JPS6221205A - Resin-molded coil - Google Patents

Resin-molded coil

Info

Publication number
JPS6221205A
JPS6221205A JP16012885A JP16012885A JPS6221205A JP S6221205 A JPS6221205 A JP S6221205A JP 16012885 A JP16012885 A JP 16012885A JP 16012885 A JP16012885 A JP 16012885A JP S6221205 A JPS6221205 A JP S6221205A
Authority
JP
Japan
Prior art keywords
coil
resin
coils
divided
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16012885A
Other languages
Japanese (ja)
Inventor
Masaaki Takimoto
滝本 正章
Hirobumi Kubo
久保 博文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16012885A priority Critical patent/JPS6221205A/en
Publication of JPS6221205A publication Critical patent/JPS6221205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulating Of Coils (AREA)

Abstract

PURPOSE:To obtain the small-sized resin-sealed coil having electrically and mechanically high reliability by a method wherein the interlayer voltage of the coil is increased while a plurality of coils divided in axial direction are being resin-sealed in one body. CONSTITUTION:Resin is impregnated into a fibrous base material, the internal circumferential insulated cylinder 15 of a coil is formed by winding a semihardened sheet around the base material, and a conductor 20 and an interlayer insulated material 21 are wound thereon at an interval between them. Coils 14a and 14b which are divided into two parts in axial direction are formed, and an outer circumferential insulated cylinder 16 is formed by winding a semihardened sheet in the same manner as above- mentioned. A thermoadhesive sheet 22 is wound on the entire circumference between the conductor 20 located in the vicinity of the split surface of each coil and the interlayer insulating material. An inlet 18 is provided on the outer circumferential insulated cylinder 16; a predrying operation is performed, to adhere the coils, sheets, conductors and interlayer insulating materials. Then, voidless liquid resin 19 is vacuum- injected from the inlet 18 to fill the coils, and the inlet 18 is blocked up with a thermoadhesive sheet 23 after the resin is hardened. Puttylike resin 17 is applied and solidified on both end parts of the insulated cylinder and the resin-sealed coil is completed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、軸方向に分割された複数個のコイ/Lを包蔵
する金型不要の樹脂モールドコイルに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a resin molded coil that does not require a mold and houses a plurality of axially divided coils/L.

〔発明の背景〕[Background of the invention]

20kV級等の特高受電用モールド変圧器や一次側の直
並列切換により5kV−3kV共用としたモールド変圧
器においては、高圧コイルを軸方向に複数個に分割する
ことが必要である。
In a molded transformer for extra-high power reception such as 20kV class or a molded transformer that can be shared between 5kV and 3kV by switching between series and parallel on the primary side, it is necessary to divide the high voltage coil into a plurality of pieces in the axial direction.

このような軸方向に分割された複数個のコイルを一体に
樹脂モールドする従来技術の一例として第5図に示すよ
うなものがある(特開昭55−111116)。これは
繊維強化樹脂(FRP)からなる中筒1の周囲にスペー
サ2を介して軸方向に2刀割されたコイル3を巻回し、
中筒1の上下端部にFRP製端板4を、端板4の外周側
にFRP製外筒5を配置してそれぞれ接着剤によ6′接
合し、中筒1、端板4、外筒5で形成された中空部に液
状樹脂6を注入してコイル3を包むようにモールドした
もので、このようにすれば、高価な金型を要せずに軸方
向に分割された複数個のコイルを一体にモールドするこ
とができ、耐クラツク性のすぐれた樹脂モールドコイル
が得られる。
An example of a conventional technique for integrally resin-molding a plurality of coils divided in the axial direction is shown in FIG. 5 (Japanese Patent Laid-Open No. 55-111116). This involves winding a coil 3 split into two in the axial direction through a spacer 2 around a middle cylinder 1 made of fiber reinforced resin (FRP).
FRP end plates 4 are placed on the upper and lower ends of the middle tube 1, and FRP outer tubes 5 are placed on the outer periphery of the end plates 4 and bonded to each other by 6' with adhesive. The liquid resin 6 is injected into the hollow part formed by the cylinder 5 and molded to enclose the coil 3. In this way, a plurality of axially divided pieces can be formed without the need for an expensive mold. The coil can be integrally molded, and a resin molded coil with excellent crack resistance can be obtained.

