JPS6221790A - Device for crystal growth and method - Google Patents

Device for crystal growth and method

Info

Publication number
JPS6221790A
JPS6221790A JP15993185A JP15993185A JPS6221790A JP S6221790 A JPS6221790 A JP S6221790A JP 15993185 A JP15993185 A JP 15993185A JP 15993185 A JP15993185 A JP 15993185A JP S6221790 A JPS6221790 A JP S6221790A
Authority
JP
Japan
Prior art keywords
crystal
raw material
shaft
composition
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15993185A
Other languages
Japanese (ja)
Inventor
Seiji Shinoyama
篠山 誠二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP15993185A priority Critical patent/JPS6221790A/en
Publication of JPS6221790A publication Critical patent/JPS6221790A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To make it possible to dissolve a raw material in melt in response to an amount of crystal growth and to grow crystal with uniform composition, by setting a shaft for charging the raw material besides a shaft for pulling up crystal. CONSTITUTION:Growth weight of the growth crystal 3 per time is measured by the weight sensor 7, the shaft 2 for charging a raw material is dropped in response to the growth weight to dissolve the raw material 4. A dissolution amount per time is measured by the weight sensor 8, to control the transfer speed of the shaft 2. In this manner, the composition of the crystal 3 growing from the melt 5 is always kept constant and, since the composition of the crystal growing from the melt becomes constant, crystal uniform with respect to composition can be grown. In doping of impurities, doping can be carried out in a constant concentration based on the similar principle. Further by this device, since the raw material can be always charged in parallel with crystal growth, the device and process can be used for semicontinuous large-sized crystal growth.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は原料を連続的にチャージし、組成的に均一な結
晶を成長させる結晶成長装置および方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a crystal growth apparatus and method for continuously charging raw materials and growing compositionally uniform crystals.

(従来の技術の問題点) 引上法(4S L Ge ’(初めとする半尋体績晶、
各種酸化物結晶等の育成において、良質の大形結晶が容
易に得られる方法として広く用いられている。
(Problems with conventional technology) Pulling method (4S L Ge'
In growing various oxide crystals, this method is widely used as a method for easily obtaining large, high-quality crystals.

しかしこの方法をZn1−x Gax P等の混晶化合
物半導体の成長に用いた場合、次のような欠点がある。
However, when this method is used to grow a mixed crystal compound semiconductor such as Zn1-x Gax P, there are the following drawbacks.

図2に一例として、工n1−xGaxPの相図の一部を
模式的に示す。今X m X lの組成を持つ結晶を成
長させるためには、相図からXmX2の組成の融液を用
いる必要がある。すなわち、Gaの偏析係数が/と異な
るためにm液の組成と成長する結晶の組成が異なる。
As an example, FIG. 2 schematically shows a part of the phase diagram of n1-xGaxP. In order to grow a crystal having a composition of X m X l, it is necessary to use a melt having a composition of XmX2 from the phase diagram. That is, since the segregation coefficient of Ga is different from /, the composition of the m liquid and the composition of the growing crystal are different.

成長と共に融液の組成はGa濃度が減少しx−x2から
x s−0に向って変化する。結晶の組成も同時にX 
m XlからX、θに向って変化してしまう。すなわち
一本の結晶の中でその組成は成長と共に除々に変化して
しまう。
With growth, the composition of the melt changes from x-x2 to xs-0 as the Ga concentration decreases. The composition of the crystal is also X
It changes from m Xl toward X and θ. In other words, the composition within a single crystal gradually changes as it grows.

この現象は上記の様な混晶結晶の成長に限らず一般に、
結晶の性質を制御するために行なわれる不純物のドーピ
ングにおいても同じであう、不純物を均一にドーピング
することができない。
This phenomenon is not limited to the growth of mixed crystals as mentioned above, but in general,
The same is true for doping with impurities to control the properties of crystals; it is not possible to dope the impurities uniformly.

この欠点を解決するためには、大詰の融液から少量の結
晶を成長させるか、あるいは結晶の成長と共に融液の組
成が変化しないように何らかの方法により融液の組成を
制御する必要がある。
In order to solve this drawback, it is necessary to grow a small amount of crystals from a large melt, or to control the composition of the melt by some method so that the composition does not change as the crystals grow. .

(問題点を解決するための手段) 本発明は、融液の組成を結晶の成長に対して一定となる
ように制御するため、結晶の引上げシャフトの他に7本
以上の原料チャージ用のシャフトを設けこの原料を結晶
の成長量に応じて、融液中に溶解させるようにしたもの
で、以下図面について詳細に説明する。
(Means for Solving the Problems) In order to control the composition of the melt to be constant with respect to crystal growth, the present invention provides seven or more raw material charging shafts in addition to the crystal pulling shaft. The raw material is dissolved in the melt according to the amount of crystal growth.The drawings will be described in detail below.

