JPS62216370A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS62216370A
JPS62216370A JP5983786A JP5983786A JPS62216370A JP S62216370 A JPS62216370 A JP S62216370A JP 5983786 A JP5983786 A JP 5983786A JP 5983786 A JP5983786 A JP 5983786A JP S62216370 A JPS62216370 A JP S62216370A
Authority
JP
Japan
Prior art keywords
oxide film
chemical vapor
film
gate insulating
temperature chemical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5983786A
Other languages
Japanese (ja)
Inventor
Akishige Nakanishi
章滋 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP5983786A priority Critical patent/JPS62216370A/en
Publication of JPS62216370A publication Critical patent/JPS62216370A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a gate insulating film of an MOS transistor having less traps and high dielectric withstanding voltage characteristics by forming the gate insulating film as a composite oxide film made of a plurality of types of oxide films. CONSTITUTION:A source region 2 and a drain region 3 are provided near the surface of a semiconductor substrate 1, a thermal oxide film 4 is formed on the substrate 1 interposed therebetween, and an oxide film 5 is formed by a high temperature chemical vapor growing method thereon, and a control gate electrode 6 is formed thereon. The structures of the composite oxide films 4, 5 are thermally oxidized, then high temperature chemical vapor grown, or high temperature chemical vapor grown and then thermally oxidized to contact the film 4 on the substrate 1, and the film 5 is laminated thereon. Thus, an ideal performance as the gate insulating film of an MOS transistor can be achieved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、熱酸化法と高温化学気相成長法による複合酸
化膜をゲート絶縁膜に用いたMOS)ランジスタに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a MOS transistor using a composite oxide film formed by thermal oxidation and high temperature chemical vapor deposition as a gate insulating film.

〔発明の概要〕[Summary of the invention]

本発明はMOS)ランジスタの絶縁膜の形成において、
熱酸化により形成される酸化膜と高温化学気相成長によ
る酸化膜を複合的に形成することにより、トランプの少
ない、絶縁耐圧特性の優れたゲート絶縁膜の形成を可能
とするものである。
The present invention relates to the formation of an insulating film of a MOS transistor.
By compositely forming an oxide film formed by thermal oxidation and an oxide film formed by high-temperature chemical vapor deposition, it is possible to form a gate insulating film with fewer trumps and excellent dielectric strength characteristics.

〔従来の技術〕[Conventional technology]

従来、MOSトランジスタの絶縁酸化膜は熱酸化工程も
しくは化学気相成長による工程のいずれか一方のみを用
いて形成されていた。
Conventionally, insulating oxide films of MOS transistors have been formed using only one of a thermal oxidation process and a chemical vapor deposition process.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、熱酸化により形成された酸化膜は高温化
学気相成長法より形成される酸化膜よりトラップが少な
いという長所を持っているが、絶縁耐圧歩留は劣ってい
る。
However, although oxide films formed by thermal oxidation have the advantage of fewer traps than oxide films formed by high-temperature chemical vapor deposition, they are inferior in dielectric strength yield.

一方、高温化学気相成長法により形成された酸化膜は熱
酸化により形成される酸化膜より絶縁耐圧歩留は高いが
、トラップが多いという欠点をもっている。
On the other hand, an oxide film formed by high-temperature chemical vapor deposition has a higher dielectric strength yield than an oxide film formed by thermal oxidation, but has the disadvantage of having more traps.

このように前記2種類の工程から形成されるそれぞれの
酸化膜は一長一短があり、これをゲート絶縁膜として利
用しようとする時、さらに性能の良い酸化膜が期待され
ていた。
As described above, each of the oxide films formed through the above two types of processes has advantages and disadvantages, and when attempting to use them as a gate insulating film, an oxide film with even better performance has been expected.

〔問題点を解決するための手段〕[Means for solving problems]

以」−に述べた問題点を解決するために、本発明ではゲ
ート絶縁膜を熱酸化により形成し、続いて700℃以上
の高温化学気相成長法により複合的に酸化膜を成長させ
た。この複合酸化膜は、まず700℃以上の高温化学気
相成長法を用いて酸化した後、続いて熱酸化を行なって
も同様な複合酸化膜が形成され、同様な成果が得られる
In order to solve the problems described below, in the present invention, a gate insulating film is formed by thermal oxidation, and then a composite oxide film is grown by high temperature chemical vapor deposition at 700° C. or higher. Even if this composite oxide film is first oxidized using high-temperature chemical vapor deposition at 700° C. or higher and then thermally oxidized, a similar composite oxide film will be formed and similar results will be obtained.

〔作 用〕[For production]

上記のごとく形成された複合酸化膜は、高温化学気相成
長法により形成される絶縁耐圧歩留の高い酸化膜と熱酸
化により形成されるトラップの少ない酸化膜の両者の長
所を兼ね備えて持っている。
The composite oxide film formed as described above has the advantages of both an oxide film with a high dielectric strength yield formed by high-temperature chemical vapor deposition and an oxide film with few traps formed by thermal oxidation. There is.