しかし、一般に液状樹脂をコイルのまわりに注入した場
合、流動性の高い液状樹脂はコイル内部にまで侵入し、
コイル内部に残留した空気はボイドを形成するため、コ
イル層間に高電圧が印加された際、ボイドの部分に電界
が集中して部分放電(コロナ)が発生しやすい。ボイド
を除くため、液状樹脂の注入は真空中で行なうのが普通
であるが、真空中でもコイル内部に完全に樹脂を含浸さ
せることはむづかしく、さらに運転中の冷熱くり返しに
よってもコイル内部で導体と樹脂の剥離が起こり、微小
なボイドができる。こうしてできたボイドは内部圧力の
低い真空ボイドで、コロナ開始電圧が低く、その上、ボ
イド中1ζは含浸された樹脂の硬化時に発生する易イオ
ン化性ガスを含んでいるため、コロナ開始電圧はさらに
低(なる。
However, when liquid resin is generally injected around the coil, the highly fluid liquid resin penetrates into the inside of the coil.
Air remaining inside the coil forms voids, so when a high voltage is applied between the coil layers, the electric field concentrates in the voids, which tends to cause partial discharge (corona). In order to eliminate voids, liquid resin is normally injected in a vacuum, but it is difficult to completely impregnate the inside of the coil with resin even in a vacuum, and furthermore, the repeated heating and cooling of the coil during operation can cause the conductor to form inside the coil. The resin peels off, creating tiny voids. The voids created in this way are vacuum voids with low internal pressure, and the corona onset voltage is low.Moreover, since the 1ζ in the void contains easily ionizable gas generated when the impregnated resin hardens, the corona onset voltage is even higher. low (naru)

第7図の曲線Aは液状樹脂を含浸したモールドコイルの
樹脂注入時の雰囲気圧(真空度)とコロナ開始電圧の関
係を示す図で、パッシェンの法則に従い・ドイド内圧が
低いとコロナ開始型「も低く、ボイド内圧が高いほどコ
ロナ開始電圧は高くなる傾向があるが、大気圧下で樹脂
を注入した場合でも700■程度の比較的低い電圧でコ
ロナか発生する。したがって、第5図のようにコイル内
部に液状樹脂を含浸した樹脂モールドコイルでは、コイ
ル層間電圧を低くとらない′と絶縁の信頼性を確保でき
ず、コイル寸法が大きくなる。
Curve A in Figure 7 shows the relationship between atmospheric pressure (degree of vacuum) and corona initiation voltage during resin injection into a molded coil impregnated with liquid resin.According to Paschen's law, if the doid internal pressure is low, corona initiation However, even when resin is injected under atmospheric pressure, corona is generated at a relatively low voltage of about 700μ.Therefore, as shown in Figure 5, corona initiation voltage tends to increase. In the case of a resin molded coil in which the inside of the coil is impregnated with liquid resin, insulation reliability cannot be ensured unless the interlayer voltage of the coil is kept low, resulting in a large coil size.

第6図は従来の金型不要な樹脂モールドコイルの他の例
を示す。ここで、7は鉄心、8ば低圧コイル、9a、 
9bは軸方向に2分割された高圧コイルであり、それぞ
れの高圧コイル9a、 9bは、特開昭57−1212
07号公報に記載のように内外周を繊維強化樹脂からぼ
る絶縁層10.11で覆い、コイル端面には高粘度のパ
テ状樹脂を塗布し同作させてなる絶縁層12を形成する
ことにより、別体に樹脂モールドされている。
FIG. 6 shows another example of a conventional resin molded coil that does not require a mold. Here, 7 is an iron core, 8 is a low voltage coil, 9a,
9b is a high voltage coil divided into two in the axial direction, and each of the high voltage coils 9a and 9b is a
As described in Publication No. 07, the inner and outer peripheries are covered with insulating layers 10 and 11 made of fiber-reinforced resin, and the end faces of the coil are coated with high-viscosity putty-like resin to form an insulating layer 12. , molded separately in resin.

