JPS62216934A - Device for doping treatment of porous base material for optical fiber - Google Patents

Device for doping treatment of porous base material for optical fiber

Info

Publication number
JPS62216934A
JPS62216934A JP5909486A JP5909486A JPS62216934A JP S62216934 A JPS62216934 A JP S62216934A JP 5909486 A JP5909486 A JP 5909486A JP 5909486 A JP5909486 A JP 5909486A JP S62216934 A JPS62216934 A JP S62216934A
Authority
JP
Japan
Prior art keywords
pressure
reaction vessel
optical fiber
vessel
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5909486A
Other languages
Japanese (ja)
Inventor
Toshimi Habasaki
幅崎 利己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP5909486A priority Critical patent/JPS62216934A/en
Publication of JPS62216934A publication Critical patent/JPS62216934A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain a high-purity base material for optical fiber in favorable productivity by automatically making the following both internal pressure equal by means of a pressure regulator, namely the internal pressure of a reaction vessel housing the porous base material for optical fiber and the internal pressure of a pressure vessel housing both the reaction vessel and a heating element heating the reaction vessel. CONSTITUTION:Both a reaction vessel 3 wherein a porous base material 2 for optical fiber is housed and a dopant is impregnated thereinto and a pressure vessel 5 wherein the reaction vessel 3 and a heating element 4 heating the reaction vessel 3 are housed are provided. Doping gas contg. the dopant is introduced into the reaction vessel 3 in a pressurized state through a gas feed port 7 and discharged through a gas discharge port 8 and it is regulated at the prescribed pressure by a pressure regulating valve 9, and the dopant is impregnated into the porous base material 2 for optical fiber. On the other hand, inert gas in a pressurized state is introduced into a pressure vessel 5 through a gas pipeline 13. Each pressure is detected by respective pressure gages 10, 11 and a controller 12 controls a pressure control valve 4 to make them equal.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、多孔質光ファイバ母材に屈折率等を変えるた
めのドーパントを効率良く含浸させるためのドーピング
処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a doping treatment apparatus for efficiently impregnating a porous optical fiber base material with a dopant for changing the refractive index and the like.

〈従来の技術〉 VAD法で得られた多孔質光ファイ/s+母材をドーピ
ング処理する際、ドーピングガスを加圧状態にすること
によって、反応効率を高めることができることは知られ
ている。例えば、加圧された弗素系ガス下で多孔質光フ
ァイバ母材をドーピング処理することによって、多量の
弗素を多孔質光ファイバ母材中へ効果的にドープするこ
とができる。
<Prior Art> It is known that when doping a porous optical fiber/s+ base material obtained by the VAD method, the reaction efficiency can be increased by pressurizing the doping gas. For example, by doping the porous optical fiber preform under pressurized fluorine-based gas, a large amount of fluorine can be effectively doped into the porous optical fiber preform.

かかる多孔質光ファイバ母材のドーピング装置の一例を
表す第2図に示すように、回転自在の支持棒1に取付け
られた多孔質光ファイバ母材2は反応圧力容器3′の中
に保持さ1+。
As shown in FIG. 2, which shows an example of such a doping apparatus for a porous optical fiber preform, a porous optical fiber preform 2 attached to a rotatable support rod 1 is held in a reaction pressure vessel 3'. 1+.

る0反応圧力容器3′は加熱体4によってドーピング処
理温度に加熱される。反応圧力容器3′中へはドーピン
グガス、例えば弗素系ではSFb 、 CF4 、 C
2F4. SiF<、 B7 、5izF6等が4気圧
程度の圧力に加圧供給される。反応圧力容器3′の下端
のガス供給ロアからこのようなドーピングガスが供給さ
れ、上端のガス排出口8から排出される。なお、図中の
符号で、6はシール、9は圧力調整弁、10は反応圧力
容器3′の内圧を測定する圧力計であり、加熱体4を大
気から遮断して不活性ガスで蔽う保護容器4aが設けら
れている。
The zero reaction pressure vessel 3' is heated by a heating element 4 to a doping treatment temperature. A doping gas such as SFb, CF4, C in the case of fluorine is introduced into the reaction pressure vessel 3'.
2F4. SiF<, B7, 5izF6, etc. are supplied under pressure to about 4 atmospheres. Such a doping gas is supplied from the gas supply lower at the lower end of the reaction pressure vessel 3', and is discharged from the gas outlet 8 at the upper end. In addition, in the symbols in the figure, 6 is a seal, 9 is a pressure regulating valve, and 10 is a pressure gauge for measuring the internal pressure of the reaction pressure vessel 3'.The heating element 4 is protected from the atmosphere and covered with inert gas. A container 4a is provided.

