JPS62217206A - Production of optical waveguide - Google Patents

Production of optical waveguide

Info

Publication number
JPS62217206A
JPS62217206A JP5942286A JP5942286A JPS62217206A JP S62217206 A JPS62217206 A JP S62217206A JP 5942286 A JP5942286 A JP 5942286A JP 5942286 A JP5942286 A JP 5942286A JP S62217206 A JPS62217206 A JP S62217206A
Authority
JP
Japan
Prior art keywords
layer
optical waveguide
pattern
waveguide
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5942286A
Other languages
Japanese (ja)
Other versions
JPH079493B2 (en
Inventor
Shigeru Semura
滋 瀬村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP61059422A priority Critical patent/JPH079493B2/en
Publication of JPS62217206A publication Critical patent/JPS62217206A/en
Publication of JPH079493B2 publication Critical patent/JPH079493B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the uniformity of a film thickness by forming a pattern to be made into a waveguide on a layer essentially consisting of Si, then oxidizing the Si to SiO2. CONSTITUTION:A quartz substrate is imposed on a susceptor 1 and SiCl4 of 500cc/min is introduced into a reaction tube at 1,000 deg.C to form the Si layer 8 which is the clad of 0.5mum thickness; thereafter, SiCl4 and GeCl4 are introduced therein respectively under the conditions of 500cc/min and 30cc/min to form the Si layer 7 which is the core. The Si layer is etched by using a photoresist 9 on the waveguide pattern then using a reactive ion etching device to form the pattern consisting of the clad and core layer of Si. Such laminate is heated up to 1,200 deg.C and H2O of 200cc/min is introduced into the device to oxide the Si layer; further a clad layer 11 and SiO2 are deposited thereon.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、光通信システム、光情報処理の多様化、高度
化に必要不可欠な、光カツプラ−、光合波・分波器など
の光部品の経済化、小型化、安定化に有利な光導波路の
製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to optical components such as optical couplers, optical multiplexers and demultiplexers, which are essential for the diversification and advancement of optical communication systems and optical information processing. The present invention relates to a method of manufacturing an optical waveguide that is advantageous for economicalization, miniaturization, and stability.

〔従来の技術〕[Conventional technology]

従来の光部品は、プリズム等の微小光学部品からな沙、
光軸合せ、組立てが困難であった。
Conventional optical components range from microscopic optical components such as prisms,
Optical axis alignment and assembly were difficult.

そこで、平面上に光導波路を作成することによシ、これ
らの繁雑な作業を避けるように、種々の導波路が提案さ
れてきた。
Therefore, various waveguides have been proposed in order to avoid these complicated operations by creating an optical waveguide on a plane.

光導波路に用いられる材料には、例えば半導体結晶、誘
電体結晶、ガラス、高分子材料などがある。これらの材
料により光導波路を作成するには、基板(クラッドを兼
ねてもよい)上にコア層及びクラッド層を形成した後に
、エツチング法、露光法等により@3図に示すような構
造を作成し、光のとじ込めを行う。なお第5図中、6は
基板(もしくけクラッド)、10はコア層、11はクラ
ッド層をあられす。
Examples of materials used for optical waveguides include semiconductor crystals, dielectric crystals, glass, and polymer materials. To create an optical waveguide using these materials, a core layer and a cladding layer are formed on a substrate (which may also serve as a cladding), and then a structure as shown in Figure 3 is created using an etching method, exposure method, etc. and locks in the light. In FIG. 5, numeral 6 indicates a substrate (a cladding), numeral 10 a core layer, and numeral 11 a cladding layer.

ところで、これらのコア層、クラッド層形成には、従来
、CVD法や火炎直接堆積法が用いられてきた。
By the way, the CVD method and the flame direct deposition method have conventionally been used to form these core layers and cladding layers.

