JPS6221269B2 - - Google Patents

Info

Publication number
JPS6221269B2
JPS6221269B2 JP55159003A JP15900380A JPS6221269B2 JP S6221269 B2 JPS6221269 B2 JP S6221269B2 JP 55159003 A JP55159003 A JP 55159003A JP 15900380 A JP15900380 A JP 15900380A JP S6221269 B2 JPS6221269 B2 JP S6221269B2
Authority
JP
Japan
Prior art keywords
single crystal
substrate
semiconductor
forming
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55159003A
Other languages
Japanese (ja)
Other versions
JPS5783042A (en
Inventor
Tetsuo Yoshino
Shigeharu Yamamura
Koichi Togashi
Kazuyuki Mizushima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP15900380A priority Critical patent/JPS5783042A/en
Publication of JPS5783042A publication Critical patent/JPS5783042A/en
Publication of JPS6221269B2 publication Critical patent/JPS6221269B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76297Dielectric isolation using EPIC techniques, i.e. epitaxial passivated integrated circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置の製造法に係り、特に共通
の結晶基板上に電気的に絶縁された半導体装置を
作るための方法例えば絶縁物により絶縁され、結
晶基板に埋設された半導体単結晶島の作成(誘電
体分離半導体基板)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device that is electrically insulated on a common crystal substrate. The present invention relates to the creation of semiconductor single crystal islands (dielectrically isolated semiconductor substrates).

従来この種の基板は、主として使用上基板の電
位を一定に固定することのできない回路、放射線
等の影響による誤動作をきらう応用や絶縁を行な
うために逆バイアス接合を用いた通常の接合分離
法では実現できない高耐圧を必要とされる半導体
装置への応用等に用いられてきた。半導体として
シリコンをまた絶縁物としてSiO2を例にとると
この種の基板は通常第1図a乃至第1図eに示す
ような方法で製造される。すなわち、まず、第1
図aにおいて、11は半導体装置を構成しようと
するPまたはn型導電性を有するシリコン基板で
基板表面の結晶軸は(100)面となつている。1
2は通常のフオトレジスト工程で選択的にエツチ
ングされた酸化膜である。この基板をヒドラジ
ン、水酸化カリウム等のエツチング速度に結晶面
に対する異方性をもつエツチヤントで異方性エツ
チングを行なうと、第1図bに示した様な側面を
(111)面とするV溝が得られる。次にこのV溝部
分を全面的に酸化し(第1図c)、この上部に第
1図dに示した様に多結晶シリコン13を成長さ
せる。しかるのち、この基板を単結晶シリコン面
側よりエツチングないし研磨を行ない第1図eの
様な構造を得る。ここで14は互いに酸化膜15
で絶縁分離された単結晶シリコン島でありこの中
に通常の拡散プロセスにより個々のトランジス
タ、ダイオード等が作成される。
Conventionally, this type of substrate is mainly used for circuits where the potential of the substrate cannot be fixed at a constant level, for applications where malfunctions due to the effects of radiation etc. are to be avoided, and for insulation using the normal junction separation method using reverse bias junctions. It has been used in applications such as semiconductor devices that require high breakdown voltages that cannot be realized. Taking silicon as the semiconductor and SiO 2 as the insulator, this type of substrate is usually manufactured by the method shown in FIGS. 1a to 1e. That is, first, the first
In FIG. 1A, reference numeral 11 denotes a silicon substrate having P or n type conductivity, which is used to form a semiconductor device, and the crystal axis of the substrate surface is the (100) plane. 1
2 is an oxide film selectively etched by a normal photoresist process. When this substrate is anisotropically etched with an etchant such as hydrazine or potassium hydroxide whose etching rate has anisotropy with respect to the crystal plane, a V-groove with a (111) side surface as shown in Figure 1b is formed. is obtained. Next, this V-groove portion is entirely oxidized (FIG. 1c), and polycrystalline silicon 13 is grown on top of it as shown in FIG. 1d. Thereafter, this substrate is etched or polished from the single crystal silicon side to obtain a structure as shown in FIG. 1e. Here, 14 are mutually oxide films 15
It is a single-crystal silicon island insulated and isolated within which individual transistors, diodes, etc. are created by a normal diffusion process.