〈発明が解決しようとする問題点〉 第2図に示した従来の多孔質光ファイバ母材のドーピン
グ処理装置では、反応圧力容器3′を1000″近い高
温と数気圧の内圧とに耐えるように設計しなければなら
ない。反応圧力容i1B 3rとして石英又は酸化アル
ミニウムを用いる場合は、内圧に耐えられるような構造
的強度を保つため、相当に厚肉のものを使用する必要が
ある。従ってこのような反応圧力容器3′は品温高圧下
で使用されるため、絶えず破裂の心配があり、取扱いに
は極めて注意を要する。また、容器も非常に高価になる
<Problems to be Solved by the Invention> In the conventional doping treatment apparatus for a porous optical fiber base material shown in FIG. When using quartz or aluminum oxide as the reaction pressure volume i1B 3r, it is necessary to use a material with a considerably thick wall to maintain the structural strength to withstand the internal pressure. Since the reaction pressure vessel 3' is used at high temperature and pressure, there is a constant fear of rupture and must be handled with great care.The vessel is also very expensive.

一方、金属の反応圧力容器3′を使用する場合は、多孔
質光ファイバ母材が反応圧力容器3′を構成する金属に
汚染され易く、良質の光ファイバを得ることができない
、更に、ドーピングガスは一般に腐食性が強くて金属製
の反応圧力容器3′では短期間に消損して使用不能にな
る欠点があった。
On the other hand, when using a metal reaction pressure vessel 3', the porous optical fiber base material is easily contaminated by the metal constituting the reaction pressure vessel 3', making it impossible to obtain a high quality optical fiber. Generally, they are highly corrosive and have the drawback that they are consumed in a short period of time and become unusable in the metal reaction pressure vessel 3'.

本発明はかかる従来技術の欠点に鑑みてなされたもので
、薄肉の石英又は酸化アルミニウムの反応容器を用いる
ことが可能な多孔質光ファイバ母材のドーピング処理装
置を提0(することを目的とする。
The present invention has been made in view of the drawbacks of the prior art, and aims to provide a doping treatment apparatus for a porous optical fiber base material that can use a thin-walled quartz or aluminum oxide reaction vessel. do.

く問題点を解決するための手段〉 本発明による多孔質光ファイバ母材のドーピング処理装
置は、多孔質光ファイバ母材を収容してこの多孔質光フ
ァイバ母材にドーパントを含浸させる反応容器と、該反
応容器内に前記ドーパントを含むドーピングガスを加圧
状態で送給するドーピングガス供給手段と、前記反応容
器内を加熱する加熱体と、この加熱体と前記反応容器と
を収容する圧力容器と、この圧力容器内に加圧状態の不
活性ガスを送給する不活性ガス供給手段と、前記圧力容
器内のガス圧と上記反応容器内のガス圧との圧力差を一
定に制御する圧力調整装置とを具えたことを特徴とする
ものである。
Means for Solving the Problems> A doping treatment apparatus for a porous optical fiber preform according to the present invention comprises a reaction vessel for accommodating a porous optical fiber preform and impregnating the porous optical fiber preform with a dopant. , a doping gas supply means for feeding a doping gas containing the dopant into the reaction vessel under pressure, a heating body for heating the inside of the reaction vessel, and a pressure vessel housing the heating body and the reaction vessel. , an inert gas supply means for supplying pressurized inert gas into the pressure vessel, and a pressure for controlling the pressure difference between the gas pressure in the pressure vessel and the gas pressure in the reaction vessel to be constant. The invention is characterized in that it includes an adjustment device.