CVD法とは、第4図にその概略説明図と示すように、
石英ガラス製の炉心管2′のガス入口4′より、ガラス
原料のハロゲン化物ガスおよび反応用ガス例えばEHO
14、TiC4、O!等を導入し、酸化反応によりガラ
ス微粒子を合成し、ホルダー1′上の基板6′上に該合
成ガラス微粒子を堆積させる方法で、反応温度は最高部
で1200℃程度で、炉3′によシ温度勾配を持たせる
ことで、熱泳動効果によりガラス微粒子の堆積が促進さ
れる。5′は排気系を示す。
The CVD method is as shown in the schematic diagram in Figure 4.
From the gas inlet 4' of the quartz glass furnace tube 2', a halide gas as a glass raw material and a reaction gas such as EHO are introduced.
14, TiC4, O! In this method, fine glass particles are synthesized by an oxidation reaction, and the synthetic glass particles are deposited on the substrate 6' on the holder 1'. By providing a temperature gradient, the deposition of glass particles is promoted due to the thermophoretic effect. 5' indicates an exhaust system.

火炎直接堆積法とは、@5図に示すように、石英ガラス
基板6′をターンテーブル13上に回転中心から等距離
の位置に配置し、ガラス原料B1014 、  Ti(
:!4等は同心円状ノズルを有するガラス微粒子合成用
トーチ14に導入され、予め形成されている酸水素フレ
ーム15中で、火炎加水分解反応によりガラス微粒子を
合成し、合成したガラス微粒子はフレーム直下を移動し
ている基板6′上に堆積させる方法である。ガラス微粒
子油漬膜厚の均一化を図るため、トーチ14をターンテ
ーブル130半径方向に往復運動させる。
In the flame direct deposition method, as shown in Figure @5, a quartz glass substrate 6' is placed on a turntable 13 at a position equidistant from the center of rotation,
:! The 4th grade is introduced into a glass fine particle synthesis torch 14 having a concentric nozzle, and glass fine particles are synthesized by a flame hydrolysis reaction in a pre-formed oxyhydrogen frame 15, and the synthesized glass fine particles move directly under the frame. This is a method in which the film is deposited on a substrate 6' that is In order to make the thickness of the oil-soaked glass particles uniform, the torch 14 is reciprocated in the radial direction of the turntable 130.

〔発明が解決しようとする問題点] しかしながら、上記のCVD法、火炎直接堆積法等の従
来技術では、堆積時のガス流星のゆらぎによりガラスの
屈折率が変化するとか、膜厚の不均一性のために伝搬損
失が増加するという欠点があった。
[Problems to be Solved by the Invention] However, with conventional techniques such as the above-mentioned CVD method and flame direct deposition method, the refractive index of the glass changes due to fluctuations of gas meteors during deposition, and non-uniformity of the film thickness occurs. This has the drawback of increasing propagation loss.

また、従来法ではいずれも石英(sio! )  をエ
ツチングして、石英の導波路パターンを形成していたが
、石英のエチング速度は遅く、そのため加工に長時間を
要していた。
In addition, in all conventional methods, quartz (sio!) is etched to form a quartz waveguide pattern, but the etching speed of quartz is slow and therefore requires a long time to process.

本発明はこのような従来技術の欠点を解消し、低損失な
光導波路を容易に製造できる新規な方法を提供せんとす
るものである。
The present invention aims to eliminate these drawbacks of the prior art and provide a new method for easily manufacturing a low-loss optical waveguide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、Sin!  よりもSlの方がパターン
形成が容易な点に着目し、従来の基板上に5102  
を堆積し、これをエツチングする方法にかえて、まず8
1層を形成しておき、これに導波路となるバター/を形
成した後、このパターン形成したSi層を酸化してEl
iO,層とすることで、上記した欠点を解決できること
を見出し、本発明に到達した。
The inventors of the present invention believe that Sin! Focusing on the fact that pattern formation is easier with Sl than with 5102
Instead of depositing and etching this, first
After forming one layer and forming a butter layer that will become a waveguide on this layer, this patterned Si layer is oxidized to form El.
It was discovered that the above-mentioned drawbacks could be solved by using an iO layer, and the present invention was achieved.