このように構成された樹脂モールドコイルは、外表面だ
けが樹脂で覆われ、コイル内部には樹脂が含浸されない
ため、コイル内部の空所は大気圧ボイドとして残り、ま
た樹脂の硬化時に発生する易イオン化性ガスが混入した
としても微量であることから、コロナ開始電圧は第7図
の点Bで示されるように1100〜1’400Vの高い
値となる。したがって、層間電圧を高(とっても絶縁の
信頼性を十分確保することができる。
In a resin molded coil constructed in this way, only the outer surface is covered with resin, and the inside of the coil is not impregnated with resin, so the void inside the coil remains as an atmospheric pressure void, which is also likely to occur when the resin hardens. Even if the ionizable gas is mixed in, it is in a very small amount, so the corona initiation voltage becomes a high value of 1100 to 1'400V, as shown by point B in FIG. Therefore, it is possible to maintain high interlayer voltage (very high insulation reliability).

しかし、この構成では、高圧コイルを軸方向に分割する
必要がある場合、それぞれのコイルを別体に樹脂モール
ドし、図示のように上下に重ねて配置しなければならな
いため、工数を多く要し、変圧器全体の寸法も大きくな
り、コスト高になる。
However, with this configuration, if it is necessary to divide the high-voltage coil in the axial direction, each coil must be separately molded in resin and placed one above the other as shown in the figure, which requires a lot of man-hours. , the overall size of the transformer also increases, leading to higher costs.

また、高圧側の2個の樹脂モールドコイルをスペーサ1
3を介して組合わせているため、輸送時に加わる外力や
電路短絡時に生じる電磁力などに対する機械的強度も十
分でなかった。
Also, connect the two resin molded coils on the high voltage side to spacer 1.
3, the mechanical strength against external forces applied during transportation and electromagnetic force generated when electrical circuits are short-circuited was insufficient.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、軸方向に分割された複数個のコイルを
一体に樹脂モールドしながらコイル層間電圧を高くとる
ことを可能にし、小形かつ安価で、電気的および機械的
に信頼性の高い樹脂モールドコイルを提供することにあ
る。
An object of the present invention is to make it possible to obtain a high coil interlayer voltage while integrally molding a plurality of coils divided in the axial direction with resin, and to create a resin mold that is small, inexpensive, and electrically and mechanically reliable. Our goal is to provide molded coils.

〔発明の概要〕[Summary of the invention]

本発明は、繊維強化樹脂からなるフィル内周側絶縁層と
繊維強化樹脂からなるコイル外周側絶縁層との間に軸方
向に分割された複数個のコイルを包蔵した樹脂モールド
コイルにおいて、上記コイル外周側絶縁層に上記コイル
の分割面の間に位置するように設けられた充てん相性入
口と、上記コイルの分割面の間に介在し注入時に流動性
を有する充てん材と、上記コイルの分割面からコイル内
部への上記光てん材の浸入を防止する手段とを備え、コ
イル内部に大気圧ボイドを保有させたことを特徴とする
ものである。
The present invention provides a resin-molded coil that includes a plurality of coils divided in the axial direction between a fill inner circumferential insulating layer made of fiber-reinforced resin and a coil outer circumferential insulating layer made of fiber-reinforced resin. A filling compatibility inlet provided in the outer peripheral insulating layer between the split surfaces of the coil, a filler interposed between the split surfaces of the coil and having fluidity when injected, and the split surface of the coil. The present invention is characterized in that it includes a means for preventing the optical insulation material from penetrating into the inside of the coil, and that an atmospheric pressure void is maintained inside the coil.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図〜第4図により説明、す
る。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

実施例■ 第1図は本実施例による樹脂モールドコイルを一部断面
で示した図で、軸方向に2分割されたコイル14a、 
14bは繊維強化樹脂からなるコイル内周側絶縁層15
と繊維強化樹脂からなるコイル外周側絶縁層16との間
に包蔵され、内外周の絶縁層15゜16の上端部とコイ
ル14aの上端面との間および内外周の絶縁層15.1
6の下端部とコイル14bの下端面との間にはパテ状樹
脂を塗布し固化させてなる端部絶縁層17が形成されて
いる。コイル外周側絶縁層16にはコイル14a、 1
4bの分割面の間に位置する充てん相性入口18を設け
てあり、コイル14a。
Example ■ Fig. 1 is a partial cross-sectional view of a resin molded coil according to this example, and shows a coil 14a divided into two parts in the axial direction.
14b is an insulating layer 15 on the inner peripheral side of the coil made of fiber-reinforced resin.
and an insulating layer 15.1 on the outer circumferential side of the coil made of fiber reinforced resin, and between the upper end of the insulating layer 15.16 on the inner and outer circumferences and the upper end surface of the coil 14a and the insulating layer 15.
An end insulating layer 17 is formed between the lower end of the coil 14b and the lower end surface of the coil 14b by applying and solidifying a putty-like resin. Coils 14a and 1 are provided on the coil outer peripheral side insulating layer 16.
A filling compatibility inlet 18 is provided located between the dividing surfaces of the coil 14a.

