ことができる。
In this case, if the incident light travels straight, it will pass through the aperture 4, but if it is displaced, many beams will move around the aperture 4 and will not pass through. Therefore, feedback control is performed using the output from the anode 6,
Applying a voltage of appropriate frequency and amplitude to the deflection coil 7,
If the secondary electron beam is adjusted to always pass through the aperture 4, the frequency and amplitude of the voltage applied to the deflection coil 7 in this case will be proportional to the displacement and amplitude of the incident light. By appropriately processing and displaying or recording this voltage, displacement can be measured without contact. As a result of adopting electromagnetic focusing, the aperture diameter of this image dissector tube can be selected relatively freely; by making it large, resistance to external noise can be strengthened, and conversely, by making it small, Can measure small targets. By appropriately selecting and adopting such aperture diameters, it is possible to configure an apparatus according to the purpose of measurement.

第2図は、従来技術にかかるイメージディセクタ管の構
造を示す略図である。図において、第1図と顕著に異な
るのは、フォトカソード12が曲面であること、及びビ
ーム集束が静電集束電極13であること、である。その
他の構成は第1図とほぼ同様であり、アノード16から
の出力によって偏向コイル17ヘフイードバツク制御を
行い入射光の変位、したがって被測定部の変位測定を行
っていた。このような構成において、新規なイメージデ
ィセクタ管1と比較して、フォトカソード面が曲面であ
るため感度面積が狭く、また静電集束であるため集束限
界があり、十分狭小なビームが得られなかった。そのた
め、測定範囲が狭く、精度を向上することができない欠
点があった。
FIG. 2 is a schematic diagram showing the structure of an image dissector tube according to the prior art. In the figure, what is markedly different from FIG. 1 is that the photocathode 12 is a curved surface and that the beam is focused by an electrostatic focusing electrode 13. The rest of the configuration is almost the same as that in FIG. 1, and the output from the anode 16 performs feedback control to the deflection coil 17 to measure the displacement of the incident light and therefore the displacement of the part to be measured. In such a configuration, compared to the new image dissector tube 1, the sensitive area is narrow because the photocathode surface is a curved surface, and there is a focusing limit due to electrostatic focusing, so a sufficiently narrow beam cannot be obtained. There wasn't. Therefore, the measurement range was narrow and the accuracy could not be improved.

第3図は、本発明にかかる非接触変位測定袋装置の構成
を示すブロック図である。図においてイメージディセク
タ管lは、第1図に示した構成を有する。左側のターゲ
ットTから光学レンズLを経てイメージディセクタ管1
のフォトカソード上にターゲツト像を形成し、前述のよ
うなフィードバック制御により測定端子に出力が得られ
る。この出力を適宜処理して表示又は記録することによ
り非接触で変位測定を行うことができる。ここでの非接
触変位測定装置は、前述のように測定範囲、測定精度、
測定可能放射領域、外部ノイズに対する抗性、被測定タ
ーゲットのサイズ等において、従来装置を凌駕するもの
である。
FIG. 3 is a block diagram showing the configuration of the non-contact displacement measuring bag device according to the present invention. In the figure, the image dissector tube l has the configuration shown in FIG. Image dissector tube 1 from target T on the left via optical lens L
A target image is formed on the photocathode, and an output is obtained at the measurement terminal by feedback control as described above. By appropriately processing and displaying or recording this output, displacement measurement can be performed without contact. The non-contact displacement measurement device here has a measurement range, measurement accuracy,
It surpasses conventional devices in terms of measurable radiation range, resistance to external noise, size of target to be measured, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明にかかる非接触変位測定装置を構成す
るに適したイメージディセクタ管の構造を示す断面図で
ある。 第2図は、従来技術にかかるイメージディセクタ管の構
造を示す断面図である。 第3図は、本発明にかかる非接触変位測定装置の構成を
示すブロック図である。 図中の主な参照符号の対応。 1:イメージディセクタ管
FIG. 1 is a sectional view showing the structure of an image dissector tube suitable for constructing a non-contact displacement measuring device according to the present invention. FIG. 2 is a sectional view showing the structure of an image dissector tube according to the prior art. FIG. 3 is a block diagram showing the configuration of a non-contact displacement measuring device according to the present invention. Correspondence of main reference symbols in the figure. 1: Image dissector tube

Claims (1)

【特許請求の範囲】 変位する被測定部から入射する光線を受光し、該受光光
学像による二次電子ビームの変位を電気的に補償して静
止させ、この場合に必要とされる電気信号から被測定部
の変位を測定する非接触変位測定装置において、 変位する被測定部から入射する光線を受光するフォトカ
ソード面が平面であり、フォトカソードからの二次電子
を電磁集束するように構成されたイメージディセクタ管
を具備することを特徴とする非接触変位測定装置。
[Claims] A system that receives a light beam incident from a displaced measurement target, electrically compensates for the displacement of the secondary electron beam due to the received optical image, and makes it stand still, and from the electrical signal required in this case. In a non-contact displacement measurement device that measures the displacement of a measuring target, the photocathode surface that receives the incident light from the displaced measuring target is flat and configured to electromagnetically focus secondary electrons from the photocathode. A non-contact displacement measuring device characterized by comprising an image dissector tube.
JP6085286A 1986-03-20 1986-03-20 Non-contact displacement measuring apparatus Pending JPS62218804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6085286A JPS62218804A (en) 1986-03-20 1986-03-20 Non-contact displacement measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6085286A JPS62218804A (en) 1986-03-20 1986-03-20 Non-contact displacement measuring apparatus

Publications (1)

Publication Number Publication Date
JPS62218804A true JPS62218804A (en) 1987-09-26

Family

ID=13154323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6085286A Pending JPS62218804A (en) 1986-03-20 1986-03-20 Non-contact displacement measuring apparatus

Country Status (1)

Country Link
JP (1) JPS62218804A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078303A (en) * 1983-10-05 1985-05-04 Ya Man Ltd Optical device for measuring displacement without contacting

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6078303A (en) * 1983-10-05 1985-05-04 Ya Man Ltd Optical device for measuring displacement without contacting

Similar Documents

Publication Publication Date Title
US5055679A (en) Surface analysis method and apparatus
EP0162512B1 (en) Apparatus for slit radiography
US3838284A (en) Linear particle accelerator system having improved beam alignment and method of operation
JP2754096B2 (en) Sample surface condition measurement device using electron beam
JP3509424B2 (en) Quadrupole mass spectrometer
JPH03173054A (en) Particle radiation device
JPS62218804A (en) Non-contact displacement measuring apparatus
JPH05135738A (en) Multiplex collector and charged-particle dispersing apparatus for particle on mass collecting surface
US2986634A (en) Method of examining the quality of electron-optical images and devices for carrying out this method
JPS5841623B2 (en) Mass spectrometer ion detector
JPH051584B2 (en)
JPH03160391A (en) Method and device for measuring incident angle of energy beam, and those for measuring characteristic of charged particle lens
JPS5999216A (en) Measuring device of surface height of body
JPS5824726B2 (en) Scanning length measuring device
Jacobsohn et al. A Precision Spectrophotometer for Use in the Range 450 to 820 mμ
JPH0341402Y2 (en)
JPH01117258A (en) Correction device for charged particle beam
JP2527735B2 (en) Stroke device
JPH0586616B2 (en)
JP2003123675A (en) X-ray image intensifying tube
JPS5766634A (en) Electron beam exposure device
JPS606821A (en) Level detector
JPH07161328A (en) Focused ion beam processing device
JPH03102753A (en) Electron beam device
JPH09190788A (en) Measuring method for focusing beam