JPS62217875A - Non-magnetic ultrasonic motor - Google Patents

Non-magnetic ultrasonic motor

Info

Publication number
JPS62217875A
JPS62217875A JP61059497A JP5949786A JPS62217875A JP S62217875 A JPS62217875 A JP S62217875A JP 61059497 A JP61059497 A JP 61059497A JP 5949786 A JP5949786 A JP 5949786A JP S62217875 A JPS62217875 A JP S62217875A
Authority
JP
Japan
Prior art keywords
magnetic
component parts
motor
ultrasonic motor
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61059497A
Other languages
Japanese (ja)
Inventor
Akio Kumada
熊田 明生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP61059497A priority Critical patent/JPS62217875A/en
Publication of JPS62217875A publication Critical patent/JPS62217875A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/0005Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing non-specific motion; Details common to machines covered by H02N2/02 - H02N2/16
    • H02N2/001Driving devices, e.g. vibrators
    • H02N2/0045Driving devices, e.g. vibrators using longitudinal or radial modes combined with torsion or shear modes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/10Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
    • H02N2/103Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors by pressing one or more vibrators against the rotor

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To eliminate the dispersion of electromagnetic noise and contrive component parts not to be influenced by a magnetic field, by composing all the component parts composing a motor, of non-magnetic units. CONSTITUTION:All the component parts of an ultrasonic motor are composed of non-magnetic members. In other words, between the positive electrode surfaces of two sheets of doughnut-shaped Pb(ZrTi)O3 system ceramic piezoelectric transducers 1, 2, the terminal sheet 3 of phosphor bronze with a lead wire 3' is placed and is put together with a terminal sheet 4 with a lead wire 4', and into the component parts, the cap bolt 7 of stainless steel SS-316 set on the aluminum disc waster 6 of a resonance unit is penetrated, and the tip of the bolt 7 penetrated into the aluminum disc 5 of the resonance unit is screwed into a screwing slot on the center of the bottom surface of the disc section of an aluminum twist coupling element 8, and the component parts are fastened and are integrally formed to organize a stator. To the stator, the rotor 9 of stainless steel SS-316 is pressure-welded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧電体を用いた超音波モータに係わり、さらに
詳しくは非磁性体で構成され、磁気の影響を受けない又
は与えない非磁性超音波モータに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an ultrasonic motor using a piezoelectric material, and more specifically to an ultrasonic motor that is made of a non-magnetic material and is not affected by or affected by magnetism. Regarding sonic motors.

〔従来の技術〕[Conventional technology]

従来の電磁モータは、直流モータであれ、交流モータで
あれ、電磁相互作用を駆動力としているため、モータが
動作すると外部に電磁ノイズを発散し、近くに置かれた
テレビ、ラジオなどの電子機器に悪影響を与え、ことに
磁気作用を利用した計測器には致命的な悪影響を及ぼす
ので、これらの機器の近くでは使用できないという欠点
があった。一方磁石の近(など強磁場の中ではモータが
動作しなくなってしまうため、強磁場内で動作させる回
転トルク源としては役立たないという欠点があった。な
お、本発明者が特願昭59−228005号ほかで提案
してきた超音波楕円振動子を用いた超音波モータは、大
部分の部品が非磁性材料でてきCいるが、ボルトとかロ
ータが磁性体であり、ことにロータに耐摩耗性の大きい
鋼材を用いると磁気を帯びやすく、摩耗粉かロータの表
面にへばりついたままステータとの圧着面に焼き付き現
象を生じ、出力トルクを減少させる原因を作る欠点があ
った。
Conventional electromagnetic motors, whether they are DC motors or AC motors, use electromagnetic interaction as their driving force, so when the motor operates, it emits electromagnetic noise to the outside, which can interfere with nearby electronic devices such as televisions and radios. It has a negative effect on the magnetic field, and has a particularly fatal effect on measuring instruments that use magnetic action, so it cannot be used near these devices. On the other hand, the motor does not operate in a strong magnetic field (such as near a magnet), so it has the disadvantage that it cannot be used as a rotational torque source for operating in a strong magnetic field. In the ultrasonic motor using the ultrasonic elliptical vibrator proposed in No. 228005 and others, most of the parts are made of non-magnetic materials, but the bolts and rotor are magnetic, and the rotor is particularly wear-resistant. If a steel material with a large diameter is used, it tends to become magnetic, and abrasion powder remains stuck to the rotor surface, causing a seizure phenomenon on the crimped surface with the stator, resulting in a reduction in output torque.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この発明は、上記電磁モータが持っていた電磁相互作用
によって外部に悪影響を及ぼすとか、又は外部磁界の影
響を受けて正常に動作しなくなるという欠点を解決した
超音波モータ提供すること、およびロータなど構成部品
に磁性材料を用いたことによる摩耗粉による焼き付き現
象などを解決した非磁性超音波モータを提供することを
目的とする。
The present invention provides an ultrasonic motor that solves the drawbacks of the electromagnetic motor, such as having an adverse effect on the outside due to electromagnetic interaction or malfunctioning due to the influence of an external magnetic field, and providing an ultrasonic motor with a rotor, etc. It is an object of the present invention to provide a non-magnetic ultrasonic motor that solves problems such as seizure caused by abrasion particles caused by using magnetic materials for component parts.