以上のプロセスでV溝の側面と単結晶表面のな
す角はシリコン単結晶の(111)面と(100)面の
なす角であるから結晶の性質上一意に決定され約
54.7゜となる。また第1図から明白であるよう
に、多結晶シリコン中に絶縁分離された単結晶シ
リコン島の深さはすべて同一となる。
In the above process, the angle between the side surface of the V-groove and the single crystal surface is the angle between the (111) plane and the (100) plane of the silicon single crystal, so it is uniquely determined by the crystal properties and is approximately
It becomes 54.7°. Further, as is clear from FIG. 1, the depths of the single-crystal silicon islands isolated in the polycrystalline silicon are all the same.

本発明の目的は、選択的エピタキシヤル成長法
を用いることにより低耐圧部分と高耐圧部分それ
ぞれが独立に必要十分な深さを有する単結晶島を
形成し、上記欠点を解決した誘電体分離半導体基
板を作成する方法を提供することにある。
An object of the present invention is to provide a dielectrically isolated semiconductor which solves the above-mentioned drawbacks by forming a single crystal island having a necessary and sufficient depth in each of a low breakdown voltage part and a high breakdown voltage part independently by using a selective epitaxial growth method. The object of the present invention is to provide a method for creating a substrate.

本発明は、例えば半導体基板上の電気的絶縁が
望まれる所に選択的に異方性エツチングによる溝
を形成する方法と、前記溝に囲まれた特定表面に
のみ選択的に基板と同一の導電型を有する半導体
単結晶を成長させる方法と、前記半導体結晶の成
長層の表面およびその側面、前記溝の表面を含む
半導体基板表面に絶縁材料の薄膜を被覆する方法
と、溝の中を含む前記絶縁薄膜上に実質的に半導
体基板と等しい熱膨張係数を有する支持体を沈積
する方法と溝内にある支持体が露出するまで半導
体基板の半導体露出面を均一に除去する方法より
なる。
The present invention relates to a method of selectively forming grooves by anisotropic etching, for example, in locations where electrical insulation is desired on a semiconductor substrate, and a method of selectively forming grooves using anisotropic etching in locations where electrical insulation is desired, and selectively forming the same conductivity as that of the substrate only on a specific surface surrounded by the grooves. a method of growing a semiconductor single crystal having a mold, a method of coating a semiconductor substrate surface including the surface of the growth layer of the semiconductor crystal, the side surfaces thereof, and the surface of the groove with a thin film of an insulating material; The method includes depositing a support having a coefficient of thermal expansion substantially equal to that of the semiconductor substrate on the insulating thin film, and uniformly removing the exposed semiconductor surface of the semiconductor substrate until the support in the groove is exposed.

次に本発明の実施例について図面を参照して説
明する。まず第2図aの様に(100)面を有する
単結晶シリコン基板21上にフオトレジスト工程
により選択エツチングされた酸化膜22,23を
作成する。ここで22は高耐圧部分を作成する単
結晶島の底面に相当し23は低耐圧部分の底面に
相当する。
Next, embodiments of the present invention will be described with reference to the drawings. First, as shown in FIG. 2A, selectively etched oxide films 22 and 23 are formed on a single crystal silicon substrate 21 having a (100) plane by a photoresist process. Here, 22 corresponds to the bottom surface of the single crystal island forming the high breakdown voltage section, and 23 corresponds to the bottom surface of the low breakdown voltage section.