14bの分割面の間には液状樹脂(エポキシ樹脂等)を
注入、固化させてなる充てん材19を満たし、この充て
ん材19によりコイル14a、 14bの間を電気的に
絶縁するとともに、コイル14a、 14bを軸方向に
ずれないように機械的に保持している。
A filler 19 made by injecting and solidifying a liquid resin (epoxy resin, etc.) is filled between the divided surfaces of the coils 14b, and this filler 19 electrically insulates between the coils 14a and 14b, and also insulates the coils 14a and 14b. 14b is mechanically held so as not to shift in the axial direction.

本例では、充てん材19として使用される樹脂が注入時
に液状であるため、コイル14a、 14bの分割面か
らコイル内部への樹脂の浸入を防止する手段として、コ
イル14a、 14bの分割面近傍の各層厚体20と層
間絶縁物21との間をあらかじめプリプレグ等の熱接着
性シート22を介して全周にわたり接着することにより
液状樹脂に対する密封効果をもたせ、コイル14a、1
4bの内部に大気圧ボイドを保有することを可能にして
いる。
In this example, since the resin used as the filler 19 is in a liquid state at the time of injection, as a means to prevent the resin from penetrating into the inside of the coil from the dividing surface of the coils 14a, 14b, a By adhering the entire circumference between each thick layer body 20 and the interlayer insulator 21 via a heat-adhesive sheet 22 such as prepreg, a sealing effect against liquid resin is provided, and the coils 14a, 1
This makes it possible to maintain an atmospheric pressure void inside 4b.

次に、本実施例による樹脂モールドコイルノ製造工程を
第2図により説明する。
Next, the manufacturing process of the resin molded coil according to this embodiment will be explained with reference to FIG.

まず同図(A)に示すように、巻心(図示せず)の上に
あらかじめガラスクロス等の繊維質基材に液状樹脂(エ
ポキシ樹脂等)を含浸し半硬化状態としたシート状また
はテープ状のプリプレグを巻回してコイル内周側絶縁層
15を形成し、その上に導体20と層間絶縁物21を中
間に間隔をあけて巻回して軸方向に2分割されたコイル
14a、14bを形成した後、再ひ゛上記と同様のプリ
プレグを巻回してコイル外周側絶縁層16を形成する。
First, as shown in Figure (A), a fibrous base material such as glass cloth is pre-impregnated with a liquid resin (epoxy resin, etc.) onto a core (not shown) in the form of a sheet or a tape in a semi-cured state. A prepreg having a shape is wound to form an insulating layer 15 on the inner circumferential side of the coil, and a conductor 20 and an interlayer insulating material 21 are wound thereon with an interval in the middle to form a coil 14a and 14b divided into two in the axial direction. After forming, the same prepreg as above is wound again to form the coil outer peripheral side insulating layer 16.

コイル1.4a、 141)を形成する途中で、各コイ
ルの分割面近傍の導体20と層間絶縁物21との間にプ
リプレグ等の熱接着性シート22を全周にわたり巻き込
んでおく。
During the formation of the coils 1.4a, 141), a heat-adhesive sheet 22 such as prepreg is wrapped around the entire circumference between the conductor 20 and the interlayer insulator 21 near the dividing surface of each coil.

巻線終了後、同図(B)に示すようにコイル外周側絶縁
層16に充てん相性入口18を設け、その後、予備乾燥
を行なう。予備乾燥の過程で内外周の絶縁層15.16
と熱接着性シート22が完全硬化し、内外周の絶縁層1
5.16とコイル14a、14bとの間および熱接着性
シート22と導体20、層間絶縁物21との間が樹脂に
より接着される。
After the winding is completed, a filling compatibility inlet 18 is provided in the insulating layer 16 on the outer circumferential side of the coil as shown in FIG. 5B, and then preliminary drying is performed. During the pre-drying process, the insulation layers on the inner and outer peripheries15.16
The heat-adhesive sheet 22 is completely cured, and the insulation layer 1 on the inner and outer peripheries is completely cured.
5.16 and the coils 14a, 14b and between the thermal adhesive sheet 22, the conductor 20, and the interlayer insulator 21 are bonded with resin.

