JPS62217131A - Force detector - Google Patents

Force detector

Info

Publication number
JPS62217131A
JPS62217131A JP61059459A JP5945986A JPS62217131A JP S62217131 A JPS62217131 A JP S62217131A JP 61059459 A JP61059459 A JP 61059459A JP 5945986 A JP5945986 A JP 5945986A JP S62217131 A JPS62217131 A JP S62217131A
Authority
JP
Japan
Prior art keywords
slits
elastic
cross
force
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61059459A
Other languages
Japanese (ja)
Inventor
Akihiko Yabuki
彰彦 矢吹
Kazuo Asakawa
浅川 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP61059459A priority Critical patent/JPS62217131A/en
Publication of JPS62217131A publication Critical patent/JPS62217131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

PURPOSE:To improve detection sensitivity and to increase the reliability of detection by forming slits in respective elastic beams of a cross-shaped elastic body composed of four rectangularly sectioned elastic beams and sticking strain gauges on concentrated bending stress inducing parts of slit bottom parts. CONSTITUTION:The cross-shaped elastic body 10 is formed of the four rectangularly sectioned elastic beams 10a-10d. A couple of vertical slits 70a and 70b and another couple of horizontal slits 70c and 70d perpendicular to said slits are formed in two opposite surfaces of the respective elastic beams 10a-10d at opposite positions to overall width of the elastic beams. The slits 70a-70d of the respective elastic beams 10a-10d are equal in shape, arrangement, and formation position and symmetrical about the center of the cross-shaped elastic body 10. Semiconductor gauges 80 are stuck on the surfaces where flank end parts of the slits 70a-70d are exposed nearby the slit bottom parts. When external force is applied, stress is concentrated on the slit bottom parts of the elastic beams and the quantities of displacement increase at the parts, so that the strain gauges detect the displacement of the stress concentrated parts.

Description

【発明の詳細な説明】 〔目 次〕 ・概要 ・産業上の利用分野 ・従来の技術 ・発明が解決しようとする問題点 ・問題点を解決するための手段 ・作用 ・実施例 ・発明の効果 〔概 要〕 矩形断面の4本の弾性梁からなる十字状弾性体の各弾性
梁にスリットを設け、スリット底部の集中曲げ応力発生
部に歪ゲージを貼付して検出怒度を向上させ、検出の信
頼性を高めた力検出装置。
[Detailed description of the invention] [Table of contents] - Overview - Field of industrial application - Prior art - Problems to be solved by the invention - Means for solving the problems - Effects - Examples - Effects of the invention [Summary] A slit is provided in each elastic beam of a cross-shaped elastic body consisting of four elastic beams with a rectangular cross section, and a strain gauge is attached to the part where concentrated bending stress occurs at the bottom of the slit to improve the detection angle. A force detection device with improved reliability.

〔産業上の利用分野〕[Industrial application field]

本発明は、ロボットハンド等のように物品を支持して各
種作業を行う支持構造において、物品に対して加わる力
を検出する力検出装置に関し、特に6構成分(X、Y、
Z軸の各々についての軸方向力成分および軸廻りモーメ
ント成分)を分離して検出可能な力検出装置に関する。
The present invention relates to a force detection device that detects the force applied to an article in a support structure such as a robot hand that supports an article and performs various operations, and in particular, it relates to a force detection device that detects the force applied to an article.
The present invention relates to a force detection device that can separate and detect axial force components and axial moment components for each of the Z-axes.