〔問題を解決するための手段〕[Means to solve the problem]

上記目的は、超音波モータを構成するすべての部品を非
磁体で構成することによって達成される。
The above object is achieved by constructing all the parts constituting the ultrasonic motor from non-magnetic materials.

超音波振動を回転トルク源とした超音波モータでは、超
音波振動子などの超音波振動発生源と、この振動を受は
摩擦力によって回転トルクに変換する回転子すなわちロ
ータとから構成されている。
An ultrasonic motor that uses ultrasonic vibration as a rotational torque source consists of an ultrasonic vibration generation source such as an ultrasonic vibrator, and a rotor that receives this vibration and converts it into rotational torque using frictional force. .

超音波振動子は超音波損失の少いアルミニウムまたは鋼
鉄を共振体、ねじり結合子などの構成材料としているか
ら、鋼鉄の使用をさけてアルミニウムを用いれば主材料
は非磁性体になる。問題はこれらの部品とセラミック圧
電振動子を一体化して超音波振動子にまとめあげる役割
をしている締付ボルトであるが、これも非磁性化を考慮
してステンレス鋼5S−316材等を用いれば解決され
る。ロータは耐摩耗性か重視されることから、従来は焼
き入れ鋼など強磁性材料を用いていたことが問題となっ
たので、これもステンレスM SS −316材等を用
いて非磁性化する。さらに細か(は、ベアリング、スプ
リングに至るまですべての構成部品に非磁性材料からな
る部品を用いた点が本発明の特徴である。
Since the ultrasonic vibrator uses aluminum or steel, which has low ultrasonic loss, as the constituent material for the resonator, torsion coupler, etc., if aluminum is used instead of steel, the main material will be non-magnetic. The problem is the tightening bolt that integrates these parts and the ceramic piezoelectric vibrator into an ultrasonic vibrator, but this too is made of stainless steel 5S-316 material with consideration to non-magnetic properties. It will be resolved if Since the wear resistance of the rotor is important, conventionally ferromagnetic materials such as hardened steel have been used, which has caused problems, so this material is also made non-magnetic by using stainless steel M SS-316 material or the like. A further feature of the present invention is that all components, including the bearings and springs, are made of non-magnetic materials.

非磁性材料としては金属に限らず、特に金属製であるこ
とを必要としないスプリング、モータケーシングなどの
部品には、プラスチック、セラミック等の非金属材料を
用いてもよい。
The non-magnetic material is not limited to metal, and non-metal materials such as plastic and ceramic may be used for parts such as springs and motor casings that do not particularly need to be made of metal.

〔作用〕[Effect]

磁化される部品が全くないので、外部磁界により動作に
影響を受けず、また外部に電磁ノイズを発散したり周囲
の磁界を乱すこともない非磁性超音波モータを実現でき
、ロータを非磁性体としたことで摩耗粉の焼き付き現象
も排除できる。
Since there are no magnetized parts, it is possible to create a non-magnetic ultrasonic motor whose operation is not affected by external magnetic fields, and which does not emit electromagnetic noise to the outside or disturb the surrounding magnetic field. By doing so, it is possible to eliminate the phenomenon of seizure of wear particles.