すなわち本発明は幕板上に光導波路を作成するに督いて
、+31 を主成分とする序ト形成し、[Siを主成分
とする層に導波路となるパターンを形成した後、該s1
 を酸化することにより5102  とする、ことを特
徴とする光導波路の製造方法に関する。また本発明は第
2の発明として、基板上に光導波路を作成するにおいて
、+31を主成分とする層を形成し、isl を主成分
とする層に導波路となるパターンを形成した後、該Si
  を酸化することにより+310!  とじ、かつ、
コア層又はクラッド層の屈折率分布は上記Siを主成分
とするJX4形成時に添加剤を加えることにより形成す
ることを特徴とする先導波路の製造方法にも関する。
That is, in the present invention, while creating an optical waveguide on a curtain plate, a layer containing +31 as the main component is formed, and [after forming a pattern to become a waveguide on a layer containing Si as a main component, the s1
5102 by oxidizing the optical waveguide. In addition, the present invention provides a second aspect of the present invention, in which an optical waveguide is created on a substrate, after forming a layer containing +31 as a main component and forming a pattern to become a waveguide on the layer containing isl as a main component. Si
+310 by oxidizing! Binding and
The present invention also relates to a method for manufacturing a guided waveguide, characterized in that the refractive index distribution of the core layer or cladding layer is formed by adding an additive during the formation of JX4 mainly composed of Si.

本発明を第1図及び第2図に示す一実施態様に基いて説
明する。第1図はSl 層の形成に用いる装置の概略説
明図であって、1はサセプター、2け反応管、5は電気
ヒーター、4はsi層形成用原料導入口、5は排気口、
6は基板をあられす。サセプター1上に基板6を載置し
て、反応管2の中に入れ、原料導入口4から81層形成
用原料ガスを導入し基板上KSi層を形成する。このよ
うな原料ガスとしてけslのハロゲン化物又はハイドラ
イド、例えばB1at4゜81H4e  811 H6
等を用いることが好ましい。
The present invention will be explained based on one embodiment shown in FIGS. 1 and 2. FIG. 1 is a schematic explanatory diagram of the apparatus used for forming the SI layer, in which 1 is a susceptor, 2 reaction tubes, 5 are electric heaters, 4 is a raw material inlet for forming an SI layer, 5 is an exhaust port,
6 will hail the board. A substrate 6 is placed on the susceptor 1 and put into the reaction tube 2, and a raw material gas for forming the 81st layer is introduced from the raw material inlet 4 to form a KSi layer on the substrate. Such raw material gases include sl halides or hydrides, such as B1at4゜81H4e 811 H6
It is preferable to use the following.

またコア層もしくけクラッド層となるべきSi 層形成
の際に、G s Ot4等の屈折率変化用添加剤原料を
混合して屈折率分布をつけてもよい。
Furthermore, when forming the Si layer to become the core layer or the cladding layer, a refractive index distribution may be imparted by mixing an additive material for changing the refractive index such as G s Ot4.

形成される815は結晶であってもアモルファスであっ
てもよく、含Siガスの熱反応により堆積速度が決まっ
てくるので、膜厚成長速度制御が容易で膜厚の均一性が
向上する。
The formed 815 may be crystalline or amorphous, and the deposition rate is determined by the thermal reaction of the Si-containing gas, making it easy to control the film thickness growth rate and improve the uniformity of the film thickness.

なお、基板6としては、81 、 5i02  等平面
なものであ゛ればよい。
It should be noted that the substrate 6 only needs to have a plane of 81 and 5i02.

第2図は表面にSi層を形成した基板から光導波路を作
成する工程の説明図である。第1図の装置を用い、前記
した方法にて、基板6上に、コアとなるべき81層7及
びクラッドとなるべき81層8を形成する〔第2図(a
)工程〕。次にレジスト9を用いて導波路パターンを形
成する〔同図(b’)工程〕。続いてSi層をエツチン
グして、コアとなるべき81層7、クラッドとなるべき
si/fisからなるパターンを形成する〔同図(C)
工程〕。
FIG. 2 is an explanatory diagram of the process of creating an optical waveguide from a substrate on which a Si layer is formed. Using the apparatus shown in FIG. 1 and the method described above, an 81-layer 7 that will become the core and an 81-layer 8 that will become the cladding are formed on the substrate 6 [FIG. 2 (a)
) process]. Next, a waveguide pattern is formed using resist 9 [step (b') in the same figure]. Next, the Si layer is etched to form a pattern consisting of the 81 layer 7 that will become the core and the si/fis that will become the cladding [Figure (C)]
process].