次に第2図bに示すように異方性エツチングを
行ないV溝を作成する。続いてフオトレジスト工
程により、全面に作成した酸化膜のうち高耐圧部
分の底面に相当する部分を選択エツチングして第
2図cの状態を得る。ここで24は酸化膜であ
る。次にこの基板に単結晶部分と同一の導電型を
有する単結晶シリコンをエピタキシヤル成長させ
ると、第2図cの酸化膜上には多結晶シリコンが
成長し同図の高耐圧部分底面に相当する酸化膜が
除去された部分には単結晶シリコンが選択的に成
長する(選択エピタキシヤル成長)。また上述2
つの領域の境界には多結晶シリコンと単結晶シリ
コンの遷移領域が形成される。ここで成長した単
結晶シリコンのエピタキシヤル層上にフオトレジ
スト工程を用いて酸化膜を残し第2図dの構造を
得る。ここで25は単結晶シリコン基板26は単
結晶シリコン基板上に選択的にエピタキシヤル成
長した単結晶層、27は酸化膜上に成長した多結
晶シリコン層、28は遷移領域、29はエピタキ
シヤル成長した単結晶層上にフオトレジスト工程
の選択エツチングにより残された酸化膜である。
次に第2図dの構造に対し再び異方性エツチング
を行なう。多結晶層27および遷移領域28は結
晶に特定の方向性がないため異方性エツチングに
より除去される。一方エピタキシヤル成長による
単結晶層30は単結晶基板32と同一の結晶軸を
有しているため異方性エツチングにより(111)
面31が表われてエツチング速度がきわめて遅く
なる。この状態でエツチングを停止し第2図fに
示した様に全面に分離を行なうための酸化膜33
を作成し、続いて第2図gの様に多結晶シリコン
34を成長させる。これの単結晶面を研磨ないし
エツチングすることにより、第2図hに示した最
終形状が得られる。ここで低耐圧部分を作成する
単結晶島35の深さは第2図bで作成するV溝の
深さすなわち第2図aにおける酸化膜23と22
の間隔により決定され、高耐圧部分を作成する単
結晶島36の深さは第2図dにより成長させるエ
ピタキシヤル層の厚さによつて決定され、それぞ
れ独立に最適値とすることが可能である。
Next, as shown in FIG. 2b, anisotropic etching is performed to create a V-groove. Subsequently, by a photoresist process, a portion of the oxide film formed over the entire surface, which corresponds to the bottom surface of the high breakdown voltage portion, is selectively etched to obtain the state shown in FIG. 2c. Here, 24 is an oxide film. Next, when single-crystal silicon having the same conductivity type as the single-crystal part is epitaxially grown on this substrate, polycrystalline silicon grows on the oxide film shown in Figure 2c, which corresponds to the bottom of the high-voltage part in the same figure. Single crystal silicon selectively grows in the areas where the oxide film has been removed (selective epitaxial growth). Also, the above 2
A transition region between polycrystalline silicon and single crystal silicon is formed at the boundary between the two regions. A photoresist process is used to leave an oxide film on the single-crystal silicon epitaxial layer grown here to obtain the structure shown in FIG. 2d. Here, 25 is a single crystal silicon substrate 26 which is a single crystal layer selectively grown epitaxially on the single crystal silicon substrate, 27 is a polycrystalline silicon layer grown on an oxide film, 28 is a transition region, and 29 is a single crystal layer grown epitaxially on the single crystal silicon substrate. This is an oxide film left on the single crystal layer by selective etching in the photoresist process.
Next, the structure of FIG. 2d is again subjected to anisotropic etching. Polycrystalline layer 27 and transition region 28 are removed by anisotropic etching since the crystals have no specific orientation. On the other hand, since the epitaxially grown single crystal layer 30 has the same crystal axis as the single crystal substrate 32, it is etched by anisotropic etching (111).
Surface 31 appears and the etching rate becomes extremely slow. In this state, the etching is stopped and an oxide film 33 is formed on the entire surface for separation as shown in FIG.
Then, as shown in FIG. 2g, polycrystalline silicon 34 is grown. By polishing or etching the single crystal surface, the final shape shown in FIG. 2h is obtained. Here, the depth of the single-crystal island 35 forming the low breakdown voltage portion is the depth of the V-groove formed in FIG. 2b, that is, the depth of the oxide films 23 and 22 in FIG. 2a.
The depth of the single-crystal islands 36 forming the high breakdown voltage portion is determined by the thickness of the epitaxial layer grown as shown in FIG. be.

以上の実施例では半導体基板としてシリコンを
考えたが特にシリコンに限定されるものではな
い。また絶縁分離に用いられる絶縁薄膜もSiO2
に限定されずSi3N4その他とすることも可能であ
る。またこの実施例では支持体として多結晶シリ
コンを用いたが半導体素子製造時の高温に耐えか
つ半導体基板と実質的に熱膨張係数の等しい材料
であればいずれでもよい。
Although silicon was considered as the semiconductor substrate in the above embodiments, it is not particularly limited to silicon. Insulating thin films used for insulation isolation are also SiO 2
The material is not limited to Si 3 N 4 and others. Furthermore, although polycrystalline silicon is used as the support in this embodiment, any material may be used as long as it can withstand high temperatures during semiconductor device manufacturing and has a coefficient of thermal expansion substantially equal to that of the semiconductor substrate.