〔従来の技術〕[Conventional technology]

ロボットの手首には、作業中にハンド位置ずれ等に基(
ハンドに加わる力を吸収するためのコンプライアンス機
構が設けられている。このようなコンプライアンス機構
として複数の平行バネを組合せて構成したコンプライア
ンス機構は公知である。このコンプライアンス機構には
力検出装置が設けられ、コンプライアンス機構の変位を
検出し、これに暴きハンドに加わる力を算出し、この力
が零になる方向にハンドの位置をフィードバック制御し
ている。このようなフィードバック制御を行うためには
、ハンドに加わる力の6構成分を分離して検出しなけれ
ばならない。
The robot's wrist is equipped with (
A compliance mechanism is provided to absorb forces applied to the hand. As such a compliance mechanism, a compliance mechanism configured by combining a plurality of parallel springs is known. This compliance mechanism is provided with a force detection device that detects the displacement of the compliance mechanism, calculates the force applied to the uncovered hand, and feedback-controls the position of the hand in the direction in which this force becomes zero. In order to perform such feedback control, six components of the force applied to the hand must be detected separately.

従来のロボットのコンプライアンス機構における力検出
装置は、1構成分を検出するために1組の平行バネを用
いていた。
Force sensing devices in conventional robot compliance mechanisms have used a set of parallel springs to sense one component.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の力検出装置においては、1組の平行バネは1構成
分のみの検出しかできなかったため、6構成分をすべて
検出するためには平行バネを多層化して用いなければな
らず構造が複雑化していた。
In conventional force detection devices, one set of parallel springs could only detect one component, so in order to detect all six components, multiple layers of parallel springs had to be used, making the structure complicated. was.

また、特に剛性の大きいロボットハンドが必要な場合又
は特に高速動作が要求される場合には前記平行バネによ
る力検出装置は適用することができず、弾性梁の剛性を
大きくして同様の構成とした場合には高い剛性のため弾
性梁の変位が小さく、従って歪ゲージによる変位検出悪
魔が不充分となり信頼性の高い検出結果が得られなかっ
た。
Furthermore, when a robot hand with particularly high rigidity is required or when high-speed operation is required, the force detection device using parallel springs cannot be applied, and a similar configuration with increased rigidity of the elastic beam may be used. In this case, the displacement of the elastic beam was small due to its high rigidity, and therefore the strain gauge was insufficient for detecting displacement, making it impossible to obtain highly reliable detection results.

本発明は前記従来技術の欠点に鑑みなされたものであっ
て、剛性が非常に大きく、しかも外力による変位が微少
であっても確実に外力を検知し、さらに外力の6構成分
を分離して検出可能な、特に剛性の高いロボットハンド
部の使用に適した力検出装置の提供を目的とする。
The present invention was developed in view of the drawbacks of the prior art, and has very high rigidity, can reliably detect external force even if the displacement caused by external force is minute, and can further separate six components of external force. It is an object of the present invention to provide a force detection device that is capable of detecting force and is particularly suitable for use in a highly rigid robot hand section.

c問題点を解決するための手段〕 この目的を達成するため、本発明では、矩形断面の4本
の弾性梁を十字状に形成して十字状弾性体を構成し、各
弾性梁の対向する2面上に弾性梁の長手方向と直交方向
に1対のスリットを該弾性梁の幅全体に亘って形成し、
該スリットの端部側面が露出する弾性梁表面上の該スリ
ット底部に近接させて抵抗変化による力検出用変位測定
手段を設けたことを特徴とする力検出装置を提供する。
Means for Solving Problem c] In order to achieve this object, in the present invention, four elastic beams each having a rectangular cross section are formed in a cross shape to constitute a cross-shaped elastic body, and A pair of slits are formed on two sides in a direction orthogonal to the longitudinal direction of the elastic beam, spanning the entire width of the elastic beam,
A force detection device is provided, characterized in that a displacement measuring means for detecting force by resistance change is provided close to the bottom of the slit on the surface of the elastic beam where the end side surface of the slit is exposed.

〔作 用〕[For production]

剛性の大きい弾性梁に外力が加わると、弾性梁のスリッ
ト底部に応力集中が起り、この部分の変位量が大きくな
る。この応力集中部の変位を歪ゲージが検知する。
When an external force is applied to a highly rigid elastic beam, stress concentration occurs at the bottom of the slit in the elastic beam, and the amount of displacement in this portion increases. A strain gauge detects the displacement of this stress concentration area.