このときのエツチング方法としては、例えば反応性イオ
ンエツチング、反応性イオンビームエツチング、イオン
エツチング、プラズマエツチング、マグネトロンイオン
エツチング等を用いることができる。
As the etching method at this time, for example, reactive ion etching, reactive ion beam etching, ion etching, plasma etching, magnetron ion etching, etc. can be used.

次に、再び第1図の装置を用いて、81層分酸化してS
i0:  とし、バタン形成されたコア層10、クラッ
ド層11を得る〔同図(a)工程〕。
Next, using the apparatus shown in Figure 1 again, 81 layers were oxidized and S
i0: Then, a core layer 10 and a cladding layer 11 are obtained which have been formed with a button [step (a) in the same figure].

なお、形成されたSi層を酸化するにけH,0又はO,
ト用いる。さらにクラッド層12となる810t  を
堆積して光導波路とする〔同図(e)工程〕。
In addition, to oxidize the formed Si layer, H, 0 or O,
Use Furthermore, 810t, which will become the cladding layer 12, is deposited to form an optical waveguide [step (e) in the same figure].

〔作用〕[Effect]

以上の如く本発明では、Si 層を形成し、該81 層
にパターン形成をした後、このSl を酸化してSi0
! にするだめ、極めて低損失な光導波路の形成が実現
できる。従来の技術では堆積時のガスi、iのゆらぎに
よシ屈折率が変化するとか、膜厚の不均一性のために伝
搬損失が増加するという欠点があったが、本発明ではi
′r1′5厚、組成制御の容易なSl を堆積した後に
このSlを酸化することにより上記の欠点?抑えること
かできる。
As described above, in the present invention, after forming a Si layer and forming a pattern on the 81 layer, this Si is oxidized to form an Si0 layer.
! By doing so, it is possible to form an optical waveguide with extremely low loss. Conventional techniques had drawbacks such as the refractive index changing due to fluctuations in gas i during deposition and propagation loss increasing due to non-uniformity of the film thickness, but the present invention
By depositing Sl, whose composition can be easily controlled, and then oxidizing this Sl, the above disadvantages can be overcome. It can be suppressed.

本発明ではまずSi 層をエツチングにより加工して導
波路のパターンを形成するため、高速の加工が容易に行
うことができる。従来の技術ではSi0!  全形成し
た債に、エツチングによる導波路パターンを作るために
加工時間がかかるという欠点があった。例えばSi0!
 の反応性イオンエツチング速度は、ガス条件CF4(
9a%)H!(10%)で600 A / minであ
るに対し、Sl の反応性イオンエツチング速度は、ガ
ス条件CP、(95%)0.(5%)f、5oooX/
 minと、はるかにエツチング速度が大である。
In the present invention, since the Si layer is first processed by etching to form a waveguide pattern, high-speed processing can be easily performed. With conventional technology, Si0! The disadvantage of the fully formed bond is that it takes a long processing time to create the waveguide pattern by etching. For example, Si0!
The reactive ion etching rate of gas condition CF4 (
9a%) H! The reactive ion etching rate of Sl is 600 A/min at gas condition CP, (95%) 0. (5%) f, 5oooX/
The etching speed is much higher.

このように本発明では、Sin、  よシ加工速度の早
いSl  を加工することで上記の欠点を抑えることが
できる。
As described above, in the present invention, the above-mentioned drawbacks can be suppressed by processing Sin and Sl, which has a faster processing speed.

〔実施例〕〔Example〕

第1図の装置のサセプター1に501角の石英基板を1
i1eし、温度1oooc4cて、5iCt450 a
ce/分を導入し、厚さ0.5μmのクラッドとなるS
i層を形成した。次にsi c t4およびQ e 0
14を夫々5oocc/分、30CC/分の条件にて導
入し、厚さ4.5μmのコアとなるSi 、層を形成し
た(第2図参照)。
One 501 square quartz substrate is placed in the susceptor 1 of the device shown in Figure 1.
i1e, temperature 1oooc4c, 5iCt450a
ce/min, resulting in a cladding with a thickness of 0.5 μm.
An i-layer was formed. Then sic t4 and Q e 0
No. 14 was introduced under the conditions of 5 oocc/min and 30 cc/min, respectively, to form a Si layer serving as a core with a thickness of 4.5 μm (see FIG. 2).