本発明によれば低耐圧部分を構成する単結晶島
と高耐圧部分を構成する単結晶島の深さをそれぞ
れ独立に最適値に定めることができ同一規模の半
導体装置を作成するために必要な誘電体分離半導
体基板の大きさを従来技術に比し小さくする効果
がある。
According to the present invention, the depths of the single crystal islands constituting the low breakdown voltage part and the single crystal islands constituting the high breakdown voltage part can be determined independently to the optimum values, which are necessary to create a semiconductor device of the same size. This has the effect of reducing the size of the dielectrically isolated semiconductor substrate compared to the prior art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a乃至第1図eは従来技術による半導体
装置用基板製造法を工程順に示す断面図で、この
うち第1図aはフオトレジスト工程後の半導体基
板の断面図、第1図bは異方性エツチング工程後
の断面図、第1図cは絶縁分離酸化膜被覆後の断
面図、第1図dは多結晶シリコン成長後の断面
図、第1図eは研磨後の断面図である。第2図a
乃至第2図hは本発明の実施例を工程順に示す断
面図で、このうち第2図aは、フオトレジスト工
程後の断面図、第2図bは異方性エツチング後の
断面図、第2図cは選択エピタキシヤル成長のた
めのフオトレジスト工程の断面図、第2図dは選
択エピタキシヤル成長後の断面図、第2図eは異
方性エツチングによる多結晶シリコンおよび遷移
領域除去後の断面図、第2図fは絶縁材料薄膜被
覆後の断面図、第2図gは支持体沈積後の断面
図、第2図hは研磨後の断面図である。 尚図において、11…(100)面を表面とする
単結晶シリコン基板、12…選択エツチングされ
た酸化膜、13…多結晶シリコン、14…単結晶
シリコン島、15…絶縁分離酸化膜、21…
(100)面を表面とする単結晶シリコン基板、22
…高耐圧素子作成部分、23…低耐圧素子作成部
分、24…酸化膜、25…単結晶シリコン基板、
26…単結晶シリコン基板と同一の導電型をもつ
単結晶層、27…多結晶シリコン、28…遷移領
域、29…異方性エツチングのための酸化膜、3
0…エピタキシヤル成長による単結晶層、31…
(111)面、32…単結晶シリコン基板、33…酸
化膜、34…多結晶シリコン、35…低耐圧素子
用単結晶島、36…高耐圧素子用単結晶島。
1a to 1e are cross-sectional views showing a conventional method for manufacturing a substrate for a semiconductor device in the order of steps, of which FIG. 1a is a cross-sectional view of the semiconductor substrate after the photoresist process, and FIG. 1b is Figure 1c is a cross-sectional view after the anisotropic etching process, Figure 1c is a cross-sectional view after coating with an insulating isolation oxide film, Figure 1d is a cross-sectional view after polycrystalline silicon growth, and Figure 1e is a cross-sectional view after polishing. be. Figure 2a
2h to 2h are cross-sectional views showing an embodiment of the present invention in the order of steps, of which FIG. 2a is a cross-sectional view after the photoresist process, FIG. 2b is a cross-sectional view after anisotropic etching, and FIG. Figure 2c is a cross-sectional view of the photoresist process for selective epitaxial growth, Figure 2d is a cross-sectional view after selective epitaxial growth, and Figure 2e is after polycrystalline silicon and transition region removal by anisotropic etching. 2(f) is a sectional view after coating with a thin film of insulating material, FIG. 2(g) is a sectional view after support is deposited, and FIG. 2(h) is a sectional view after polishing. In the figure, 11...single crystal silicon substrate with (100) plane as the surface, 12... selectively etched oxide film, 13... polycrystalline silicon, 14... single crystal silicon island, 15... insulating isolation oxide film, 21...
Single crystal silicon substrate with (100) plane as the surface, 22
...High voltage resistance element production part, 23...Low breakdown voltage element production part, 24...Oxide film, 25...Single crystal silicon substrate,
26... Single crystal layer having the same conductivity type as the single crystal silicon substrate, 27... Polycrystalline silicon, 28... Transition region, 29... Oxide film for anisotropic etching, 3
0...Single crystal layer by epitaxial growth, 31...
(111) plane, 32... Single crystal silicon substrate, 33... Oxide film, 34... Polycrystalline silicon, 35... Single crystal island for low breakdown voltage elements, 36... Single crystal island for high breakdown voltage elements.