(作 用) 第1図は本発明の装置の構成であって、/は結晶引上用
シャフト、λは原料チャージ用シャフト。
(Function) Fig. 1 shows the configuration of the apparatus of the present invention, where / is a crystal pulling shaft and λ is a raw material charging shaft.

3は成長結晶、qはチャージ用原料、5は融液。3 is a growing crystal, q is a raw material for charging, and 5 is a melt.

6はるつぼt 7Iには重量センサである。6 is a weight sensor in the crucible t7I.

この装置の操作は、まず成長結晶3の単位時間当りの成
長重量を重量センサ7によって計測し、この成長重量に
応じて原料チャージ用シャフトコを下降させることによ
ね、原料グを溶解させる。
In operation of this device, first, the weight of the grown crystal 3 per unit time is measured by the weight sensor 7, and the raw material charging shaft is lowered in accordance with this grown weight, thereby melting the raw material.

単位時間当りの溶解量は重1よセンサにによって計測し
、シャフト−〇送り速度を制御する。
The amount of dissolution per unit time is measured by a weight sensor and the shaft feed rate is controlled.

この動作を行わせるためにシャフト42には上下駆動用
の機構およびその制御部が設置されている0 この装置を用いて融液組成を一定に制御する方法を第、
2図を用いて説明する。
In order to perform this operation, the shaft 42 is equipped with a vertical drive mechanism and its control unit.
This will be explained using Figure 2.

第一図において融液組成x=x2から成長する結晶の組
成X−XIである。したがってチャージ用原料の組成を
x−ycHK選んでおき、単位時間当りに成長する結晶
の重量と等しい重量の原料を単位時間当りに溶解させて
やれば、融液の組成は変わることなく一定に保つことが
できる。
In Figure 1, the composition of the crystal grown from the melt composition x=x2 is X-XI. Therefore, if the composition of the charging raw material is selected as x-ycHK, and the raw material whose weight is equal to the weight of the crystal grown per unit time is melted per unit time, the composition of the melt will remain constant without changing. be able to.

xlの組成のチャージ用原料はるつぼ6内の温度分布を
利用して、融液中に溶解させることができる。
The charge raw material having the composition xl can be dissolved in the melt by utilizing the temperature distribution within the crucible 6.

(実施例/) ■n1−xGaxP系において、X−θθjの均一組成
を有する結晶育成の実施例を示す。この系においてX−
θ近傍におけるGaの偏析係数は実験によF) 33!
;と求められた( J−J、A、P、JJ+ (2’+
、/?にグ、 I、7.2)。
(Example/) 1 An example of growing a crystal having a uniform composition of X-θθj in the n1-xGaxP system will be shown. In this system, X-
The segregation coefficient of Ga near θ is determined by experiment F) 33!
; was calculated (J-J, A, P, JJ+ (2'+
,/? Nigu, I, 7.2).

即ち、X−θθSの組成を有する結晶を成長させる際の
融液の組成はX=θθ/jとなる。
That is, the composition of the melt when growing a crystal having a composition of X-θθS is X=θθ/j.

直径/θ0■ψの石英るつぼを用い、これKx−θθ1
5 )の組成を有する3θθ?の融液を作シ、またチャ
ージ用原料としてX工θθ5の組成を有する均一な原料
多結晶/5ot(直径/SWa、長さ/gθ−の円柱状
インゴット)を用い、液体カプセル引上げ法により結晶
の育成を行なった。ここで、カプセル液としてB203
 + /!;Of+零囲気ガスおよび圧力はN2ガス、
4t0却/−1引上速度、2Jvm /hである。得ら
れた結晶は1、重t/−θf最犬直径3θ1ψである。
Using a quartz crucible with diameter /θ0■ψ, this is Kx−θθ1
5) 3θθ having the composition? A uniform raw material polycrystalline/5ot (a cylindrical ingot with a diameter/SWa and a length/gθ-) having a composition of was trained. Here, B203 is used as the capsule liquid.
+ /! ;Of+zero ambient gas and pressure is N2 gas,
The lifting speed is 4t0/-1, 2Jvm/h. The obtained crystal has a weight of 1, t/-θf and a maximum diameter of 3θ1ψ.