〔実施例〕〔Example〕

本発明になる非磁性超音波モータの一実施例を第1図、
第2図に示す、この実施例は本発明者が特願昭59−2
28005号ほかで既に提案して来た片持梁状ねじり結
合子を用いた超音波楕円振動子をステータとする超音波
モータと外観、構造共に同じである。差異は構造ではな
く材質であり、すべての部品を非磁性材料からなるもの
とした。すなわち、第1図に示すように、二枚のドーナ
ツ状のPb (Zr Ti ) 03系セラミツク圧成
振動子lおよび2の正電極面間にリード線3′のついた
燐青銅からなる端子板3を挾み、リード線4′のついた
別の端子板4と重ね、これら部品に共振体であるアルミ
ニウム円板座金6にセットしたステンレス鋼5S−31
6からなるキャップボルト7を通し、さらに共振体であ
るアルミニウム円板5に通したボルト7の先端をアルミ
ニウム製のねじり結合子8の円板部底面中央のねじ孔に
ねじ込み、締め付けて一体化しステータを構成した。こ
のステータの端面、すなわち第1図のねじり結合子8の
上面中央のねじ孔に、5S−316からなるロータ9の
中空シャフト9′内にセットし7たベリリウム製ボール
ベアリング12と5S−316からなるコイルスプリン
グ11に通した同じ(5S−316からなるキャップボ
ルト10の先端をねじ込み、締めつけることによってロ
ータ9をステータに圧着し、超音波モータを構成した。
An embodiment of the non-magnetic ultrasonic motor according to the present invention is shown in FIG.
This embodiment, shown in FIG.
It has the same appearance and structure as the ultrasonic motor which uses an ultrasonic elliptical vibrator as a stator, which uses a cantilever-like torsion coupler, which has already been proposed in No. 28005 and others. The difference is not in structure but in materials, with all parts made of non-magnetic materials. That is, as shown in FIG. 1, a terminal plate made of phosphor bronze with a lead wire 3' attached between the positive electrode surfaces of two donut-shaped Pb (Zr Ti ) 03 series ceramic pressed vibrators 1 and 2. 3, stacked with another terminal plate 4 with a lead wire 4' attached, and attached to these parts a stainless steel 5S-31 wire set in an aluminum disk washer 6 which is a resonator.
6 through the cap bolt 7, and then the tip of the bolt 7 passed through the aluminum disc 5, which is the resonator, into the threaded hole in the center of the bottom of the disc part of the aluminum torsion connector 8, and tightened to integrate the stator. was configured. A beryllium ball bearing 12 and a 5S-316 ball bearing 12 are set in the hollow shaft 9' of the rotor 9 made of 5S-316 in the screw hole at the center of the end surface of the stator, that is, the upper surface of the torsion connector 8 in FIG. The rotor 9 was crimped to the stator by screwing in and tightening the tip of the cap bolt 10 made of the same material (5S-316) passed through a coil spring 11 made of the same material (5S-316), thereby constructing an ultrasonic motor.

第2図は、この超音波モータをアルミニウム製モータケ
ース13に収納した完成品を示す。
FIG. 2 shows a completed product in which this ultrasonic motor is housed in an aluminum motor case 13.

このようにして、でき上った超音波モータを強力な磁石
に近づけてみたが全く、くっつかなかった。つぎにリー
ド線3′と4′とに43.6 k Hz、 100 V
の正弦波電圧を印加し、ロータが約9Qrpmで回転し
た状態でロータを手で強く押えてみたが止まらなかった
。この強力な回転状態で、受信中のラジオに近ずけてみ
たが、ラジオは何の影響も示さなかった。このことは超
音波モータは回転中でも電磁ノイズを発散しないことを
証明しており、電子機器と近接させた状態で用いること
ができる。従って、超音波モータを制御する電子回路を
モータのケース内にセットして異常なく動作させること
もできた。第3に、最初に接近させた磁石に、回転中の
モータを接近させてみたが、モータの動特性は全く影響
を受けず、強磁場中でも正常に回転することがわかった
。これらのことから、本実施例の非磁性超音波モータは
超電導マグネットを用いたリニアモータカーの制御用モ
ータとして利用できることなどが明らかになった。
I tried bringing the ultrasonic motor I had created in this way close to a powerful magnet, but it did not stick at all. Next, apply 43.6 kHz, 100 V to lead wires 3' and 4'.
I applied a sine wave voltage of , and while the rotor was rotating at about 9 Qrpm, I tried pressing the rotor strongly with my hand, but it did not stop. In this powerful rotation state, I approached the radio while it was receiving, and the radio showed no effect. This proves that the ultrasonic motor does not emit electromagnetic noise even while rotating, and can be used in close proximity to electronic equipment. Therefore, it was possible to set the electronic circuit that controls the ultrasonic motor inside the motor case and operate it without any abnormality. Third, when we brought a rotating motor close to the first magnet, we found that the motor's dynamic characteristics were not affected at all and that it rotated normally even in a strong magnetic field. From these results, it has become clear that the non-magnetic ultrasonic motor of this example can be used as a control motor for a linear motor car using a superconducting magnet.