次に、真空タンク内で同図tc+に示すように液状樹脂
からなる充てん材19を注入口18から注入してコイル
14a、 14bの分割面の間に満たし、液状樹脂を固
化させた後、注入口部分を平らに仕上げ、プリプレグ等
の熱接着性シート23で注入口18をふさぐ。
Next, as shown in Figure tc+ in the vacuum tank, a filler 19 made of liquid resin is injected from the injection port 18 to fill the space between the divided surfaces of the coils 14a and 14b, and after solidifying the liquid resin, the filling material 19 is filled. The inlet portion is finished flat and the injection port 18 is closed with a heat-adhesive sheet 23 such as prepreg.

その後、同図(D)に示すように内外周の絶縁層15゜
16で覆われていないコイル14a、I4bの端面に大
気中でパテ状樹脂を塗布し固化させて端部絶縁層17を
形成することにより、第1図に示した樹脂モールドコイ
ルができ上がる。
Thereafter, as shown in Figure (D), a putty-like resin is applied in the atmosphere to the end surfaces of the coils 14a and I4b that are not covered with the inner and outer insulating layers 15 and 16, and is solidified to form the end insulating layer 17. By doing this, the resin molded coil shown in FIG. 1 is completed.

本実施例によれば、軸方向に分割されたコイル14a 
、 14bはコイル内周側絶縁層15とコイル外周側絶
縁層16の間に包蔵され、かつコイル14a、 14b
(7)分割面の間にはコイル外周側絶縁層16の充てん
相性入口18から液状樹脂を注入し固化させてなるボイ
ドのない充てん材19が満たされているため、コイル1
4a、14bの間にかかる高電圧によりその間に部分的
な電界集中を生じることがなく、コイル間距離を小さく
しても絶縁を確保できる。また、注入された液状樹脂は
熱接着性シート22によりコイル内部への侵入を阻止さ
れ、コイル上下端面を覆う端部絶縁層17は高粘度のパ
テ状樹脂からなるため、上下端面からもコイル内部に樹
脂が侵入することはない。したがって、コイル14a、
 14bの内部にはコロナ開始電圧の高い大気圧ボイド
を保有させることができ、コイル層間電圧を高くとれる
According to this embodiment, the coil 14a is divided in the axial direction.
, 14b are included between the coil inner circumferential side insulating layer 15 and the coil outer circumferential side insulating layer 16, and the coils 14a, 14b
(7) The space between the split surfaces is filled with a void-free filler 19 made by injecting liquid resin from the filling compatibility inlet 18 of the coil outer peripheral side insulating layer 16 and solidifying it, so that the coil 1
The high voltage applied between 4a and 14b does not cause local electric field concentration therebetween, and insulation can be ensured even if the distance between the coils is made small. In addition, the injected liquid resin is prevented from entering the inside of the coil by the thermal adhesive sheet 22, and since the end insulating layer 17 covering the upper and lower end surfaces of the coil is made of a high-viscosity putty-like resin, it is possible to enter the inside of the coil from the upper and lower end surfaces. Resin will not enter the area. Therefore, the coil 14a,
An atmospheric pressure void with a high corona starting voltage can be provided inside the coil 14b, and a high coil interlayer voltage can be obtained.

実施例■ 第3図は本実施例による樹脂モールドコイルを一部断面
で示した図で、実施例■と共通の部分には同一符号を付
して示す。
Embodiment 2 FIG. 3 is a partial cross-sectional view of a resin molded coil according to this embodiment, and parts common to Embodiment 2 are denoted by the same reference numerals.

本実施例はコイル14a、 14bの分割面の間に介在
する充てん材19′として絶縁性粉末を用いたもので、
それ以外の構成は実施例Iとほぼ同一である。
In this embodiment, insulating powder is used as the filler 19' interposed between the divided surfaces of the coils 14a and 14b.
The other configurations are almost the same as in Example I.

この充てん材19′としての絶縁性粉末は、均一な粒度
の石英粉末やアルミナ粉末等、一般に注形樹脂に混入し
て使用される充てん材と同様のものでよい。
The insulating powder used as the filler 19' may be the same as a filler that is generally mixed into a molding resin, such as quartz powder or alumina powder of uniform particle size.