く作   用〉 多孔質光ファイバ母材を収容する反応容器の内圧と、こ
の反応容器と反応容器を加熱する加熱体とを収容する圧
力容器の内圧とを圧力IJR整装置によって自動的にほ
ぼ等しく保っており、反応容器の内外で大きな圧力差が
発生しない。
Function> The pressure IJR adjustment device automatically equalizes the internal pressure of the reaction vessel that houses the porous optical fiber preform and the internal pressure of the pressure vessel that houses the reaction vessel and the heating element that heats the reaction vessel. The pressure difference between the inside and outside of the reaction vessel does not occur.

〈実 施 例〉 本発明による多孔質光ファイバ母材のドーピング処理装
置の一実施例の概略構造を表す第1図に示すように、多
孔質光ファイバ母材2は支持棒lによって回転可能に支
持され、反応容器3の中央部に挿入されている。反応容
器3へは加圧されたドーピングガス、例えば弗素系では
SFa 、 CFa r CzF&、 Sr’s、 B
FI。
<Embodiment> As shown in FIG. 1, which shows a schematic structure of an embodiment of the doping treatment apparatus for a porous optical fiber preform according to the present invention, a porous optical fiber preform 2 is rotatable by a support rod l. It is supported and inserted into the center of the reaction vessel 3. A pressurized doping gas, for example, SFa, CFa, CzF&, Sr's, B in the case of fluorine, is supplied to the reaction vessel 3.
FI.

SiF6等が供給ロアから供給されると共に排出口8か
ら排出され、反応容器3内ではドーピングガスは圧力調
整弁9の調整で所望の気圧に保たれている。また、加熱
体4は反応容器3を取り巻いており反応容器3内を所望
の処理温度、例えば800℃以上に加熱している。
SiF6 and the like are supplied from the supply lower and discharged from the discharge port 8, and the doping gas is maintained at a desired pressure inside the reaction vessel 3 by adjusting the pressure regulating valve 9. Further, the heating body 4 surrounds the reaction vessel 3 and heats the inside of the reaction vessel 3 to a desired processing temperature, for example, 800° C. or higher.

この加熱によって反応容器3内ではドーピングガス中の
ドーパント、例えば弗素系ガスでは弗素成分が多孔質光
ファイバ母材2に効果的に含浸されて行く。反応容器3
と加熱体4とは鋼製等の圧力容器5で囲まれており、圧
力容器5内へは不活性ガスが配管13及び圧力制御弁1
4を経て供給される。制御装置12には反応容器30内
の気圧を計41すする圧力計10及び圧力容器5内の気
圧を計測する圧力計11からの圧力情報が大ツノされ、
圧力容器5へ流入する不活性ガスの流量を、圧力容器5
内の圧力が反応容器3内の圧力と等しいか或いは水柱で
数ミリメートル程度大となるように、配管13に装置さ
れた圧力制御弁14を介して制御している。尚、図中の
符号で6は反応容器30の気密性を高めるシールである
By this heating, the dopant in the doping gas, for example, a fluorine component in the case of a fluorine-based gas, is effectively impregnated into the porous optical fiber base material 2 in the reaction vessel 3. Reaction vessel 3
The heating body 4 is surrounded by a pressure vessel 5 made of steel or the like, and an inert gas is supplied into the pressure vessel 5 through a pipe 13 and a pressure control valve 1.
4. The control device 12 receives pressure information from a pressure gauge 10 measuring the atmospheric pressure inside the reaction vessel 30 and a pressure gauge 11 measuring the atmospheric pressure inside the pressure vessel 5.
The flow rate of the inert gas flowing into the pressure vessel 5 is
The pressure inside the reaction vessel 3 is controlled via a pressure control valve 14 installed in the piping 13 so that it is equal to the pressure inside the reaction vessel 3 or approximately several millimeters higher in water column. Note that the reference numeral 6 in the figure is a seal that increases the airtightness of the reaction container 30.

従って、反応容器3の内外圧を、圧力計10゜11及び
制御装置12及び圧力制御弁14からなる圧力調整装置
によって自動的にほぼ等しく保っている。このため、反
応容器3には圧力が殆んど作用せず、比較的薄い石英や
酸化アルミニウムといった材料で反応容器3を形成する
ことができる0反応容器3は上述した理由から薄肉でも
破裂する心配がなく、多孔質光ファイバ母材2に急速に
ドーピングガスの中のドーパント成分を加圧した状態で
ドープすることができる。
Therefore, the internal and external pressures of the reaction vessel 3 are automatically maintained approximately equal by a pressure regulating device comprising a pressure gauge 10.degree. 11, a control device 12, and a pressure control valve 14. For this reason, almost no pressure acts on the reaction vessel 3, and the reaction vessel 3 can be made of relatively thin materials such as quartz or aluminum oxide.For the reasons mentioned above, there is no risk of the reaction vessel 3 bursting even with a thin wall. Therefore, the porous optical fiber preform 2 can be rapidly doped with the dopant component in the doping gas under pressure.