図3に質量分析法により行なったGa濃度の分析結果を
示す。図において、Aは上記のインゴットの結果、Bは
X−θθ/jの融液3θθ?から通常の方法により育成
した結晶のGad度分布を示す。AはBに比べて極めて
均一性がよいことが分る。
FIG. 3 shows the results of Ga concentration analysis conducted by mass spectrometry. In the figure, A is the result of the above ingot, B is the melt 3θθ? of X-θθ/j? The Gad degree distribution of a crystal grown by a conventional method is shown in FIG. It can be seen that A has extremely good uniformity compared to B.

(実施列2) InPへのFeのドーピングの実施例を示す。Feの偏
析係数は/、6×/θ と小さいことが知られている。
(Embodiment row 2) An example of doping InP with Fe is shown. It is known that the segregation coefficient of Fe is as small as /, 6×/θ.

tlijioの組成として純鉄θ041wr %ドーピ
ングしたもの、チャージ用原料多結晶にアンドープエn
P多結晶を用い、引上速度73m/hの条件により結晶
育成を行なった。他の条件は実施例/と同様である。得
られた結晶のFeの分析結果を図tlr  Aに示す。
The composition of tlijio is pure iron θ041wr % doped, undoped polycrystalline charge material polycrystalline
Crystal growth was performed using P polycrystal at a pulling speed of 73 m/h. Other conditions are the same as in Example. The analysis results for Fe in the obtained crystals are shown in Figure tlrA.

同図、BK通常の方法で育成した結果を示す。The figure shows the results of growing BK using the usual method.

Bでは、Feの濃度はその偏析現象によって成長と共に
増加するのに対し、Aではほぼ一定濃度に保たれている
In B, the Fe concentration increases with growth due to its segregation phenomenon, whereas in A, the Fe concentration is kept almost constant.

(発明の効果) 以上説明したように融液の組成は常に一定に保たれ、同
時にこの融液から成長する結晶の組成は一定になるから
、組成的に均一な結晶の成長に有効である。
(Effects of the Invention) As explained above, the composition of the melt is always kept constant, and at the same time, the composition of the crystal grown from this melt is constant, which is effective in growing compositionally uniform crystals.

この装置および方法は、説明に述べた混晶に限らず一般
に結晶の性質を制御するために行なわれる不純物のドー
ピングにおいても同様の原理に基づいて、一定の濃度で
ドーピングすることが可能であり有効である。
This device and method are effective not only for the mixed crystals mentioned in the explanation, but also for doping with impurities, which is generally performed to control the properties of crystals, based on the same principle, and it is possible to dope at a constant concentration. It is.

さらにこの装置および方法によれば、原料のチャージが
常に結晶成長と平行して行なわれることから、原料を多
量に準備すれば半連続的な大形結晶育成にも用いること
ができる。
Furthermore, according to this apparatus and method, charging of the raw material is always carried out in parallel with crystal growth, so if a large amount of raw material is prepared, it can be used for semi-continuous large crystal growth.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の装置の構成例、第一図はIn1xGa
xPの相図の模式図、第3図は実施例/の結果、第9図
は実施例−の結果である。 /・・・結晶引上用シャフト、λ・・・原料チャージ用
シャフト、3・・・成長結晶、ダ・・・チャージ用原料
、5・・・融液、6・・・るつぼ、7.ざ・・・電縫セ
ンサ。 第 7 図 第こ図 ノI InP         χ In y−x GaxP 固イヒ車 (〉≦、ン 第3図 固イヒ率 (%) ′ji、4  図
Fig. 1 shows an example of the configuration of the device of the present invention, and Fig. 1 shows an example of the structure of the device of the present invention.
A schematic diagram of the phase diagram of xP, FIG. 3 shows the results of Example/, and FIG. 9 shows the results of Example-. /... Shaft for crystal pulling, λ... Shaft for charging raw material, 3... Growing crystal, D... Raw material for charging, 5... Melt, 6... Crucible, 7. Well... the ERW sensor. Fig. 7 InP χ In y−x GaxP InP

Claims (1)