これらの絶縁性粉末は液状樹脂と違ってコイル内部に侵
入しに<<、適当な粒度のものを選べば、コイル14a
、 14bの分割面から導体20と層間絶縁物21のす
きまにわずか侵入するだけで粒子の相互干。
Unlike liquid resin, these insulating powders do not penetrate into the coil 14a.
, 14b, the particles are mutually dried by just slightly entering the gap between the conductor 20 and the interlayer insulator 21.

渉により目づまりを起こし、それ以上コイル内部に侵入
しなくなるので、実施例■のように特に熱接着性シート
22を用いて導体20と層間絶縁物21のすきまをふさ
ぐようなことをしな(でも、上記した充てん材自体の目
づまり現象により充てん材の侵入防止手段としての機能
を果たさせることができる。
Do not block the gap between the conductor 20 and the interlayer insulator 21 by using the heat-adhesive sheet 22 as in Example (2), as this will cause clogging and prevent it from entering the inside of the coil any further. Due to the clogging phenomenon of the filler itself described above, it can function as a means for preventing intrusion of the filler.

本実施例による樹脂モールトコ、イルの製造工程は第4
図に示す通力である。すなわち、同図(A)のようにコ
イル内周側絶縁層15を形成するプリプレグと軸方向に
2分割されたコイル14a、14bとコイル外周側絶縁
層16を形成するプリプレグを順次巻回し、同図(B)
のようにコイル外周側絶縁層16.にコイル14a、 
14bの分割面の間に位置する充てん相性入口18を設
けた後、予備乾燥を行ない、次に充てん相性入口18か
ら同図(C1のように絶縁性粉−末からなる充てん材1
9′を注入してコイル14a、 14bの分割面の間に
満たし、その後、プリプレグ等の熱接着性シート23で
注入口18をふさぎ、コイル14a。
The manufacturing process of the resin mold coater according to this example is the fourth step.
This is the power shown in the figure. That is, as shown in FIG. 3A, the prepreg forming the inner coil insulating layer 15, the axially divided coils 14a and 14b, and the prepreg forming the outer coil insulating layer 16 are sequentially wound. Diagram (B)
The coil outer peripheral side insulating layer 16. coil 14a,
After providing the filling compatibility inlet 18 located between the divided surfaces of 14b, pre-drying is performed, and then the filling material 1 made of insulating powder 1 is inserted from the filling compatibility inlet 18 in the same figure (as shown in C1).
9' is injected to fill the gap between the divided surfaces of the coils 14a and 14b, and then the injection port 18 is closed with a heat-adhesive sheet 23 such as prepreg to form the coil 14a.

14bの上下端面にパテ状樹脂を塗布し固化させて端部
絶縁層17を形成することにより、第3図に示した樹脂
モールドコイルができ上がる。
The resin molded coil shown in FIG. 3 is completed by applying putty-like resin to the upper and lower end surfaces of 14b and solidifying it to form end insulating layers 17.

本実施例では、コイル14a、 14bの分割面の間に
充てんされた絶縁性粉末の間に微小な空気層が存在し、
その空気層は粉末粒子間に均一に、゛かつ連続して分布
しているため、コイル14a、 14bの間に高電圧が
かかつても充てん材19′の内部に部分的な電界集中を
生じることはなく、良好な絶縁性能が得られ、また機械
的にもコイル14a、 14bの軸方向へのずれを十分
防止することができる。また、コイル内部に大気圧ボイ
ドが保有され、コイル層間電圧を高くとれることは実施
例■と同様であるしたがって、実施例I、IIによる樹
脂モールドコイルを第6図に示す従来の分割形モールド
フィルに代えて特高受電用モールド変圧器や5kV−3
kV共用モールド変圧器の高圧コイルに適用することに
より、変圧器をより小形軽量化することができる。
In this embodiment, a minute air layer exists between the insulating powder filled between the divided surfaces of the coils 14a and 14b,
Since the air layer is uniformly and continuously distributed between the powder particles, even if a high voltage is applied between the coils 14a and 14b, local electric field concentration will not occur inside the filler 19'. The coils 14a and 14b can be mechanically sufficiently prevented from shifting in the axial direction. Also, the fact that an atmospheric pressure void is maintained inside the coil and a high coil interlayer voltage can be obtained is the same as in Example 2. Therefore, the resin molded coils according to Examples I and II can be replaced with the conventional split type molded filter shown in FIG. Instead of a special high power receiving mold transformer or 5kV-3
By applying the present invention to the high-voltage coil of a kV common mold transformer, the transformer can be made smaller and lighter.