次に導波路パターンをホトレジスト(AZ−1350、
T)を用いて厚さ1.5μmつけた。その後、反応性イ
オンエツチング装置を用りて81層をエツチングし、S
lのクラッド・コア層からなるパターンを形成した。こ
の時の条件はCF4およびH,を19CC/分、1a/
分流し真空度け10Pa  とした。このパターン形成
に要した時間は10分であった。
Next, the waveguide pattern was coated with photoresist (AZ-1350,
T) to a thickness of 1.5 μm. After that, 81 layers were etched using a reactive ion etching device, and S
A pattern consisting of 1 clad core layer was formed. The conditions at this time were CF4 and H, 19CC/min, 1a/min.
Diversion vacuum level was set to 10 Pa. The time required for this pattern formation was 10 minutes.

次に再び第1図と同様の装j市を用いて、上記で得られ
た、攪層物を温度1200℃まで加熱し、HI3200
O7分を装置内に導入してSi 層を酸化した。この酸
化によりクラッド層は約1μm1コア層け10層mにな
った。さらにクラッド層B10!  を堆積して光のと
じ込めを良くした結果、光導波路のロスQ [12d、
B/mと低損失なものであった。
Next, using the same container as in FIG. 1 again, the stirred layer obtained above was heated to a temperature of 1200°C, and
7 minutes of O was introduced into the apparatus to oxidize the Si layer. As a result of this oxidation, the cladding layer had a thickness of about 1 μm and 1 core layer and 10 layers. Furthermore, cladding layer B10! As a result of depositing and improving light confinement, the loss Q of the optical waveguide [12d,
It had a low loss of B/m.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は次のような効果を奏する。 The method of the present invention has the following effects.

(1)  8101 に比べてSi  のCVD法によ
る形成は含Siガスの熱反応により堆積速度が決まって
くるために、膜厚の均一性が上がり、膜成長速度の制御
性が高くなる。
(1) Compared to 8101, when Si is formed by the CVD method, the deposition rate is determined by the thermal reaction of the Si-containing gas, so the uniformity of the film thickness is improved and the controllability of the film growth rate is improved.

(21Siの酸化により形成される模はSin、で、8
1:0=182のストイキオメトリ−制御が容易なこと
から、組成、屈折率分布のコントロールが可能になる。
(The pattern formed by oxidation of 21Si is Sin, and 8
Since the stoichiometry of 1:0=182 can be easily controlled, the composition and refractive index distribution can be controlled.

又、再現性も極めて高くなる。Moreover, reproducibility is also extremely high.

(3)  +31からSi0! になるため、高純度石
英ができるために、伝搬損失も小さく均一性も高い。
(3) +31 to Si0! As a result, high purity quartz can be produced, resulting in low propagation loss and high uniformity.

(41Siをエツチングするので、パターン形成を高速
に行うことができ、生産性に優れる。
(Since 41Si is etched, pattern formation can be performed at high speed and productivity is excellent.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の実施態様を説明する概略の断面図、 第2図は、本発明の実施嬰様の各工程を説明する断面図
、 第3図は、光導波路の一例を示す断面図、第4図は、従
来法のOVD法を説明する概略の断面図、 第5図は、従来法の火炎直接堆積法を示す説明図、であ
る。
FIG. 1 is a schematic cross-sectional view explaining an embodiment of the present invention, FIG. 2 is a cross-sectional view explaining each step of an embodiment of the present invention, and FIG. 3 is a cross-sectional view showing an example of an optical waveguide. 4 is a schematic cross-sectional view illustrating the conventional OVD method, and FIG. 5 is an explanatory diagram showing the conventional flame direct deposition method.