本実施例の非磁性超音波モータは上記したように用途面
でも画期的な特徴がみられたが、寿命の面でも予想外の
成果が爵られた。すなわち、従来のこの種モータではロ
ータに焼き入れ鋼など耐摩耗性の大きい材料を用いてき
たが、これらの材料は強磁性を示すものが多く、長時間
運転していると摩耗粉が生じ、その摩耗粉が磁気を帯び
たロータの圧着面に焼き付き、雪の積ったレールと同じ
効果で、出力トルクを減少させることがしばしばであっ
たが、本実施例のモータではi、ooo時間の連続運転
「1月ここのような現象は一度もみられなかった。
As mentioned above, the non-magnetic ultrasonic motor of this example had innovative features in terms of usage, but also achieved unexpected results in terms of life. In other words, conventional motors of this type have used highly wear-resistant materials such as hardened steel for the rotor, but many of these materials exhibit ferromagnetism, and wear particles are generated during long-term operation. The abrasion particles often seize on the magnetic rotor's crimped surface, which has the same effect as snow-covered rails, reducing the output torque. However, in the motor of this example, the i, ooo time Continuous operation: ``We have never seen a phenomenon like this in January.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では圧電振動子のたて振動
によって励振され、楕円振動を発生するねじり結合子の
端面に圧着されたロータが受ける回転トルクを駆動源と
する超音波モータにおいて、モータを構成するすべての
部品を非磁性材料で構成したことにより、モータを運転
しても周囲に電磁ノイズを発散したり、周囲の磁場を乱
したりすることが無くなったことは勿論、磁石などの強
い磁場11月こおいても一切磁場の影響を受けることな
く正常に動作するモータを実現できたことの実用上の効
果は大きい。とはいえ、本発明に限らず、従来の超音波
モータは電磁モータと異なり、強磁性体をほとんど使用
していないので、超音波モータに限り本発明に近い効果
が期待できたはずであるが、実際上の効果が顕著でなか
ったのは、ロータ、シャフト、ボルトなど機械部品のど
こかに強磁性体を用いていたからである。これに対して
、本発明によって顕著な効果が得られたのは強磁性材料
の使用を厳禁したことによる。ことにロータを非磁性体
に替えたことは摩耗粉の焼き付き現象の排除を達成する
ことができ、出力特性の安定化を達成できた効果は実用
上きわめて重要である。
As explained above, in the present invention, the ultrasonic motor is driven by the rotational torque received by the rotor, which is excited by the vertical vibration of a piezoelectric vibrator and is crimped to the end face of a torsion coupler that generates elliptical vibration. Since all the parts that make up the motor are made of non-magnetic materials, the motor does not emit electromagnetic noise or disturb the surrounding magnetic field when it is operated, and it also eliminates the possibility of magnets, etc. The practical effect of being able to realize a motor that operates normally without being affected by the magnetic field at all even in the presence of a strong magnetic field is significant. However, unlike electromagnetic motors, conventional ultrasonic motors, which are not limited to the present invention, hardly use ferromagnetic material, so it would have been possible to expect effects similar to the present invention only in ultrasonic motors. The reason that the practical effect was not significant is because ferromagnetic material was used somewhere in the mechanical parts such as the rotor, shaft, and bolts. In contrast, the remarkable effects achieved by the present invention are due to the fact that the use of ferromagnetic materials is strictly prohibited. In particular, by replacing the rotor with a non-magnetic material, it is possible to eliminate the seizure phenomenon of wear particles, and the effect of stabilizing the output characteristics is extremely important in practical terms.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による非磁性超音波モータの一実施例を
示す要部断面図、第2図はそのモータケースの一部を欠
除した外観斜視図である。 1.2・・・セラミック圧電振動子 3.4・・・燐青銅端子板 5.6・・・アルミニウム円板 7・・・5S−316キヤツプボルト 8・・・アルミニウムねじり結合子 9・・・5S−3160−タ 10・・・5S−316キヤツプボルト11・・・5S
−316コイルスフリング12・・・ベリリウムボール
ベアリング13・・・アルミニウムモータケース 代理人弁理士 中 村 純 之 助 −愁 1 図
FIG. 1 is a sectional view of essential parts of an embodiment of a non-magnetic ultrasonic motor according to the present invention, and FIG. 2 is an external perspective view with a part of the motor case removed. 1.2... Ceramic piezoelectric vibrator 3.4... Phosphor bronze terminal plate 5.6... Aluminum disc 7... 5S-316 cap bolt 8... Aluminum torsion connector 9... 5S-3160-ta 10...5S-316 cap bolt 11...5S
-316 Coil spring 12...Beryllium ball bearing 13...Aluminum motor case Patent attorney Junyuki Nakamura 1 Diagram