故にこの複合酸化膜はMOSトランジスタのゲート絶縁
膜として理想的な性能を発揮することが可能となる。
Therefore, this composite oxide film can exhibit ideal performance as a gate insulating film of a MOS transistor.

〔実施例〕〔Example〕

本発明の実施例を図面に基づいて詳細に説明する。第1
図は本発明による半導体装置の断面図である。 第1図
において1は半導体基板であり、その表面近傍にソース
領域2およびドレイン領域3が設けられており、これら
に挟まれた半導体基板lの表面上に熱酸化膜4が、その
上に高温化学気相成長法による酸化膜5が形成されてい
る。さらにその上に制御ゲート電極6が設けられている
Embodiments of the present invention will be described in detail based on the drawings. 1st
The figure is a sectional view of a semiconductor device according to the present invention. In FIG. 1, reference numeral 1 denotes a semiconductor substrate, and a source region 2 and a drain region 3 are provided near the surface of the semiconductor substrate 1. On the surface of the semiconductor substrate 1 sandwiched between these, a thermal oxide film 4 is deposited at a high temperature. An oxide film 5 is formed by chemical vapor deposition. Furthermore, a control gate electrode 6 is provided thereon.

上記複合酸化膜4,5の構造は(1)熱酸化後、高温化
学気相成長、(2)高温化学気相成長後、熱酸化のいず
れの工程を用いても半導体基板1上に熱酸化膜4が接し
、その上に高温化学気相成長法による酸化膜5を積み重
ねる形に形成される。
The structure of the composite oxide films 4 and 5 can be thermally oxidized on the semiconductor substrate 1 using any of the following steps: (1) thermal oxidation followed by high-temperature chemical vapor deposition, or (2) high-temperature chemical vapor deposition followed by thermal oxidation. The film 4 is in contact with the oxide film 5, and an oxide film 5 formed by high temperature chemical vapor deposition is stacked thereon.

酸化膜のトラップを測定する方法としてMOSダイオー
ドを用いる方法が一般に知られており、その結果を第2
図に示す。第2図は1000°Cの熱酸化膜、850°
C5ift□(Jl、 +ll、Qで形成した高温化学
気相成長法による酸化膜をそれぞれゲート絶縁膜として
用いたMOSダイオードにおいてゲート・基板電極間に
一定電流を流すためのゲート電圧の経時変化図である。
A method using MOS diodes is generally known as a method for measuring traps in oxide films, and the results are
As shown in the figure. Figure 2 shows thermal oxide film at 1000°C, 850°
C5ift□ (Jl, +ll, Q) is a diagram of the change in gate voltage over time to flow a constant current between the gate and substrate electrodes in a MOS diode using oxide films formed by high temperature chemical vapor deposition as gate insulating films. be.

この図におけるゲート電圧の上昇は酸化膜中あるいは酸
化膜−シリコン界面に存在するトランプによって電子が
捕獲されるためである。したがってこの結果は熱酸化膜
の方がトラップが少ないことを示している。
The rise in gate voltage in this figure is due to electrons being captured by the cards present in the oxide film or at the oxide film-silicon interface. Therefore, this result shows that the thermal oxide film has fewer traps.

第3図は上記二種類の酸化膜を用いたMo3)ランジス
タに一定電流密度を印加した時の誘電破壊時間に対する
累積破壊率を示す図である。横軸は、ストレス印加時間
を、縦軸は、累積破壊率を示す。この結果より明らかに
高温化学気相成長法による酸化膜の方が破壊しにくいこ
とがわかる。
FIG. 3 is a graph showing the cumulative breakdown rate with respect to the dielectric breakdown time when a constant current density is applied to the Mo3) transistor using the above two types of oxide films. The horizontal axis shows the stress application time, and the vertical axis shows the cumulative failure rate. This result clearly shows that the oxide film formed by high temperature chemical vapor deposition is more difficult to destroy.

以上の二つの利点から、前記の構造をもつ複合酸化膜は
Mo3)ランジスタのゲート絶縁膜として優れた動作を
行うことが可能である。
Because of the above two advantages, the composite oxide film having the above structure can perform excellently as a gate insulating film of a Mo3) transistor.