Claims (2)

【特許請求の範囲】[Claims] (1)基板上に光導波路を作成するにおいて、Siを主
成分とする層を形成し、該Siを主成分とする層に導波
路となるパターンを形成した後、該Siを酸化すること
によりSiO_2とする、ことを特徴とする光導波路の
製造方法。
(1) In creating an optical waveguide on a substrate, a layer containing Si as a main component is formed, a pattern to become a waveguide is formed on the layer containing Si as a main component, and then the Si is oxidized. A method for manufacturing an optical waveguide, characterized in that the optical waveguide is made of SiO_2.
(2)基板上に光導波路を作成するにおいて、Siを主
成分とする層を形成し、該Siを主成分とする層に導波
路となるパターンを形成した後、該Siを酸化すること
によりSiO_2とし、かつ、コア層又はクラッド層の
屈折率分布は上記Siを主成分とする層形成時に添加剤
を加えることにより形成することを特徴とする光導波路
の製造方法。
(2) When creating an optical waveguide on a substrate, by forming a layer containing Si as the main component, forming a pattern to become a waveguide on the layer containing Si as the main component, and then oxidizing the Si. A method for manufacturing an optical waveguide, characterized in that SiO_2 is used, and the refractive index distribution of the core layer or cladding layer is formed by adding an additive when forming the layer containing Si as a main component.
JP61059422A 1986-03-19 1986-03-19 Method of manufacturing optical waveguide Expired - Lifetime JPH079493B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61059422A JPH079493B2 (en) 1986-03-19 1986-03-19 Method of manufacturing optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61059422A JPH079493B2 (en) 1986-03-19 1986-03-19 Method of manufacturing optical waveguide

Publications (2)

Publication Number Publication Date
JPS62217206A true JPS62217206A (en) 1987-09-24
JPH079493B2 JPH079493B2 (en) 1995-02-01

Family

ID=13112805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61059422A Expired - Lifetime JPH079493B2 (en) 1986-03-19 1986-03-19 Method of manufacturing optical waveguide

Country Status (1)

Country Link
JP (1) JPH079493B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147A (en) * 1976-06-23 1978-01-05 Matsushita Electric Ind Co Ltd Preparation of hologram recording media
JPS59137346A (en) * 1983-01-27 1984-08-07 Nippon Telegr & Teleph Corp <Ntt> Manufacture of glass waveguide
JPS602905A (en) * 1983-06-20 1985-01-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of diffusion type glass waveguide

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53147A (en) * 1976-06-23 1978-01-05 Matsushita Electric Ind Co Ltd Preparation of hologram recording media
JPS59137346A (en) * 1983-01-27 1984-08-07 Nippon Telegr & Teleph Corp <Ntt> Manufacture of glass waveguide
JPS602905A (en) * 1983-06-20 1985-01-09 Nippon Telegr & Teleph Corp <Ntt> Manufacture of diffusion type glass waveguide

Also Published As

Publication number Publication date
JPH079493B2 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US4425146A (en) Method of making glass waveguide for optical circuit
JP3262259B2 (en) Improved manufacturing method of planar optical waveguide
JPS62217206A (en) Production of optical waveguide
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
US20020028415A1 (en) Co-flow diffusion flame burner device used for fabricating an optical waveguide
JPS62279303A (en) Production of optical waveguide layer
JPS62111207A (en) Production of optical waveguide layer
JP2005037410A (en) Planar optical waveguide using aerosol process and its manufacturing method
JPS62217207A (en) Production of optical waveguide layer
JP2002162526A (en) Optical waveguide and method for producing the same
JP3697155B2 (en) Silicon dioxide film generation method and optical waveguide generation method
JPS59137346A (en) Manufacture of glass waveguide
JPS62279304A (en) Production of optical waveguide layer
JPH01196006A (en) Quartz optical waveguide film
JP2603652B2 (en) Optical waveguide manufacturing method
JPH0720337A (en) Production of optical waveguide
JPH08136754A (en) Production of optical waveguide
JPH0677088B2 (en) Method of manufacturing planar optical waveguide
JPS60262108A (en) Production of optical waveguide
JPS636506A (en) Production of optical waveguide
JP3097698B2 (en) Manufacturing method of optical waveguide
JPH05127032A (en) Optical waveguide and its production
JPH0656454A (en) Production of optical fiber preform
JPH0641751A (en) Production of optical thin film material
JPS62288802A (en) Manufacture of quartz optical waveguide