【特許請求の範囲】 1、原料を溶融保持するるつぼと、該るつぼを一定温度
に保持する加熱装置と成長中の結晶を回転しつつ引上げ
る結晶引上げ用シャフトと該シャフトの回転引上げ装置
からなり溶融原料から目的とする結晶を成長しつつ引上
げる結晶成長装置において、前記結晶引上げ用シャフト
のほかに昇降機構を有する原料チャージ用シャフトを有
することを特徴とする結晶成長装置。 2、所望の組成の原料を溶融保持し、該融液の温度を制
御して該融液から目的とする組成の固体結晶を回転しつ
つ上昇する結晶引上げ用シャフトに保持して引き上げる
結晶成長方法において、固体結晶の引上げと同時に、前
記結晶引上げ用シャフトとほかに設けた原料チャージ用
シャフトに保持した原料を前記融液中に溶解させること
を特徴とする結晶成長方法。
[Claims] 1. Consisting of a crucible that melts and holds raw materials, a heating device that maintains the crucible at a constant temperature, a crystal pulling shaft that rotates and pulls up the growing crystal, and a rotating pulling device for the shaft. A crystal growth apparatus for growing and pulling a target crystal from a molten raw material, the crystal growth apparatus comprising a raw material charging shaft having an elevating mechanism in addition to the crystal pulling shaft. 2. A crystal growth method in which a raw material of a desired composition is melted and held, the temperature of the melt is controlled, and a solid crystal of the desired composition is held and pulled from the melt in a rotating and ascending crystal pulling shaft. A crystal growth method characterized in that, at the same time as pulling a solid crystal, a raw material held in the crystal pulling shaft and a raw material charging shaft provided in addition to the crystal pulling shaft is dissolved in the melt.
JP15993185A 1985-07-19 1985-07-19 Device for crystal growth and method Pending JPS6221790A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15993185A JPS6221790A (en) 1985-07-19 1985-07-19 Device for crystal growth and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15993185A JPS6221790A (en) 1985-07-19 1985-07-19 Device for crystal growth and method

Publications (1)

Publication Number Publication Date
JPS6221790A true JPS6221790A (en) 1987-01-30

Family

ID=15704278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15993185A Pending JPS6221790A (en) 1985-07-19 1985-07-19 Device for crystal growth and method

Country Status (1)

Country Link
JP (1) JPS6221790A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286998A (en) * 1988-05-13 1989-11-17 Nippon Mining Co Ltd Production of group iii-v mixed crystal
JPH02188487A (en) * 1989-01-17 1990-07-24 Osaka Titanium Co Ltd Method for automatically supplying rod-shaped raw material
JP2018177568A (en) * 2017-04-07 2018-11-15 株式会社福田結晶技術研究所 MANUFACTURING METHOD AND APPARATUS OF HIGH PERFORMANCE HIGH UNIFORM LARGE SCALE SINGLE CRYSTAL OF Fe-Ga BASE ALLOY

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01286998A (en) * 1988-05-13 1989-11-17 Nippon Mining Co Ltd Production of group iii-v mixed crystal
JPH02188487A (en) * 1989-01-17 1990-07-24 Osaka Titanium Co Ltd Method for automatically supplying rod-shaped raw material
JP2018177568A (en) * 2017-04-07 2018-11-15 株式会社福田結晶技術研究所 MANUFACTURING METHOD AND APPARATUS OF HIGH PERFORMANCE HIGH UNIFORM LARGE SCALE SINGLE CRYSTAL OF Fe-Ga BASE ALLOY

Similar Documents

Publication Publication Date Title
US5885071A (en) Quartz glass crucible for pulling single crystal
JPH0321515B2 (en)
US4303465A (en) Method of growing monocrystals of corundum from a melt
JPS647040B2 (en)
JPS6221790A (en) Device for crystal growth and method
JPH0234597A (en) Growing method for gaas single crystal by horizontal bridgman method
Otani et al. Preparation of LaB6 single crystals by the floating zone method
JPS5738398A (en) Quartz glass crucible for pulling up silicon single crystal
JPS5547300A (en) Crystal pulling device
JPH069290A (en) Method for growing compound semiconductor single crystal
JP2507910B2 (en) Method for producing oxide single crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
RU2108418C1 (en) Method for growing single crystals of lanthanum-gallium silicate
JP2760948B2 (en) Single crystal growing method using crucible with convection control function
JP2517738B2 (en) Method for producing compound semiconductor single crystal
JPH0891990A (en) Production of semi-insulating gallium-arsenic single crystal
RU1816813C (en) Process for preparing potassium and lead orthosilicate monocrystals
RU2156327C2 (en) Method of preparing charge for growing lanthanum-gallium silicate monocrystals
JPH0143405Y2 (en)
JP3654314B2 (en) Manufacturing method of AlGaAs single crystal by flux method and manufacturing apparatus used therefor
JPH02196082A (en) Production of silicon single crystal
JPH07206584A (en) Production of compound semiconductor single crystal
JPH04325496A (en) Manufacture of magnesium added lithium niobade single crystal
JPH01212298A (en) Production of compound semiconductor single crystal
JPS61174189A (en) Method and device for production of single crystal