以上各実施例ではコイルの上下端面を覆う端部絶縁層1
7をパテ状樹脂により形成するものとしたが、実施例■
でコイル分割面に施したのと同様の液状樹脂の侵入防止
手段をコイル上下端面にも施すことにより、パテ状樹脂
の代わりに液状樹脂を用いて端部絶縁層17を形成する
ことも可能である。
In each of the above embodiments, the end insulating layer 1 covers the upper and lower end surfaces of the coil.
7 was formed from a putty-like resin, but Example 7
It is also possible to form the end insulating layer 17 using liquid resin instead of putty-like resin by applying the same liquid resin intrusion prevention means applied to the coil dividing surfaces to the upper and lower end surfaces of the coil. be.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軸方向に分割された複数個のコイルを
それぞれのコイル内部にコロナ開始電圧の高い大気圧ボ
イドを法官させた状態で一体に樹、脂モールドすること
ができ、かつコイル分割面の間を満たす充てん材により
コイル間に電界集中のない良好な電気的絶縁を確保し、
機械的にも強固な一体構造とすることができるため、第
5図の従来例に比べてコイル層間電圧を高くとれ、また
第6図の従来例と比べれば分割コイル間の距離を小さく
できるとともにフィル支持構造が簡単になることにより
、モールド変圧器全体を小形軽量化し、製造コストを低
減することができる。
According to the present invention, a plurality of coils divided in the axial direction can be integrally molded with resin with an atmospheric pressure void having a high corona initiation voltage inside each coil, and the coils can be divided into The filler filling between the surfaces ensures good electrical insulation without electric field concentration between the coils.
Since it can be made into a mechanically strong integral structure, the voltage between the coil layers can be increased compared to the conventional example shown in Fig. 5, and the distance between the split coils can be reduced compared to the conventional example shown in Fig. 6. By simplifying the fill support structure, the entire molded transformer can be made smaller and lighter, and manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による樹脂モールドコイルの
一部切断した側面図、第2図(A)〜(D)はその製造
工程の説明図、第3図は本発明の他の実施例による樹脂
モールドコイルの一部切断した側面図、第4図(A)〜
(D)はその製造工程の説明図、第5図は従来例の切断
側面図、第6図は他の従来例の一部切断した側面図、第
7図は樹脂モールドコイルのボイド内圧とコロナ開始電
圧の関係を示す図である。 14a、 14b :コイル 15:コイル内周側絶縁層 16:コイル外周側絶縁層 18:充てん相性入口 19:液状樹脂を注入、固化させてなる充てん材19′
:絶縁性粉末からなる充てん材 22:充てん材の侵入防止手段
FIG. 1 is a partially cutaway side view of a resin molded coil according to an embodiment of the present invention, FIGS. 2A to 2D are explanatory diagrams of the manufacturing process, and FIG. 3 is another embodiment of the present invention. A partially cut side view of a resin molded coil according to an example, FIG. 4 (A) ~
(D) is an explanatory diagram of the manufacturing process, Fig. 5 is a cut side view of a conventional example, Fig. 6 is a partially cut side view of another conventional example, and Fig. 7 is a void internal pressure and corona of a resin molded coil. FIG. 3 is a diagram showing a relationship between starting voltages. 14a, 14b: Coil 15: Insulating layer on the inner circumferential side of the coil 16: Insulating layer on the outer circumferential side of the coil 18: Filling compatibility inlet 19: Filling material 19' formed by injecting and solidifying liquid resin
: Filling material 22 made of insulating powder: Means for preventing intrusion of filling material

Claims (3)