〈発明の効果〉 本発明の多孔質光ファイバ母材のドーピング処理装置に
よれば、反応容器を反応容器内の加圧されたドーピング
ガスの圧力とほぼ等しい圧力に保たれた圧力容器内に収
容することによって、反応容器を石英或いは酸化アルミ
ニウム等の如き光ファイバを汚染しない薄肉材料で形成
できる。従って、反応容器のコストを著しく削減でき、
装置全体のコストを低下させることができた。また、従
来のものの如く反応容器が内圧のために破裂するといっ
た心配はなくなり、長期間に互って安全に使用できる上
に高い生産性で純度の高い光ファイバ母材を得ることが
できるようになった。
<Effects of the Invention> According to the doping treatment apparatus for a porous optical fiber preform of the present invention, the reaction vessel is housed in a pressure vessel maintained at a pressure approximately equal to the pressure of the pressurized doping gas in the reaction vessel. By doing so, the reaction vessel can be made of a thin material such as quartz or aluminum oxide that does not contaminate the optical fiber. Therefore, the cost of reaction vessels can be significantly reduced,
The cost of the entire device could be reduced. In addition, there is no need to worry about the reaction vessel bursting due to internal pressure as in conventional systems, and it is now possible to safely use each other for a long period of time, and to obtain high-purity optical fiber preforms with high productivity. became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による多孔質光ファイバ母材のドーピン
グ処理装置の一実施例の構造を表す断面図、第2図は従
来の多孔質光ファイバ母1オのドーピング処理装置の一
例を表す断面図である。 図面中、lは支持棒、2は多孔質光ファイバ母材、3は
反応容器、4は加熱体、5は圧力容器、7はガス供給口
、8はガス排気口、9は圧力調整弁、12は制御装置、
13はガス供給口、14は圧力制御弁である。
FIG. 1 is a cross-sectional view showing the structure of an embodiment of a doping processing apparatus for a porous optical fiber preform according to the present invention, and FIG. 2 is a cross-sectional view showing an example of a conventional doping processing apparatus for a porous optical fiber preform. It is a diagram. In the drawings, l is a support rod, 2 is a porous optical fiber preform, 3 is a reaction vessel, 4 is a heating element, 5 is a pressure vessel, 7 is a gas supply port, 8 is a gas exhaust port, 9 is a pressure regulating valve, 12 is a control device;
13 is a gas supply port, and 14 is a pressure control valve.

Claims (2)

【特許請求の範囲】[Claims] (1)多孔質光ファイバ母材を収容してこの多孔質光フ
ァイバ母材にドーパントを含浸させる反応容器と、該反
応容器内に前記ドーパントを含むドーピングガスを加圧
状態で送給するドーピングガス供給手段と、前記反応容
器内を加熱する加熱体と、この加熱体と前記反応容器と
を収容する圧力容器と、この圧力容器内に加圧状態の不
活性ガスを送給する不活性ガス供給手段と、前記圧力容
器内のガス圧と上記反応容器内のガス圧との圧力差を制
御する圧力調整装置とを具えたことを特徴とする多孔質
光ファイバ母材のドーピング処理装置。
(1) A reaction vessel that accommodates a porous optical fiber preform and impregnates the porous optical fiber preform with a dopant, and a doping gas that supplies the doping gas containing the dopant under pressure into the reaction vessel. a supply means, a heating body for heating the inside of the reaction vessel, a pressure vessel for accommodating the heating body and the reaction vessel, and an inert gas supply for feeding pressurized inert gas into the pressure vessel. 1. An apparatus for doping a porous optical fiber preform, comprising: means for controlling the pressure difference between the gas pressure in the pressure vessel and the gas pressure in the reaction vessel.
(2)反応容器が石英又は酸化アルミニウムで形成され
ていることを特徴とする特許請求の範囲第1項に記載し
た多孔質光ファイバ母材のドーピング処理装置。
(2) The doping treatment apparatus for a porous optical fiber preform as set forth in claim 1, wherein the reaction vessel is made of quartz or aluminum oxide.
JP5909486A 1986-03-19 1986-03-19 Device for doping treatment of porous base material for optical fiber Pending JPS62216934A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5909486A JPS62216934A (en) 1986-03-19 1986-03-19 Device for doping treatment of porous base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5909486A JPS62216934A (en) 1986-03-19 1986-03-19 Device for doping treatment of porous base material for optical fiber