〔実施例〕〔Example〕

第1図は本発明に係る力検出装置を用いたロボット手首
部の分解斜視図である。正方形断面の4本の弾性梁10
a−10dにより十字状弾性体10が形成される。各弾
性梁10a〜10dには、対向する2面上の対向位置に
1対の垂直方向スリン)70a。
FIG. 1 is an exploded perspective view of a robot wrist using a force detection device according to the present invention. Four elastic beams 10 with square cross section
A cross-shaped elastic body 10 is formed by a-10d. Each of the elastic beams 10a to 10d has a pair of vertical ribs 70a at opposing positions on two opposing sides.

70bおよびこれと直交する方向の別の1対の水平方向
スリンf−70c、70dが各々弾性梁の幅全体に亘っ
て形成されている。各弾性梁10a〜10dのスリット
70a〜70dの形状、配置および形成位置は同一であ
り、各スリットは十字弾性体10の中心に関し対称に設
けられている。各スリット70a〜70dの側面端部が
露出した面のスリット底部に近接した位置には半導体歪
ゲージ80が貼付される。
70b and another pair of horizontal sills f-70c, 70d perpendicular thereto are each formed over the entire width of the elastic beam. The shape, arrangement, and formation position of the slits 70a to 70d of each of the elastic beams 10a to 10d are the same, and each slit is provided symmetrically with respect to the center of the cross elastic body 10. A semiconductor strain gauge 80 is attached to a position close to the bottom of the slit on the side surface of each of the slits 70a to 70d where the end portion is exposed.

この半導体歪ゲージ80の貼付位置および作用について
は後述する。十字状弾性体10の一方の面に剛体からな
る第1支持枠lが配設され、他方の面に第1支持枠1と
交差する方向に剛体からなる第2支持枠2が配設される
。第1支持枠1は十字状弾性体IOの対向位置の弾性梁
10a、10cの端部にネジ6で固定される。同様に第
2支持枠2は別の対向位置の弾性梁IQb、10dの端
部にネジ5で固定される。第1支持枠1にはネジ7によ
り中心支軸3が固定される。9は位置合せ用の突起であ
り、第1支持枠lに設けた孔8に嵌入して位置決めが行
われる。中心支軸3の端部には矩形体11が固定される
。このような中心支軸3は平行板バネ組体10の中央貫
通孔14を貫通して設けられる。第2支持枠2には中心
支軸3の端部の矩形体11を受入れる凹所12が形成さ
れている。
The attachment position and function of this semiconductor strain gauge 80 will be described later. A first support frame l made of a rigid body is disposed on one surface of the cross-shaped elastic body 10, and a second support frame 2 made of a rigid body is disposed on the other surface in a direction intersecting with the first support frame 1. . The first support frame 1 is fixed with screws 6 to the ends of the elastic beams 10a and 10c at opposite positions of the cross-shaped elastic body IO. Similarly, the second support frame 2 is fixed with screws 5 to the ends of elastic beams IQb and 10d at other opposing positions. A central support shaft 3 is fixed to the first support frame 1 with a screw 7. Reference numeral 9 denotes a positioning protrusion, which is fitted into a hole 8 provided in the first support frame 1 for positioning. A rectangular body 11 is fixed to an end of the central support shaft 3. Such a central support shaft 3 is provided to pass through a central through hole 14 of the parallel leaf spring assembly 10. A recess 12 is formed in the second support frame 2 to receive a rectangular body 11 at the end of the central support shaft 3.

この凹所12は矩形体11の外形より大きく、矩形体1
1の4方向全外周に亘って凹所12との間にクリアラン
ス(隙間)が形成される。従って矩形体12は凹所12
内で全方向にクリアランスに応じた長さだけ移動可能で
ある。第1支持枠1は図示しないロボ・ノドアームに連
結され、第2支持枠2は図示しないロボットハンドに連
結される。
This recess 12 is larger than the outer shape of the rectangular body 11 and
A clearance (gap) is formed between the recess 12 and the entire outer periphery of the recess 12 in four directions. Therefore, the rectangular body 12 has a recess 12
It can be moved in all directions within the space by a length according to the clearance. The first support frame 1 is connected to a robot throat arm (not shown), and the second support frame 2 is connected to a robot hand (not shown).