【特許請求の範囲】[Claims] (1)繊維強化樹脂からなるコイル内周側絶縁層と繊維
強化樹脂からなるコイル外周側絶縁層との間に軸方向に
分割された複数個のコイルを包蔵した樹脂モールドコイ
ルにおいて、上記コイル外周側絶縁層に上記コイルの分
割面の間に位置するように設けられた充てん材注入口と
、上記コイルの分割面の間に介在し注入時に流動性を有
する充てん材と、上記コイルの分割面からコイル内部へ
の上記充てん材の侵入を防止する手段とを備え、コイル
内部に大気圧ボイドを保有させたことを特徴とする樹脂
モールドコイル。
(1) In a resin molded coil containing a plurality of coils divided in the axial direction between an insulating layer on the inner circumferential side of the coil made of fiber-reinforced resin and an insulating layer on the outer circumferential side of the coil made of fiber-reinforced resin, the outer circumference of the coil is a filler injection port provided in the side insulating layer so as to be located between the divided surfaces of the coil; a filler interposed between the divided surfaces of the coil and having fluidity when injected; and a divided surface of the coil. A resin molded coil characterized in that the coil is provided with means for preventing the above-mentioned filler from entering into the inside of the coil, and has an atmospheric pressure void inside the coil.
(2)上記充てん材が注入時に液状である樹脂からなっ
ていることを特徴とする特許請求の範囲(1)項記載の
樹脂モールドコイル。
(2) The resin-molded coil according to claim (1), wherein the filler is made of a resin that is liquid at the time of injection.
(3)上記充てん材が絶縁性粉末であることを特徴とす
る特許請求の範囲(1)項記載の樹脂モールドコイル。
(3) The resin molded coil according to claim (1), wherein the filler is an insulating powder.
JP16012885A 1985-07-22 1985-07-22 Resin-molded coil Pending JPS6221205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16012885A JPS6221205A (en) 1985-07-22 1985-07-22 Resin-molded coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16012885A JPS6221205A (en) 1985-07-22 1985-07-22 Resin-molded coil

Publications (1)

Publication Number Publication Date
JPS6221205A true JPS6221205A (en) 1987-01-29

Family

ID=15708473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16012885A Pending JPS6221205A (en) 1985-07-22 1985-07-22 Resin-molded coil

Country Status (1)

Country Link
JP (1) JPS6221205A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140145667A1 (en) * 2012-11-29 2014-05-29 Phasetronics, Inc. Resin-encapsulated current limiting reactor
US20140327509A1 (en) * 2011-12-20 2014-11-06 Alstom Technology Ltd. High impedance air core reactor
JP2016207742A (en) * 2015-04-17 2016-12-08 株式会社東芝 Manufacturing method of mold coil, manufacturing system of mold coil, and design method of mold coil
JP2016207741A (en) * 2015-04-17 2016-12-08 株式会社東芝 Manufacturing method of mold coil, and manufacturing system of mold coil

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140327509A1 (en) * 2011-12-20 2014-11-06 Alstom Technology Ltd. High impedance air core reactor
US9633777B2 (en) * 2011-12-20 2017-04-25 Alstom Technology Ltd. High impedance air core reactor
US20140145667A1 (en) * 2012-11-29 2014-05-29 Phasetronics, Inc. Resin-encapsulated current limiting reactor
JP2016207742A (en) * 2015-04-17 2016-12-08 株式会社東芝 Manufacturing method of mold coil, manufacturing system of mold coil, and design method of mold coil
JP2016207741A (en) * 2015-04-17 2016-12-08 株式会社東芝 Manufacturing method of mold coil, and manufacturing system of mold coil

Similar Documents

Publication Publication Date Title
JPH077878A (en) Wall structure insulating outer face of high-voltage parts and its formation
US4333900A (en) Process for manufacture of high voltage transformers and the like
US3436704A (en) Electrical transformer construction
KR920005818B1 (en) Resin bonded magnet
JPS6221205A (en) Resin-molded coil
US3705372A (en) Cast-type winding structure for electrical inductive apparatus
JPS605206B2 (en) Electrical equipment coil and its manufacturing method
JPS6372106A (en) Resin molded coil
US3274320A (en) Method of encapsulating transformer
JPS5857711A (en) Resin formed coil for propulsion of levitated rall way
US3737823A (en) Integral electrical coil structure
JP7498098B2 (en) Prepreg mica tape, rotating electric machine, and method for manufacturing rotating electric machine
JPH0218662Y2 (en)
JPS6024008A (en) Resin mold coil
JPS5927601Y2 (en) resin embedded coil
JPH09182343A (en) Stator for electric rotating machine
JP2925903B2 (en) Mold coil
JPS642429Y2 (en)
JP3048851B2 (en) Through-type current transformer
JPS6331379Y2 (en)
JPS584174Y2 (en) molded coil
US3250837A (en) Method of molding insulated coils by application of differential fluid pressure
JPH0438504Y2 (en)
JPS6151811A (en) Resin mold coil
JPS61245509A (en) High voltage transformer and insulation thereof