Claims (1)

【特許請求の範囲】[Claims] 1 単結晶半導体基板に選択的に溝を形成する工
程と、前記基板の平担面の一部を除いた面および
前記溝の表面を第1の絶縁膜で覆う工程と、半導
体をエピタキシヤル成長させて前記基板の露出し
た平担面上に単結晶半導体層を、前記第1の絶縁
膜上に多結晶半導体層を、およびこれら単結晶お
よび多結晶半導体層を連結する遷移領域をそれぞ
れ形成する工程と、結晶異方性を利用した異方性
エツチングにより前記多結晶半導体層および前記
遷移領域を除去し、前記単結晶半導体層の表面を
前記第1の絶縁膜と連続する第2の絶縁膜で覆う
工程と、前記第1および第2の絶縁膜上に支持体
層を形成する工程と、前記単結晶半導体基板を前
記溝が形成された面とは反対の面から前記支持体
層の一部が露出するまで除去する工程とを有し、
互いに深さが異なりかつそれぞれが絶縁膜を介し
て前記支持体層に支持された複数の単結晶半導体
島領域を有する構造を得ることを特徴とする半導
体装置の製造法。
1. A step of selectively forming a groove in a single crystal semiconductor substrate, a step of covering a surface of the substrate excluding a part of the flat surface and the surface of the groove with a first insulating film, and a step of epitaxially growing the semiconductor. forming a single crystal semiconductor layer on the exposed flat surface of the substrate, a polycrystalline semiconductor layer on the first insulating film, and a transition region connecting these single crystal and polycrystalline semiconductor layers. and removing the polycrystalline semiconductor layer and the transition region by anisotropic etching using crystal anisotropy, and forming a second insulating film continuous with the first insulating film on the surface of the single crystal semiconductor layer. a step of forming a support layer on the first and second insulating films; and a step of forming a support layer on the first and second insulating films; removing the part until the part is exposed,
1. A method of manufacturing a semiconductor device, comprising obtaining a structure having a plurality of single-crystal semiconductor island regions having mutually different depths and each supported by the support layer via an insulating film.
JP15900380A 1980-11-12 1980-11-12 Manufacture of semiconductor device Granted JPS5783042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15900380A JPS5783042A (en) 1980-11-12 1980-11-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15900380A JPS5783042A (en) 1980-11-12 1980-11-12 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5783042A JPS5783042A (en) 1982-05-24
JPS6221269B2 true JPS6221269B2 (en) 1987-05-12

Family

ID=15684101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15900380A Granted JPS5783042A (en) 1980-11-12 1980-11-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5783042A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7061375B2 (en) 2003-03-12 2006-06-13 Honda Motor Co., Ltd. System for warning a failure to wear a seat belt
JP4725282B2 (en) * 2005-10-17 2011-07-13 トヨタ自動車株式会社 Vehicle control device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247686A (en) * 1975-10-15 1977-04-15 Toshiba Corp Semiconductor device and process for production of same
JPS5563840A (en) * 1978-11-08 1980-05-14 Hitachi Ltd Semiconductor integrated device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5247686A (en) * 1975-10-15 1977-04-15 Toshiba Corp Semiconductor device and process for production of same
JPS5563840A (en) * 1978-11-08 1980-05-14 Hitachi Ltd Semiconductor integrated device

Also Published As

Publication number Publication date
JPS5783042A (en) 1982-05-24

Similar Documents

Publication Publication Date Title
US4851078A (en) Dielectric isolation process using double wafer bonding
JPH07326664A (en) Filling method of dielectric isolation trench of wafer
US4891092A (en) Method for making a silicon-on-insulator substrate
US4193836A (en) Method for making semiconductor structure
JPH0312775B2 (en)
JP2699359B2 (en) Semiconductor substrate manufacturing method
KR100353174B1 (en) Method for fabrication of silicon on insulator substrates
JPS6155252B2 (en)
US3974006A (en) Method of obtaining high temperature resistant assemblies comprising isolated silicon islands bonded to a substrate
JPS6221269B2 (en)
JPS59232437A (en) Manufacture of semiconductor device
EP0469583A2 (en) Semiconductor substrate with complete dielectric isolation structure and method of making the same
JP2750163B2 (en) Method of manufacturing dielectric separated semiconductor device
JPS61182242A (en) Manufacture of semiconductor device
JPS618944A (en) Semiconductor device and manufacture thereof
JPH02205339A (en) Manufacture of semiconductor device
JPS6362252A (en) Manufacture of dielectric isolation substrate
JPS6359531B2 (en)
JPS5840337B2 (en) Manufacturing method of semiconductor integrated circuit
JPS61144036A (en) Semiconductor device and manufacture thereof
JPS60121737A (en) Element isolating method for semiconductor device
JP2590480B2 (en) Method for manufacturing semiconductor device
JP2775845B2 (en) Method for manufacturing semiconductor device
JPS5939044A (en) Manufacture of substrate for insulating isolation integrated circuit
JPS61174736A (en) Manufacture of dielectric separating substrate