13はロボットハンドとの連結用ネジ貫通孔である。13 is a screw through hole for connection with the robot hand.

本発明の力検出の原理について第2図を用いて説明する
。梁100の両側の対向位置に切欠き(スリット)80
が形成されている。この梁100に曲げモーメントMが
作用するとスリット80の底部に応力集中が起り、スリ
ットがない場合の同一形状の梁の最大曲げ応力α。に対
し7倍(α:応力集中係数)の応力σ1.Xが生ずる。
The principle of force detection according to the present invention will be explained using FIG. Notches (slits) 80 are provided at opposing positions on both sides of the beam 100.
is formed. When a bending moment M acts on this beam 100, stress concentration occurs at the bottom of the slit 80, resulting in the maximum bending stress α of a beam of the same shape without the slit. 7 times (α: stress concentration factor) stress σ1. X occurs.

この応力集中部の歪を、例えば半導体歪ゲージ等の線状
のゲージをスリット底部に近接して設けることにより検
知する。従って、前述の第1図の十字状弾性体10を剛
性の大きい金属等で構成し局部的にスリットを形成して
おくことにより、剛性の大きい力検出器が得られる。
The strain in this stress concentration area is detected by, for example, providing a linear gauge such as a semiconductor strain gauge close to the bottom of the slit. Therefore, by constructing the above-described cross-shaped elastic body 10 shown in FIG. 1 from a metal or the like having high rigidity and forming slits locally, a force detector having high rigidity can be obtained.

このような対向する1対のスリットは梁の中心に関し対
称位置に1対づつ設けられ、各スリット底部に貼付した
合計4枚の歪ゲージによりブリフジ回路を構成して力の
6構成分を分離して検出する。このような歪ゲージの貼
付例のレイアウトを第3図に示す。第3図は第1図の十
字状弾性梁lOを表わすものであり、(a)図は上面図
、(b)図は底面図、(c)図はX方向の側面図(a図
のP−P矢視図)、(d)図はY方向の側面図(a図の
Q−Q矢視図)である、X、Y、Z方向の各軸方向力成
分x、y、zは各々図示した位置の4枚IMiの半導体
歪ゲージに、〜X413’l〜Va。
A pair of such opposing slits are provided at symmetrical positions with respect to the center of the beam, and a total of four strain gauges attached to the bottom of each slit form a bridge circuit to separate the six components of force. Detect. FIG. 3 shows a layout of an example of pasting such strain gauges. Figure 3 shows the cross-shaped elastic beam lO in Figure 1, (a) is a top view, (b) is a bottom view, and (c) is a side view in the X direction (P -P arrow view), (d) is a side view in the Y direction (QQ arrow view in figure a).Each axial force component x, y, z in the X, Y, and Z directions is ~X413'l~Va on the four IMi semiconductor strain gauges at the positions shown.

z1〜z4により検出される。またX、Y、Z軸の各軸
廻りのモーメント成分α、β、Tは各々図示した位置の
4枚1組の半導体歪ゲージα1〜α4 。
It is detected by z1 to z4. Moment components α, β, and T around each of the X, Y, and Z axes are represented by a set of four semiconductor strain gauges α1 to α4 at the positions shown in the figure.

β、〜β1.γ、〜γ4により検出される。β, ~β1. γ, to γ4.