〔発明の効果〕〔Effect of the invention〕

本発明による熱酸化膜と高温化学気相成長法による酸化
膜によって構成される複合酸化膜を利用することにより
トラップの少ない、絶縁耐圧特性の高いMo3)ランジ
スタのゲート絶縁膜を得ることが可能となった。
By using a composite oxide film composed of a thermal oxide film according to the present invention and an oxide film produced by high-temperature chemical vapor deposition, it is possible to obtain a gate insulating film for a Mo3) transistor with fewer traps and high dielectric strength characteristics. became.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による半導体装置の断面図である。第
2図は、MOSダイオードゲート電圧の経時変化図であ
り、第3図は、MoSトランジスタの誘電破壊時間に対
する累積破壊率を示す図である。 1・・・半導体基板 2・・・ソース領域 3・・・ドレイン領域 4・・・熱酸化膜 5・・・高温化学気相成長法による酸化膜6・・・制御
ゲート電極 以」二
FIG. 1 is a sectional view of a semiconductor device according to the present invention. FIG. 2 is a graph showing the change in MOS diode gate voltage over time, and FIG. 3 is a graph showing the cumulative breakdown rate with respect to the dielectric breakdown time of the MoS transistor. 1...Semiconductor substrate 2...Source region 3...Drain region 4...Thermal oxide film 5...Oxide film formed by high temperature chemical vapor deposition 6...Control gate electrode and beyond

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板表面近傍に設けられたソース領域とド
レイン領域に挟まれた半導体基板表面上において、ゲー
ト絶縁膜が少なくとも2種類以上の酸化膜からなる複合
酸化膜であることを特徴とする半導体装置。
(1) A semiconductor characterized in that the gate insulating film is a composite oxide film consisting of at least two or more types of oxide films on the surface of the semiconductor substrate sandwiched between a source region and a drain region provided near the surface of the semiconductor substrate. Device.
(2)前記ゲート絶縁膜が、少なくとも熱酸化膜と形成
温度700℃以上の高温化学気相成長法による酸化膜か
らなる2層以上の複合酸化膜であることを特徴とする特
許請求の範囲第1項記載の半導体装置。
(2) The gate insulating film is a composite oxide film of two or more layers consisting of at least a thermal oxide film and an oxide film formed by high-temperature chemical vapor deposition at a formation temperature of 700° C. or higher. The semiconductor device according to item 1.
JP5983786A 1986-03-18 1986-03-18 Semiconductor device Pending JPS62216370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5983786A JPS62216370A (en) 1986-03-18 1986-03-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5983786A JPS62216370A (en) 1986-03-18 1986-03-18 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS62216370A true JPS62216370A (en) 1987-09-22

Family

ID=13124733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5983786A Pending JPS62216370A (en) 1986-03-18 1986-03-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS62216370A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004804A (en) * 2008-09-01 2009-01-08 Renesas Technology Corp Semiconductor device
JP2013106019A (en) * 2011-11-17 2013-05-30 Toyota Central R&D Labs Inc Semiconductor device, and method for manufacturing the same
US8748266B2 (en) 1997-08-28 2014-06-10 Renesas Electronics Corporation Method of fabricating semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748266B2 (en) 1997-08-28 2014-06-10 Renesas Electronics Corporation Method of fabricating semiconductor device
US9275863B2 (en) 1997-08-28 2016-03-01 Renesas Electronics Corporation Method of fabricating semiconductor device
JP2009004804A (en) * 2008-09-01 2009-01-08 Renesas Technology Corp Semiconductor device
JP2013106019A (en) * 2011-11-17 2013-05-30 Toyota Central R&D Labs Inc Semiconductor device, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3930561B2 (en) Ohmic contact and method for manufacturing a semiconductor device comprising such an ohmic contact
JPH0783050B2 (en) Method for manufacturing semiconductor device
JPS62216370A (en) Semiconductor device
US6159776A (en) Method for manufacturing semiconductor device
JPS59103389A (en) Superconductive element and manufacture thereof
JPS6353706B2 (en)
JPH01268121A (en) Formation of ohmic electrode for silicon semiconductor element
JPH05335585A (en) Manufacture of insulated gate type power semiconductor element
JPH06177390A (en) Manufacture of insulated gate bipolar transistor
JPS61274369A (en) Field effect type semiconductor device
JPS61182241A (en) Manufacture of dielectric isolation-type semiconductor
JPS6240746A (en) Semiconductor device
JPS61182240A (en) Manufacture of semiconductor device
JPS5976478A (en) Field effect transistor and manufacture thereof
JPH01192157A (en) Semiconductor device
JPS63168034A (en) Formation of multilayer gate electrode of semiconductor device
JPS5825245A (en) Semiconductor integrated circuit and manufacture thereof
JPS6142179A (en) Semiconductor-coupled superconductive element and manufacture thereof
JPH0493027A (en) Semiconductor device
JPS62261147A (en) Semiconductor device
JPS61121480A (en) Photoelectric conversion element and manufacture thereof
JPH0329303B2 (en)
JPS6167960A (en) Lateral bipolar transistor and manufacture thereof
JPH05308080A (en) Manufacture of bipolar transistor
JPH0473618B2 (en)