Claims (1)

【特許請求の範囲】[Claims] 1、圧電振動子のたて振動によって励振され楕円振動を
発生するねじり結合子の端面に圧着されたロータが受け
る回転トルクを、駆動源とする超音波モータにおいて、
モータを構成するすべての部品を非磁性材料で構成した
ことを特徴とする非磁性超音波モータ。
1. In an ultrasonic motor whose drive source is rotational torque received by a rotor crimped to the end face of a torsion coupler that is excited by the vertical vibration of a piezoelectric vibrator and generates elliptical vibration,
A non-magnetic ultrasonic motor characterized in that all parts constituting the motor are made of non-magnetic materials.
JP61059497A 1986-03-19 1986-03-19 Non-magnetic ultrasonic motor Pending JPS62217875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61059497A JPS62217875A (en) 1986-03-19 1986-03-19 Non-magnetic ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61059497A JPS62217875A (en) 1986-03-19 1986-03-19 Non-magnetic ultrasonic motor

Publications (1)

Publication Number Publication Date
JPS62217875A true JPS62217875A (en) 1987-09-25

Family

ID=13114979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61059497A Pending JPS62217875A (en) 1986-03-19 1986-03-19 Non-magnetic ultrasonic motor

Country Status (1)

Country Link
JP (1) JPS62217875A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885499A (en) * 1988-02-12 1989-12-05 Ngk Spark Plug Co., Inc. Ultrasonic driven type motor
US4933590A (en) * 1988-03-11 1990-06-12 Nec Corporation Ultrasonic motor
US4975614A (en) * 1987-03-18 1990-12-04 Honda Electric Co., Ltd. Ultrasonic driving device
JPH0624394U (en) * 1992-04-15 1994-03-29 アルプス電気株式会社 Ultrasonic motor
US7421792B2 (en) * 2003-11-13 2008-09-09 Samsung Electronics Co., Ltd. Apparatus and method of calibrating azimuth of mobile device
US10014746B2 (en) * 2013-04-02 2018-07-03 Asmo Co., Ltd. Rotary electric machine and method of manufacturing rotary electric machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4975614A (en) * 1987-03-18 1990-12-04 Honda Electric Co., Ltd. Ultrasonic driving device
US4885499A (en) * 1988-02-12 1989-12-05 Ngk Spark Plug Co., Inc. Ultrasonic driven type motor
US4933590A (en) * 1988-03-11 1990-06-12 Nec Corporation Ultrasonic motor
JPH0624394U (en) * 1992-04-15 1994-03-29 アルプス電気株式会社 Ultrasonic motor
US7421792B2 (en) * 2003-11-13 2008-09-09 Samsung Electronics Co., Ltd. Apparatus and method of calibrating azimuth of mobile device
US10014746B2 (en) * 2013-04-02 2018-07-03 Asmo Co., Ltd. Rotary electric machine and method of manufacturing rotary electric machine

Similar Documents

Publication Publication Date Title
US4959580A (en) Piezoelectric motor
JPS58192474A (en) Piezoelectric motor
EP0289734B1 (en) An ultrasonic driving device
JPS62217875A (en) Non-magnetic ultrasonic motor
CN101123405B (en) Rotary ultrasonic motor implementation method
US4399386A (en) Rotative motor using plural arrays of piezoelectric elements
JPH0985172A (en) Ultrasonic vibrator transducer and ultrasonic motor using same
US4399385A (en) Rotative motor using a triangular piezoelectric element
CN100539385C (en) The drive unit that is used for ultrasound electric machine
JP2587418B2 (en) Control method of ultrasonic drive device
CN203406800U (en) Single excitation rotary ultrasonic motor
JP3802625B2 (en) Ultrasonic motor drive device
JPH0799787A (en) Driving circuit for ultrasonic motor
JP3311490B2 (en) Ultrasonic motor drive
JP2757416B2 (en) Ultrasonic motor
JPS6356176A (en) Ultrasonic motor
JPS6016180A (en) Rotary drive device
CA1301230C (en) Ultrasonic driving device
JPS60148386A (en) Piezoelectric motor of twisting mode drive
JPH072229B2 (en) Piezoelectric elliptical motion oscillator
JP2677993B2 (en) Ultrasonic motor
JPH0744856B2 (en) Ultrasonic motor
JP2759805B2 (en) Vibrator type actuator
JP3228607B2 (en) Ultrasonic motor
JPH08163879A (en) Ultrasonic oscillator and ultrasonic motor