このような4枚1組の歪ゲージを用いて第4図に示すブ
リッジ回路が構成される。弾性梁上の4枚の歪ゲージ1
〜4は第3図実施例の各組の歪ゲージの添字番号と同じ
配列である。軸方向力成分X%y、Zを検出する歪ゲー
ジ1〜4は(a)図に示す配列で構成され、軸廻りモー
メント成分α、β、γを検出する歪ゲージ1〜4は(b
)図に示す配列で構成される。各ブリッジ回路には一定
電圧Eが印加され出力端子より変位量に応じた電圧が取
出される。弾性梁に軸方向力成分のみが作用すると歪ゲ
ージ1.3および歪ゲージ2,4は同じ変位量を示すた
め(b)図に示すブリッジ回路の出力は零である。弾性
梁に軸廻りモーメント成分のみが作用すると歪ゲージ1
.4および歪ゲージ2,3は同じ変位量を示すため<a
)図に示すブリッジ回路の出力は零である。
A bridge circuit shown in FIG. 4 is constructed using a set of four strain gauges. Four strain gauges on an elastic beam 1
-4 are the same arrangement as the subscript numbers of each set of strain gauges in the embodiment of FIG. Strain gauges 1 to 4 that detect axial force components
) consists of the array shown in the figure. A constant voltage E is applied to each bridge circuit, and a voltage corresponding to the amount of displacement is taken out from the output terminal. When only the axial force component acts on the elastic beam, strain gauge 1.3 and strain gauges 2 and 4 exhibit the same amount of displacement, so the output of the bridge circuit shown in figure (b) is zero. When only the axial moment component acts on an elastic beam, strain gauge 1
.. 4 and strain gauges 2 and 3 show the same amount of displacement, <a
) The output of the bridge circuit shown in the figure is zero.

次に弾性梁に軸方向力成分および軸廻りモーメント成分
の両方が同時に作用した場合について第5図を参照して
説明する。例としてZ軸の軸方向力成分XおよびZ軸の
軸廻りモーメントγが作用した場合について説明する。
Next, a case where both an axial force component and an axial moment component act simultaneously on the elastic beam will be described with reference to FIG. 5. As an example, a case where an axial force component X of the Z-axis and a moment γ around the Z-axis are applied will be described.

(a)図はXのみが作用した場合、(b)図はγのみが
作用した場合、(C)図はx5γの両方が作用した場合
について弾性体の変形を誇張して描いたものである。各
場合の歪ゲージの抵抗値は以下の表のようになる。
(a) The figure shows the case where only X acts, (b) the figure shows the case where only γ acts, and the figure (C) shows the exaggerated deformation of the elastic body when both x5γ act. . The resistance values of the strain gauges in each case are shown in the table below.

Rは変位量のときの歪ゲージの抵抗値である。R is the resistance value of the strain gauge at the displacement amount.

以下余白 このときXI’%−X4で構成した力成分検出用°ブリ
フジ回路(第4図(a)のrgJ路)の出力は以下のよ
うになる。
Below is a margin.At this time, the output of the force component detection °brifuji circuit (rgJ path in FIG. 4(a)) composed of XI'%-X4 is as follows.

軸方向力成分Xによる出力VX、Xは、=  −E 軸廻りモーメント成分子による出力Vx、γは、=O 上記x、rの両方による出力Vx、xTは  −E となる。即ち、Vx、xγ=Vx、xであり、x、rの
両方が作用した場合に、このブリッジ回路の出力はX成
分のみに対応した出力となる。
Outputs VX and X due to the axial force component X are = -E Outputs Vx and γ due to the axial moment component are =O Outputs Vx and xT due to both x and r mentioned above are -E. That is, Vx,xγ=Vx,x, and when both x and r act, the output of this bridge circuit corresponds only to the X component.