Publications (1)

Publication Number Publication Date
JPS62216934A true JPS62216934A (en) 1987-09-24

Family

ID=13103401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5909486A Pending JPS62216934A (en) 1986-03-19 1986-03-19 Device for doping treatment of porous base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS62216934A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145507A (en) * 1985-03-18 1992-09-08 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
US5203899A (en) * 1985-03-18 1993-04-20 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
US5364428A (en) * 1985-03-18 1994-11-15 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
JP2007051020A (en) * 2005-08-17 2007-03-01 Asahi Glass Co Ltd Method and apparatus for treating porous glass
KR101310761B1 (en) * 2012-04-23 2013-09-25 한국광기술원 Apparatus for adding doping solution for optical fiber core
WO2020251798A1 (en) * 2019-06-11 2020-12-17 Corning Incorporated Apparatuses and methods for processing optical fiber preforms

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5145507A (en) * 1985-03-18 1992-09-08 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
US5203899A (en) * 1985-03-18 1993-04-20 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
US5364428A (en) * 1985-03-18 1994-11-15 Sumitomo Electric Industries, Ltd. Method for producing glass preform for optical fiber
JP2007051020A (en) * 2005-08-17 2007-03-01 Asahi Glass Co Ltd Method and apparatus for treating porous glass
JP4666253B2 (en) * 2005-08-17 2011-04-06 旭硝子株式会社 Method for processing porous glass
KR101310761B1 (en) * 2012-04-23 2013-09-25 한국광기술원 Apparatus for adding doping solution for optical fiber core
WO2020251798A1 (en) * 2019-06-11 2020-12-17 Corning Incorporated Apparatuses and methods for processing optical fiber preforms
US11554981B2 (en) 2019-06-11 2023-01-17 Corning Incorporated Apparatuses and methods for processing optical fiber preforms

Similar Documents

Publication Publication Date Title
US4167915A (en) High-pressure, high-temperature gaseous chemical apparatus
US4268538A (en) High-pressure, high-temperature gaseous chemical method for silicon oxidation
US5698037A (en) Integrated delivery system for chemical vapor from non-gaseous sources for semiconductor processing
US4351805A (en) Single gas flow elevated pressure reactor
KR19990072962A (en) Continuous gas saturation system and method
US4517220A (en) Deposition and diffusion source control means and method
US4936877A (en) Dopant delivery system for semiconductor manufacture
JPS62216934A (en) Device for doping treatment of porous base material for optical fiber
CN101193815B (en) Control of fluid conditions in bulk fluid delivery systems
JP2008020072A (en) Apparatus for transporting cryogenic liquid
EP0025230A2 (en) Method of and apparatus for producing optical fibre preforms
JP2005079528A (en) High precision high pressure annealer
US4599247A (en) Semiconductor processing facility for providing enhanced oxidation rate
JPS61254242A (en) Apparatus for supplying stock material
US4726764A (en) Heat treating apparatus and method of operating heat treating apparatus
US3919968A (en) Reaction device for pyrolytic deposition of semiconductor material
US4075293A (en) Control system for an absorption column
JPH11349397A (en) Feeding system and process for epitaxial deposition of silicon using continuously feeding single bubbler
US5046925A (en) Gas piston liquid flow controller
US3558281A (en) Apparatus for minimizing stress in a heated semiconductor filament
CN114878069A (en) Pressure standard source, pressure standard source preparation equipment and pressure calibration method
US5205485A (en) Apparatus and method of controlling moisture content within a reaction vessel
JPH01119541A (en) Fiber drawing furnace
JPH09286620A (en) Method for supplying gaseous raw material and device therefor
JP3581782B2 (en) Method and apparatus for manufacturing glass tube