一方γ1〜γ4による第4図(b)のブリフジ回路では
X、γの両方が作用した場合にγ成分のみに対応した出
力が得られる。他の軸力成分についても同様に1つの成
分のみに対応した出力を得ることができる。
On the other hand, in the Brifuji circuit of FIG. 4(b) using γ1 to γ4, when both X and γ act, an output corresponding only to the γ component is obtained. Similarly, for other axial force components, an output corresponding to only one component can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明に係る力検出装置において
は、十字状弾性体の各弾性梁の中心対称位置にスリット
を設け、このスリット底部の歪を歪ゲージによるブリッ
ジ回路を用いて検出している。従って、十字状弾性体の
剛性を大きくしても歪は確実に検出され、高い剛性の高
窓度の力検出装置が得られる。また、構造を複雑にする
ことなく、ブリッジ回路を適当に構成することにより力
の6構成分を確実に分離して検出することができる。従
って、高い剛性を要求されるロボットハンドへの適用が
可能となり、またロボットハンドの高速動作を高精度で
行うことができる。
As explained above, in the force detection device according to the present invention, slits are provided at centrally symmetrical positions of each elastic beam of the cross-shaped elastic body, and the strain at the bottom of the slit is detected using a bridge circuit using a strain gauge. There is. Therefore, even if the stiffness of the cross-shaped elastic body is increased, strain can be reliably detected, and a force detection device with high rigidity and high window coverage can be obtained. Further, by appropriately configuring the bridge circuit, the six components of force can be reliably separated and detected without complicating the structure. Therefore, the present invention can be applied to a robot hand that requires high rigidity, and the robot hand can be operated at high speed with high accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る力検出装置を備えたロボット手首
部の分解斜視図、第2図は本発明の原理説明図、第3図
は第1図の力検出装置の歪ゲージ貼付レイアウト図、第
4図は本発明に係る力検出装置のブリッジ回路図、第5
図は本発明に係る力検出装置の作用説明図である。 lO・・・十字状弾性体、  lGa−10d・・・弾
性梁、20a〜20d・・・スリット、 80・・・歪
ゲージ。
Fig. 1 is an exploded perspective view of a robot wrist equipped with a force detection device according to the present invention, Fig. 2 is an explanatory diagram of the principle of the present invention, and Fig. 3 is a layout diagram of the force detection device shown in Fig. 1 with strain gauges attached. , FIG. 4 is a bridge circuit diagram of the force detection device according to the present invention, and FIG.
The figure is an explanatory diagram of the operation of the force detection device according to the present invention. lO...cruciform elastic body, lGa-10d...elastic beam, 20a-20d...slit, 80...strain gauge.

Claims (1)

【特許請求の範囲】 1、矩形断面の4本の弾性梁を十字状に形成して十字状
弾性体を構成し、各弾性梁の対向する2面上に弾性梁の
長手方向と直交方向に1対のスリットを該弾性梁の幅全
体に亘って形成し、該スリットの端部側面が露出する弾
性梁表面上の該スリット底部に近接させて抵抗変化によ
る力検出用変位測定手段を設けたことを特徴とする力検
出装置。 2、前記変位測定手段は、弾性梁表面に貼付した歪ゲー
ジからなることを特徴とする特許請求の範囲第1項記載
の力検出装置。 3、前記1対のスリットは、各弾性梁上に水平方向配置
および垂直方向配置として2ケ所に設け、かつ4本の各
弾性梁のスリット位置は各スリットが中心対称となるよ
うに形成し、対称位置の2組のスリットの底部位置の4
枚の歪ゲージによりブリッジ回路を構成し、該ブリッジ
回路の出力により力を検出することを特徴とする特許請
求の範囲第2項記載の力検出装置。
[Claims] 1. A cross-shaped elastic body is constructed by forming four elastic beams each having a rectangular cross section in a cross shape, and a cross-shaped elastic body is formed by forming four elastic beams each having a rectangular cross section, and a cross-shaped elastic body is formed on two opposing faces of each elastic beam in a direction orthogonal to the longitudinal direction of the elastic beam. A pair of slits were formed across the entire width of the elastic beam, and a displacement measuring means for detecting force by resistance change was provided close to the bottom of the slit on the surface of the elastic beam where the end side surface of the slit was exposed. A force detection device characterized by: 2. The force detection device according to claim 1, wherein the displacement measuring means comprises a strain gauge attached to the surface of the elastic beam. 3. The pair of slits are provided at two locations on each elastic beam, horizontally arranged and vertically arranged, and the slit positions of each of the four elastic beams are formed so that each slit is symmetrical about the center, 4 at the bottom position of two sets of slits in symmetrical positions
3. The force detecting device according to claim 2, wherein a bridge circuit is formed by a plurality of strain gauges, and force is detected by the output of the bridge circuit.
JP61059459A 1986-03-19 1986-03-19 Force detector Pending JPS62217131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61059459A JPS62217131A (en) 1986-03-19 1986-03-19 Force detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61059459A JPS62217131A (en) 1986-03-19 1986-03-19 Force detector

Publications (1)

Publication Number Publication Date
JPS62217131A true JPS62217131A (en) 1987-09-24

Family

ID=13113911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61059459A Pending JPS62217131A (en) 1986-03-19 1986-03-19 Force detector

Country Status (1)

Country Link
JP (1) JPS62217131A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075039A (en) * 2007-09-25 2009-04-09 Hitachi Metals Ltd Semiconductor strain sensor, and attaching method of semiconductor strain sensor
CN105424256A (en) * 2016-01-26 2016-03-23 哈尔滨工业大学 Decoupling type six-dimensional force detection device
CN107462352A (en) * 2017-07-12 2017-12-12 中国航空工业集团公司西安飞行自动控制研究所 The fiber grating stick force sensor and measuring method of a kind of temperature self-compensation
CN112629717A (en) * 2020-12-15 2021-04-09 珠海格力电器股份有限公司 Elastic beam of force sensor, sensing assembly of force sensor and force sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009075039A (en) * 2007-09-25 2009-04-09 Hitachi Metals Ltd Semiconductor strain sensor, and attaching method of semiconductor strain sensor
CN105424256A (en) * 2016-01-26 2016-03-23 哈尔滨工业大学 Decoupling type six-dimensional force detection device
CN105424256B (en) * 2016-01-26 2018-03-30 哈尔滨工业大学 A kind of decoupling type 6 DOF force checking device
CN107462352A (en) * 2017-07-12 2017-12-12 中国航空工业集团公司西安飞行自动控制研究所 The fiber grating stick force sensor and measuring method of a kind of temperature self-compensation
CN112629717A (en) * 2020-12-15 2021-04-09 珠海格力电器股份有限公司 Elastic beam of force sensor, sensing assembly of force sensor and force sensor
CN112629717B (en) * 2020-12-15 2021-11-23 珠海格力电器股份有限公司 Elastic beam of force sensor, sensing assembly of force sensor and force sensor

Similar Documents

Publication Publication Date Title
KR860002351A (en) External force detector
KR101985270B1 (en) Capacitive Torque Sensor Without Limit in Flexure Hinge
JP2019095407A (en) Displacement detection type force detection structure and force sensor
US4447048A (en) Symmetrical three degree of freedom compliance structure
CN107314852B (en) A kind of wrist sensor
JPS62217131A (en) Force detector
KR0135591B1 (en) Semiconductor sensor for sensing a physical quantity
JPH0772026A (en) Strain generating construction and multiaxis force detection sensor using the same
EP3792638B1 (en) Low-noise multi axis mems accelerometer
JPH05149811A (en) Axial force sensor for six components
JPH05172843A (en) Semiconductor acceleration sensor
JP3043477B2 (en) Sensor using change in capacitance
KR960006311B1 (en) Force &amp; moment sensor
JPH01262431A (en) Force sensor
KR102229563B1 (en) Force/torque sensor that miniaturization is available
US3858143A (en) Ball stop pressure transducer
US4884346A (en) Apparatus for linear measurements
JPH01292225A (en) Load converter
JPS62215837A (en) Force detector
CN214585541U (en) Three-axis acceleration sensor
US5040305A (en) Apparatus for linear measurements
JP2000266620A (en) Inner force sensor
KR20180105944A (en) Force/torque sensor that miniaturization is available
JPH0615993B2 (en) Axial force sensor
JPS61237029A (en) Multi-direction force detector